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I. I NTRODUCTION

In developmental agents, creating abstract representations
is an important aspect of learning. Unless an agent starts
out with a pre-programmed set of concepts, it must generate
them from its experience. One method for doing this is to
group observations into clusters which are then assumed to be
similar. Clustering state observations is a type of unsupervised
learning. (A review of unsupervised learning methods can be
found in [1, ch. 10].) Unsupervised learning allows agents
to create abstractions from their experiences. Expressing raw
experiences in abstract terms greatly decreases the size of
the agent’s input space. This in turn lets the agent use more
powerful learning, perception, and planning algorithms that
can only operate effectively in modest state spaces.

In this work, state observations are grouped into a small
number of clusters. Each dimension in the state space repre-
sents a separate state variable. What separates this work from
previous unsupervised learning methods is that it does not
assume that state dimensions are ordered fields. That is, it does
not assume that 1 is less than 2 or that the distance from 1
to 2 is less than the distance from 1 to 1000. As a result, this
method can be applied to a wide variety of data, including
continuous, discretized, categorical, binary, and hybrid data
types.

The algorithm for clustering non-ordered fields is a decision
tree. Initially the entire state space represents a single cluster.
The state space is then repeatedly subdivided into regions, with
some of the regions representing clusters. Each subdivision is
represented by splitting a leaf node into two new leaves. A
subset of the tree’s leaves are the clusters. The dimension along
which to divide each leaf is chosen so as to maintain clusters
as much as possible. A tree that chooses when and where to
divide solely on the basis of the data distribution is said to
have the X-property. [2] In order to distinguish between this
and other tree-based tools (including Decision Q-Trees [3], S-
trees [4], and T-Trees, an extension of Continuous U-Trees [5])
it will be referred to as an X-tree.

In this paper, I present a detailed description of X-trees, to-
gether with two implementations demonstrating its operation.
One X-tree is used with digital images to find visual primitives
similar to those found in human cortical area V1. A second X-
tree is used to create abstractions of visual inputs to a mobile
robot.

II. M ETHOD

X-Trees are conceptually similar to other decision tree based
algorithms, but differ in the specifics of their implementation.

Although the most well known implementations of decision
trees are CART [6] and C4.5 [7], a concise overview of a
wide variety of decision trees is given in [8]. A decision tree
is defined by how it answers the three questions 1) When
to split a node, 2) Where to split that node, and 3) When
to stop splitting a node. (Some trees also answer a fourth
question—When and how to prune branches from the tree—
but X-Trees do not use pruning.) After describing the structure
and populating process of a leaf, this section answers those
questions for X-trees.

A. Leaf structure

Each leaf represents an explicitly bounded region of the
state space. When defining the initial leaf that encompasses
the entire state space, upper and lower bounds on all input
dimensions must be known or assumed. As a leaf is divided,
the bounds of its children are created using the decision
boundary. In this way, the leaves form a non-overlapping set
of regions that completely cover the state space. (See Figure 1)
Each leaf is a hyperbox, defined by minimum and maximum
values in each dimension of the state space.
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Fig. 1. a) A partitioned state space andb) the decision tree representation of
that partitioning. The top node in the tree represents the entire state space. It
also indicates the division of the space into its left and right halves along the
line x = 0.5. Leaf nodes in the tree represent individual regions as labeled.
Any internal node on the tree represents the union of all of the leaf node
regions that fall under it.
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Each leaf represents a single region. Each node on the
tree represents a super-region, the combination of the regions
defined by its children, which themselves may be either leaves
or branch nodes. This family tree of regions allows for a
rough measure of distance between them. The number of
generations that must be ascended and descended to traverse
from one node to another provides a quantitative measure of
their similarity. Note that this traversal distance is not a state
space distance metric and does not impose an assumption of
ordered fields on the state space. Nodes may be adjacent in
state space, yet have an arbitrarily large traversal distance.

Most tree-based learning tools are supervised learning al-
gorithms, rather than unsupervised. Observations of input
states are typically accompanied by categories, in classification
problems, or values, in regression problems. X-trees differ
from these. The leaves of an X-tree do not provide an estimate
of a reward, value function, or class membership. Instead, X-
trees identify locally dense regions of state activity. In addition,
X-trees subdivide clusters once they exceed a predetermined
size. The motivating assumption behind X-trees’ partitioning
heuristic is that useful concepts capture a roughly fixed number
of observations. If a concept represents very few observations,
it provides only limited abstraction, and if it represents a very
large number of observations, it may be too general to be
useful.

B. When to split a node

An X-tree node becomes eligible to split when the number
of observed states it contains exceeds a user-defined threshold,
M . Each observation that falls within a given region of state
space is amemberof that region. When more a node has more
thanM members, it is considered ripe for bisection. However,
each member has a finite lifetime,L, also defined by the user.
As a result, a node is ready to split when more thanM of the
last L state observations fall within its region of state space.

C. Where to split a node

The objective of an X-tree is to find clusters of observations
and bound them tightly. Each cluster represents a concept,
or a closely related group of states. Tighter bounds give a
more concise concept definition. Therefore, when a node is
bisected, the dimension along which to split and the value at
which to split it are chosen such that the cluster is preserved
as much as possible. For all admissible splits, the split which
maximizes the disparity between the number of members in
each child is selected. If more than one candidate split achieves
the maximum value, then the split value is randomly selected
from among them.

More formally, for an admissible split(d, x) along dimen-
sion d at valuex, the quality of the split,q is given by

qd,x = |ma −mb| (1)

wherema is the number of members from the parent node
that would fall under one of its children for that split andmb

is the number of members that would fall under the other child

node. Quality is symmetric with respect toma and mb. The
winning split fulfills the condition

max
d∈D

(max
x∈Xd

qd,x) (2)

whereD is the set of all state space dimensions andXd

is the set of all admissible split values for dimensiond.
The admissible split values inXd divide the region along
dimensiond roughly in half. Xd is generated by taking a
number of evenly-spaced values alongd. More specifically, if
dmin anddmax are the limits ofd in the region to be divided,
thenN admissible split values can be generated using natural
numbersi|i ≤ N :

dlow = dmin +
1
4
(dmax − dmin) (3)

dhigh = dmin +
3
4
(dmax − dmin) (4)

xi = dlow + (dhigh− dlow)
i

N + 1
(5)

The resulting values ofXd fall between, but do not include,
one quarter and three quarters of the range ofd. N is a user-
selected constant.

D. When to stop splitting a node

Due to the fact that members have a limited lifetime, an ex-
plicit stopping criterion is typically unnecessary. The splitting
condition of accumulating more thanM members within any
interval L becomes harder to achieve as regions get smaller.
With any continuous distribution of observations, the member
accumulation rate will approach zero as region size approaches
zero. However, when processing discontinuous distributions
(as with categorical or discretized data), observations may be
grouped at a single value, prompting endless repeated splits.
This can occur whenever a region’s range in a given dimension
exceeds the discrete resolution in that dimension. A method
for handling this degenerate case is to specify a threshold for
the minimum region size in each dimension. This can either be
a constantε that is the same for each dimension or a vectorE
with separate values for each dimension. Further divisions are
not allowed along any dimension for whichdmax− dmin < ε.

E. Clusters

X-trees seek to isolate groups of members into tightly-
grouped clusters. The condition for becoming a cluster is being
a leaf node while having the number of members in a node
exceedM/2. Thus, when a node is divided, one of the children
will become a cluster and the other will not (although it may
eventually become one), and the parent node ceases to be a
cluster. Once a node is designated a cluster, it remains one,
even if the number of members it contains falls belowM/2.
Cluster nodes represent concepts, the categories into which
most of the data fall.

Once clusters have been formed, they serve as a means
of interpreting raw data. A single observation is a point in
state space; if it falls within the hyperbox of a cluster, the



data point can be represented more abstractly as that concept.
But typically, clusters do not provide complete coverage of
the state space. In order to find a conceptual interpretation of
points that do not fall within a cluster, a distance measure can
be used to identify the nearest clusters. The distance measure
X-trees use reflect the fraction of dimensions in which an
observation matches a cluster. The distanceδ between a state
s and a clusterc in an n-dimensional space is given by

δ = 1−
∑n

i=1 in(s, c, i)
n

(6)

where

in(s, c, i) = 1, if si ≥ ci min and (7)

si < ci max

= 0, otherwise

wheresi is the value ofs, ci min is the minimum value ofc,
andci max is the maximum value ofc, all in theith dimension.
If s falls within c for all dimensions, andδ = 0. If s falls
within c in only half of the dimensions,δ = 1/2. The distance
measure takes no account of how far outside a cluster a state
may fall. Only matching and non-matching are reflected in
the distance. It should be noted that this is a departure from
many other unsupervised learning approaches, which use the
Euclidean distance measure. X-trees’ distance measure avoids
making the assumption that the state space is well scaled and
allows it to be applied to a wider range of problems.

F. Simulation 1: Clustering example

The first simulation reported here serves to illustrate the
operation of X-trees. A pair of arbitrarily selected two-
dimensional normal distributions were used to generate ran-
dom points in a two-dimensional state space. The defining
parameters for the X-tree were chosen as follows:

Anomaly lifetime, L = 100
Maximum number of members, M = 40
Number of split candidates per dim.,N = 101
Minimum category size, ε = 0

G. Simulation 2: Vision

In the second simulation, X-trees were applied to grayscale
images to find clusters of common pixel groups. Three-by-
three pixel groups were randomly selected from a set of images
and processed by an X-tree. The nine-dimensional state space
was partitioned and clusters were identified. The defining
parameters for the X-tree were chosen as follows:

Anomaly lifetime, L = 1000
Maximum number of members, M = 70
Number of split candidates per dim.,N = 1
Minimum category size, ε = 1.0

ChoosingN = 1 ensured that all splits would be perfect
bisections, and choosingε = 1.0 ensured that no dimension
would be split more than once. The resulting state space was
then had29(512) distinct states.

III. R ESULTS

The results for simulation 1 are shown in Figure 4. The
two normal distributions produced two groups of points, and
the recursive partitioning of the space produced cluster nodes
corresponding to the densest portion of each group. The tree
in Figure 3 shows two major branches, one corresponding to
each of the clusters. Simulation 1 was run until a stable tree
structure was achieved, that is, no new nodes were created for a
substantial period of time. Simulation 1 provides an illustration
of X-tree’s operation on a simple problem and is intended
to provide an intuitive basis for understanding the results of
simulation 2.
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Fig. 2. Two dimensional state space as partitioned by an X-tree. The
two normal distributions produced clearly separated groups of points. Each
bisection is shown by a line on the bisection boundary. Each region represents
a leaf node. Cluster nodes are shaded gray and correspond to the densest part
of each data distribution.
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Fig. 3. Tree representation of the partitions shown in Figure 4. The root node
of the tree represents the entire state space. Each branching represents a split
at the line given by the corresponding equation. The right branch represents
the region to the right or above the split. Unfilled boxes on leaf nodes show
regions that are not clusters. The two gray filled boxes show the clusters.

The result of simulation 2 was a set of clusters in the nine-
dimensional state space, shown in Figure 5. These can be
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Fig. 4. Cluster assignment vectors across the state space. Every point in the
state space can be said to have a similarity to each cluster of1−δ between 0
and 1 as described in Equation 6. For the white regions, those similarities are
[0, 0]. For the other regions they are[1, 0] (dark green),[.5, 0] (light green),
[0, 1] (dark blue),[0, .5] (light blue), and[.5, .5] (turquoise).

notionally compared to the receptive fields identified in the
human visual cortex, which have exhibited strong characteris-
tics of directionality. (See Figure 6.)

Fig. 5. Graphical representation of the 20 clusters found in the space of 9
pixel groups.

An image can be reconstructed using the cluster set by
breaking it into 9-pixel tiles, finding the similarity of the
tile with each of the clusters, linearly combining the clusters
weighted by their similarity, and substituting them for the
original tile. The results of one such reconstruction are shown
in Figures 7 and 8. The reconstructed image is a visual
representation of the information that the X-tree retains in its
similarity vector.

IV. D ISCUSSION

Concept acquisition is an important aspect of development
and learning, clearly evident in the cognitive processes of
humans and animals. In this work, concepts are defined
as clusters of lower-level observations. While this definition

Fig. 6. Strongly oriented receptive fields that would be associated with each
of the clusters in Figure 5.

Fig. 7. An original grayscale image.

Fig. 8. A reconstructed image, based on the clusters.



does not satisfy all theories of what a concept is, it does
provide a useful basis for beginning an investigation of the
topic. Formulated this way, the problem of concept acquisi-
tion becomes a clustering or unsupervised learning problem.
Acquired concepts can be high level and very abstract, or
low level and quite specific. In either case, clusters of state
observations are identified and used to represent the underlying
states.

A. Biological motivation

The splitting criteria and cluster definitions have been cho-
sen carefully to result in an algorithm with adaptive behavior.
If an X-tree is exposed to the same types of observations
for a significant period of time, it will converge on a stable
representation, with a fixed number of clusters (concepts).
However, if that exposure should shift later to focus on
smaller portion of the state space, the density of observations
in that region will increase, resulting in a finer conceptual
representation locally.

B. Relation to other work

A decision tree is a natural representation for the iterative
division of categories. Each leaf represents a terminal category.
Each node represents both the super-category formed by
combining its two children, as well as the decision boundary
used to differentiate between them. (See Figure 1) Several
tree-based adaptive partitioning algorithms have been previ-
ously proposed. The Parti-Game algorithm [9] uses a greedy
controller to crawl through a partitioned state space. When
the controller fails, the last visited subspace is divided. Parti-
Game is specifically geared to geometric path planning; it
assumes that all paths through the state space are continuous.
The G Algorithm [10], U-Tree [11], Continuous U-Tree [12],
AMPS [13], and decision trees of Pyeatt and Howe [14] are
all approaches used in conjunction with dynamic program-
ming methods or the popular temporal difference method, Q-
learning [15], to estimate the value function across the state
space. Whenever a subspace’s value estimate is shown to be
inadequate, the subspace is divided. The G Algorithm handles
binary data, U-Trees handle discrete data, and Continuous
U-Trees, AMPS, and Pyeatt and Howe’s approach handle
continuous data.

Taking a broader view, X-trees are a member of the set
of unsupervised learning method, that is, methods that group
data that is unlabeled and unclassified. Also referred to as
clustering algorithms, there are many unsupervised learning
methods developed with different sets of assumptions, but X-
trees provide a novel collection of characteristics. X-trees are
an on-line, hierarchical, divisive clustering algorithm. They
are stable in the sense that cluster boundaries do not move.
X-trees are most notable for what they don’t assume. Unlike
many clustering algorithms, X-trees operate without assuming
1) how many categories exist in the underlying data, 2) that
prior probabilities of any category are known, 3) that prior
probabilities are stationary, and 4) that the forms of the class
conditional probabilities are known. Once the dimensionality

and range of the state space is defined, X-trees always start
from the same initial conditions, so there is no need to
carefully pick initial values for parameters. One of X-trees’
greatest strengths is that it does not assume that the input
space is well scaled or even linear. In fact, because X-trees
use such a weak distance metric, they do not even assume
that each of their input dimensions is an ordered field. As
a result, X-trees can handle inputs consisting of enumerated
types, such as{vanilla = 1, chocolate = 2, strawberry = 3,
pistachio = 4}. And their computational demands are low.

X-trees’ strength comes at a cost, of course. They bound
clusters with hyperboxes, so clusters that are not well fit by a
hyperbox may not be well represented. IfM is large, X-trees
can require a relatively large amount of data before useful
clusters are generated. They are unstable in the sense that the
total number of clusters created can grow without bound if not
artificially limited. Like other unsupervised learning methods
in which the number of clusters is not specified, the validity
of the clusters found depends entirely on the appropriateness
of the measure of cluster goodness, the node-splitting criterion
in the case of X-trees. And, like other unsupervised learning
algorithms of its class, there are no theoretical performance
guarantees.

C. Relation to other biologically motivated methods

There are several other approaches to the problem of
concept acquisition that are motivated by theories of human
psychology and neuroscience. Hierarchical Temporal Memory
(HTM) [16] uses on a hierarchy of Bayesian classification
elements to cluster data into concepts (“causes”) and to infer
likely causes for a given set of inputs. Adaptive Resonance
Theory (ART) [17] uses neural networks to bound clusters
of states within hyperboxes. Like X-trees, both HTMs and
ART are online methods, meaning that they can incorporate
new state observations and update their results incrementally.
However, HTMs and ART differ from X-trees in that they use a
Euclidean distance metric to determine the similarity between
states. For Euclidean distance to be valid, the state space must
be well scaled, that is, a unit step in each dimension must
represent the same magnitude of change. This is a somewhat
restrictive condition that X-trees do not need to meet. Because
X-trees do not use Euclidean distances (or anyp-norm), they
do not require well-scaled state spaces.

ACKNOWLEDGMENTS

This work was supported by the Laboratory Directed Re-
search and Development program at Sandia National Labora-
tories. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energys National Nuclear Security Ad-
ministration under Contract DE-AC04-94AL85000.

REFERENCES

[1] R. O. Duda, P. E. Hart, and D. G. Stork,Pattern Classification, 2nd ed.
Wiley Interscience, 2001.
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