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I. INTRODUCTION Il. METHOD

In developmental agents, creating abstract representation&-Trees are conceptually similar to other decision tree based
is an important aspect of learning. Unless an agent staglgorithms, but differ in the specifics of their implementation.
out with a pre-programmed set of concepts, it must generateAlthough the most well known implementations of decision
them from its experience. One method for doing this is tisees are CART [6] and C4.5 [7], a concise overview of a
group observations into clusters which are then assumed tovijde variety of decision trees is given in [8]. A decision tree
similar. Clustering state observations is a type of unsuperviseddefined by how it answers the three questions 1) When
learning. (A review of unsupervised learning methods can be split a node, 2) Where to split that node, and 3) When
found in [1, ch. 10].) Unsupervised learning allows agents stop splitting a node. (Some trees also answer a fourth
to create abstractions from their experiences. Expressing rauestion—When and how to prune branches from the tree—
experiences in abstract terms greatly decreases the sizebuifX-Trees do not use pruning.) After describing the structure
the agent’s input space. This in turn lets the agent use meed populating process of a leaf, this section answers those
powerful learning, perception, and planning algorithms thguestions for X-trees.
can only operate effectively in modest state spaces.

In this work, state observations are grouped into a smal Leaf structure

to 2hisdless ths n the IQiztance frqcrjn L to_ 1000f' 'S‘S a r?SLI’Ita,t ﬁundary. In this way, the leaves form a non-overlapping set
met'o can be apple to a wide var!ety of data, INCIUAING regions that completely cover the state space. (See Figure 1)
continuous, discretized, categorical, binary, and hybrid data ' |eaf is a hyperbox, defined by minimum and maximum

types. _ _ S _values in each dimension of the state space.
The algorithm for clustering non-ordered fields is a decision
tree. Initially the entire state space represents a single clustg)r. b) full state space

The state space is then repeatedly subdivided into regions, with , |
some of the regions representing clusters. Each subdivision is
represented by splitting a leaf node into two new leaves. A
subset of the tree’s leaves are the clusters. The dimension along
which to divide each leaf is chosen so as to maintain clustersy
as much as possible. A tree that chooses when and where to
divide solely on the basis of the data distribution is said to B D
have the X-property. [2] In order to distinguish between this E
and other tree-based tools (including Decision Q-Trees [3], S- 0.0
trees [4], and T-Trees, an extension of Continuous U-Trees [5]) 0.0 1.0
it will be referred to as an X-tree. X

In this paper, | present a detailed description of X-trees, to-
gether with two implementations demonstrating its Operatioﬁg. 1. a) A partitioned state space aml the decision tree representation of
One X-tree is used with digital images to find visual primitivethat partitioning. The top node in the tree represents the entire state space. It
similar to those found in human cortical area V1. A second Uso indicates the division of the space into its left and right halves along the

. . . . Ine x = 0.5. Leaf nodes in the tree represent individual regions as labeled.
tree is used to create abstractions of visual inputs to a Molulg interal node on the tree represents the union of all of the leaf node

robot. regions that fall under it.




Each leaf represents a single region. Each node on thede. Quality is symmetric with respect to, andm;. The
tree represents a super-region, the combination of the regiovianing split fulfills the condition
defined by its children, which themselves may be either leaves
or branch nodes. This family tree of regions allows for a max(max ¢q,z) (2)
rough measure of distance between them. The number of deb weXa
generations that must be ascended and descended to travergéere D is the set of all state space dimensions ang
from one node to another provides a quantitative measurei®fthe set of all admissible split values for dimensidn
their similarity. Note that this traversal distance is not a stalde admissible split values iX; divide the region along
space distance metric and does not impose an assumptiogligfensiond roughly in half. X; is generated by taking a
ordered fields on the state space. Nodes may be adjacenfumber of evenly-spaced values alahgMore specifically, if
state space, yet have an arbitrarily large traversal distancedmin @nddp,., are the limits ofd in the region to be divided,
Most tree-based learning tools are supervised learning #1en N admissible split values can be generated using natural
gorithms, rather than unsupervised. Observations of inpigmbersili < N:
states are typically accompanied by categories, in classification

problems, or values, in regression problems. X-trees differ 1

from these. The leaves of an X-tree do not provide an estimate dow = min + Z(dmax ~ dumin) ©)
of a reward, value function, or class membership. Instead, X- de — d é(d = duin) @)
trees identify locally dense regions of state activity. In addition, high iy \max s min

X-trees subdivide clusters once they exceed a predetermined 2 = digw + (dhigh — diow) i ®)
size. The motivating assumption behind X-trees’ partitioning ! low high = Hlow/ 777

heuristic is that useful concepts capture a roughly fixed numberrpe resulting values ok, fall between, but do not include,

of observations. If a concept represents very few observatiogge quarter and three quarters of the rangéd.a¥ is a user-
it provides only limited abstraction, and if it represents a velg|ected constant.

large number of observations, it may be too general to be
useful. D. When to stop splitting a node
Due to the fact that members have a limited lifetime, an ex-
plicit stopping criterion is typically unnecessary. The splitting
An X-tree node becomes eligible to split when the numbeondition of accumulating more thalw members within any
of observed states it contains exceeds a user-defined threshialéyval L becomes harder to achieve as regions get smaller.
M. Each observation that falls within a given region of stafé/ith any continuous distribution of observations, the member
space is anemberof that region. When more a node has moraccumulation rate will approach zero as region size approaches
than M members, it is considered ripe for bisection. Howeverero. However, when processing discontinuous distributions
each member has a finite lifetimg, also defined by the user.(as with categorical or discretized data), observations may be
As a result, a node is ready to split when more tiAdrof the grouped at a single value, prompting endless repeated splits.
last L state observations fall within its region of state spacelhis can occur whenever a region’s range in a given dimension
] exceeds the discrete resolution in that dimension. A method
C. Where to split a node for handling this degenerate case is to specify a threshold for
The objective of an X-tree is to find clusters of observatiortbe minimum region size in each dimension. This can either be
and bound them tightly. Each cluster represents a concepgonstant that is the same for each dimension or a vedor
or a closely related group of states. Tighter bounds givewith separate values for each dimension. Further divisions are
more concise concept definition. Therefore, when a nodenst allowed along any dimension for whiek,.x — dmin < €.
bisected, the dimension along which to split and the value Et
which to split it are chosen such that the cluster is preserved
as much as possible. For all admissible splits, the split whichX-trees seek to isolate groups of members into tightly-
maximizes the disparity between the number of members gfouped clusters. The condition for becoming a cluster is being
each child is selected. If more than one candidate split achiegeteaf node while having the number of members in a node
the maximum value, then the split value is randomly selecté¥ceed)//2. Thus, when a node is divided, one of the children

B. When to split a node

Clusters

from among them. will become a cluster and the other will not (although it may
More formally, for an admissible splitZ, ) along dimen- eventually become one), and the parent node ceases to be a
siond at valuez, the quality of the splitg is given by cluster. Once a node is designated a cluster, it remains one,

even if the number of members it contains falls belbfy2.
Cluster nodes represent concepts, the categories into which
most of the data fall.

wherem,, is the number of members from the parent node Once clusters have been formed, they serve as a means
that would fall under one of its children for that split and, of interpreting raw data. A single observation is a point in
is the number of members that would fall under the other chitdate space; if it falls within the hyperbox of a cluster, the

dd,z = |Maq — My (1)



data point can be represented more abstractly as that concept. [1l. RESULTS

X-trees use reflect the fraction of dimensions in which af rjgre 3 shows two major branches, one corresponding to
observation matches a cluster. The distand@etween a state each of the clusters. Simulation 1 was run until a stable tree

s and a cluster: in ann-dimensional space is given by structure was achieved, that is, no new nodes were created for a
S in(s, ¢, 4) substantial period of time. Simulation 1 provides an illustration
1=1 g

0=1- " (6) of X-tree’s operation on a simple problem and is intended
to provide an intuitive basis for understanding the results of
where simulation 2.
in(s,c,i) = 1,if 8; > ¢;min and (7 Ay
S; < Cimax
= 0, otherwise
wheres; is the value ofs, ¢; min is the minimum value o, ”W.‘fv
andc¢; max IS the maximum value of, all in the:™ dimension. LN S =
If s falls within ¢ for all dimensions, and = 0. If s falls . '_ ’
within ¢ in only half of the dimensions] = 1/2. The distance Al
measure takes no account of how far outside a cluster a state % y
may fall. Only matching and non-matching are reflected in '\\'j.‘
the distance. It should be noted that this is a departure from )
many other unsupervised learning approaches, which use the «
Euclidean distance measure. X-trees’ distance measure avoids —_
making the assumption that the state space is well scaled aFnd 2 Two dimensional st itoned b wiree. T
allows it to be applied to a wider range of problems. tv:/% ndrmal v(\;?strimggigﬁodsui:d Scrl):;ﬁyassteppeﬁzaltelgngrougs 6(1)? poirzfse.' Eaci
F. Simulation 1: Clustering example bisection is shown by a line on the bisection boundary. Each region represents

a leaf node. Cluster nodes are shaded gray and correspond to the densest part
The first simulation reported here serves to illustrate tiwéeach data distribution.

operation of X-trees. A pair of arbitrarily selected two-
dimensional normal distributions were used to generate ran-
dom points in a two-dimensional state space. The defining
parameters for the X-tree were chosen as follows:

Anomaly lifetime, L = 100
Maximum number of members, M = 40
Number of split candidates per dim.,N = 101
Minimum category size, e =0

G. Simulation 2: Vision

In the second simulation, X-trees were applied to grayscale
images to find clusters of common pixel groups. Three-by-
three pixel groups were randomly selected from a set of images
and processed by an X-tree. The nine-dimensional state space
was partitioned and clusters were identified. The defining
parameters for the X-tree were chosen as follows:

Anomaly lifetime, L = 1000

Maximum number of members, M = 170 Fig. 3. Tree representation of the partitions shown in Figure 4. The root node
Number of split candidates per dim..N = 1 of the tree represents the entire state space. Each branching represents a split
Minimum category size e = 1.0 at the line given by the corresponding equation. The right branch represents

the region to the right or above the split. Unfilled boxes on leaf nodes show
ChoosingN = 1 ensured that all splits would be perfecfegions that are not clusters. The two gray filled boxes show the clusters.
bisections, and choosing= 1.0 ensured that no dimension
would be split more than once. The resulting state space waghe result of simulation 2 was a set of clusters in the nine-
then had2®(512) distinct states. dimensional state space, shown in Figure 5. These can be



X
J—

Fig. 4. Cluster assignment vectors across the state space. Every point in the
state space can be said to have a similarity to each clusteraf between 0O
and 1 as described in Equation 6. For the white regions, those similarities B
[0,0]. For the other regions they af&, 0] (dark green)].5, 0] (light green),
[0, 1] (dark blue),[0, .5] (light blue), and[.5, .5] (turquoise).

notionally compared to the receptive fields identified in the
human visual cortex, which have exhibited strong characteris-
tics of directionality. (See Figure 6.)

Fig. 5. Graphical representation of the 20 clusters found in the space of 9
pixel groups.

An image can be reconstructed using the cluster set by
breaking it into 9-pixel tiles, finding the similarity of the
tile with each of the clusters, linearly combining the clusters
weighted by their similarity, and substituting them for the
original tile. The results of one such reconstruction are shown
in Figures 7 and 8. The reconstructed image is a visual
representation of the information that the X-tree retains in its
similarity vector.

IV. DISCUSSION

Concept acquisition is an important aspect of development
and learning, clearly evident in the cognitive processes of
humans and animals. In this work, concepts are defined
as clusters of lower-level observations. While this definition
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|r§. 6. Strongly oriented receptive fields that would be associated with each
of the clusters in Figure 5.

Fig. 8. A reconstructed image, based on the clusters.



does not satisfy all theories of what a concept is, it do@sd range of the state space is defined, X-trees always start
provide a useful basis for beginning an investigation of tHfeom the same initial conditions, so there is no need to
topic. Formulated this way, the problem of concept acquisiarefully pick initial values for parameters. One of X-trees’
tion becomes a clustering or unsupervised learning problegreatest strengths is that it does not assume that the input
Acquired concepts can be high level and very abstract, gpace is well scaled or even linear. In fact, because X-trees
low level and quite specific. In either case, clusters of statise such a weak distance metric, they do not even assume
observations are identified and used to represent the underlyiingt each of their input dimensions is an ordered field. As
states. a result, X-trees can handle inputs consisting of enumerated
types, such agvanilla = 1, chocolate = 2, strawberry = 3,
pistachio = 4. And their computational demands are low.

The splitting criteria and cluster definitions have been cho- X-trees’ strength comes at a cost, of course. They bound
sen carefully to result in an algorithm with adaptive behaviotlusters with hyperboxes, so clusters that are not well fit by a
If an X-tree is exposed to the same types of observatiohgperbox may not be well represented Mf is large, X-trees
for a significant period of time, it will converge on a stablean require a relatively large amount of data before useful
representation, with a fixed number of clusters (concepts)usters are generated. They are unstable in the sense that the
However, if that exposure should shift later to focus ototal number of clusters created can grow without bound if not
smaller portion of the state space, the density of observatiarsificially limited. Like other unsupervised learning methods
in that region will increase, resulting in a finer conceptuah which the number of clusters is not specified, the validity
representation locally. of the clusters found depends entirely on the appropriateness
of the measure of cluster goodness, the node-splitting criterion
in the case of X-trees. And, like other unsupervised learning

A decision tree is a natural representation for the iteratiagorithms of its class, there are no theoretical performance
division of categories. Each leaf represents a terminal categayyarantees.

Each node represents both the super-category formed d:)y
combining its two children, as well as the decision boundary’
used to differentiate between them. (See Figure 1) Severall "€ré are several other approaches to the problem of
tree-based adaptive partitioning algorithms have been pre¥fNCept acquisition that are motivated by theories of human
ously proposed. The Parti-Game algorithm [9] uses a gre ychology and neuroscience. Hierarchical TemporaI.Memory
controller to crawl through a partitioned state space. Wh&iTM) [16] uses on a hierarchy of Bayesian classification
the controller fails, the last visited subspace is divided. Parfiléments to cluster data into concepts (“causes”) and to infer
Game is specifically geared to geometric path planning: likely causes for a given set of inputs. Adaptive Resonance
assumes that all paths through the state space are continud{l€°"Y (ART) [17] uses neural networks to bound clusters
The G Algorithm [10], U-Tree [11], Continuous U-Tree [12],0f states Wlt'hln hyperboxes. L|I_<e X-trees, both I—_|TMs and
AMPS [13], and decision trees of Pyeatt and Howe [14] afeRT are online me_thods, meaning tha’F they can incorporate
all approaches used in conjunction with dynamic prograr?€W state observations and update their results incrementally.

ming methods or the popular temporal difference method, @owever, HTMs and ART differ from X-trees in that they use a
learning [15], to estimate the value function across the st clidean distance metric to determine the similarity between

space. Whenever a subspace’s value estimate is shown tcltes. For Euclidean distance to be valid, the state space must

inadequate, the subspace is divided. The G Algorithm handR& Well scaled, that is, a unit step in each dimension must

binary data, U-Trees handle discrete data, and ContinudG8resent the same magnitude of change. This is a somewhat

U-Trees, AMPS, and Pyeatt and Howe's approach handgstrictive condition that X-trees do not need to meet. Because

continuous data. X-trees do not use Euclidean distances (or amorm), they
Taking a broader view, X-trees are a member of the <& Not require well-scaled state spaces.
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