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Controlling thermal conductivity
through phonon transport

Phonon engineering for thermoelectric applications
Thermoelectric
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} Outline

Goal: Study phonon scattering and thermal
conductivity reduction in PnC

* Predicting the thermal conductivity in
periodically arranged porous solids

 Thermal conductivity reduction in the PnC

 Thermal conductivity measurements of PnC
with time-domain thermoreflectance



Thermal conductivity in
periodic, porous Si

Song and Chen, APL 84, 687 (2004)
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How can we model this thermal conductivity reduction?



Thermal conductivity in bulk Si
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k ' Origin of reduction of kin
microporous Si

Scattering at pore boundaries
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Predicting k in microporous Si
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Consider bulk approach as “maximum” k, or smallest reduction in k
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#Time-domain thermoreflectance
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Measurement of k of the Pnc

Thermal conductivity measurements on a 500 nm thick
suspended PnC structure
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Phonon engineering of x in
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} Conclusions

Goal: Study phonon scattering and thermal conductivity
reduction in PnC

* Reduction in thermal conductivity of microporous,
periodic solids due to long wavelength phonon scattering

* PnC further reduces thermal conductivity through wave
interference of phonon modes in periodic lattice

 TDTR experiments show reduced thermal conductivity in
PnC beyond that from boundary scattering considerations
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