

SAND2010-0740C

Computations of Chemically Reacting Flow

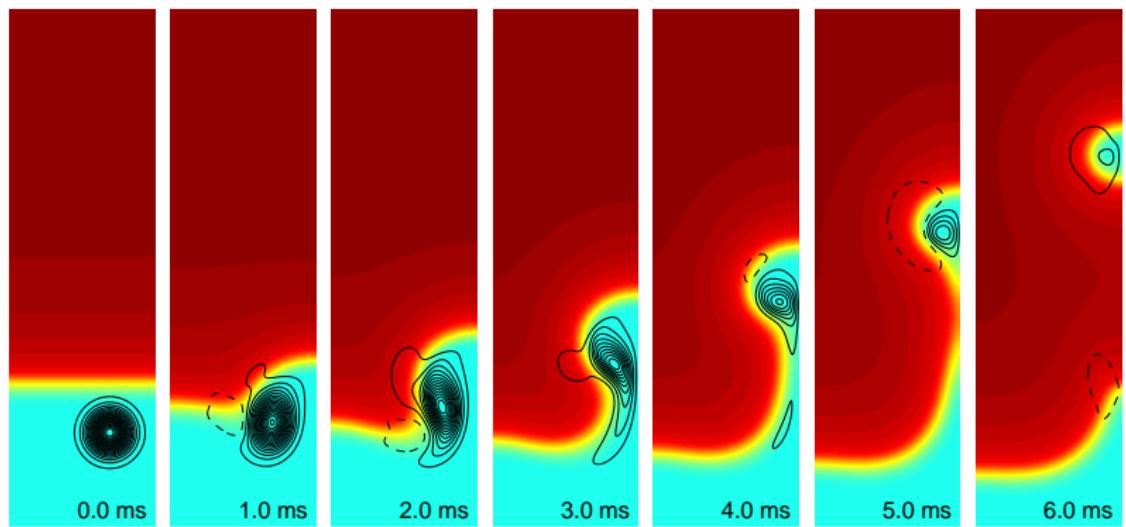
Habib N. Najm

Sandia National Laboratories
Livermore, CA

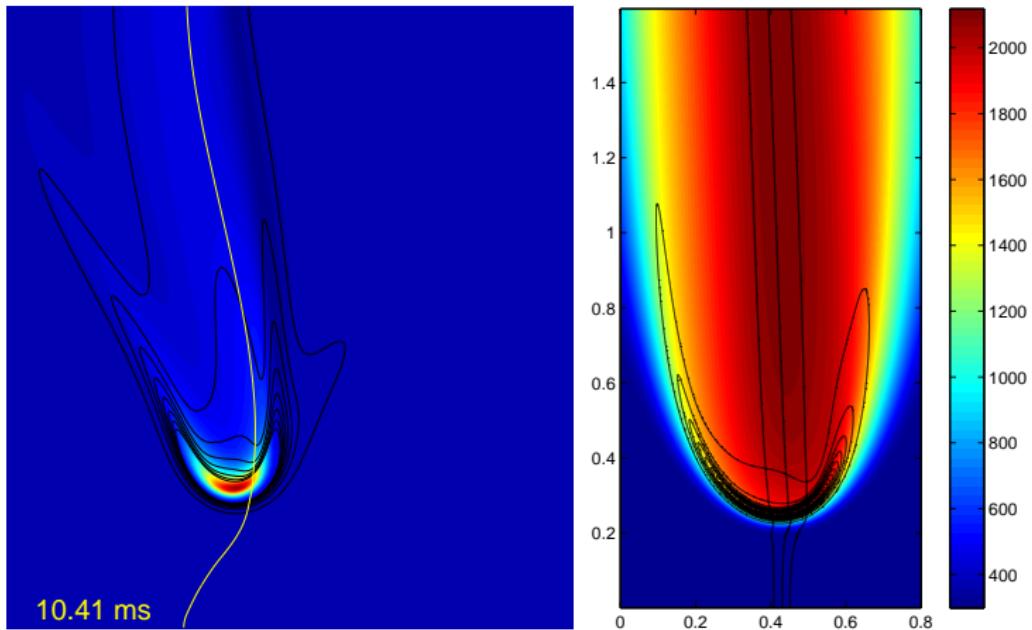
BES-NERSC Workshop, Washington DC, 2/9-10/2010

Overview

- Collaborators:
 - J. Prager, B. Debusschere, J. Ray, C. Safta
— Sandia National Labs
 - M. Valorani, Univ. of Rome
 - D. Goussis, Nat. Tech. Univ. of Athens
 - O. Knio, Johns Hopkins Univ.
 - M. Frenklach, UC Berkeley
- Goal: Advance understanding of chemically reacting flows
- Approach:
 - Development of efficient algorithms and codes for multidimensional low Mach number reacting flow computations and analysis
 - Computational studies of low Mach number reacting flow with detailed chemical kinetics
 - Development of validated reduced chemical models


Science Objectives for the Next 3-5 Years

- Study the structure and dynamics of
 - Edge flames
 - Lifted laminar jet flames
- Address fuels over a range of complexity
 - Methane, nHeptane, isoOctane
- Examine dependence of flame structure/dynamics on mixture composition and flow details
- Experimental comparisons


Computational Challenges in low Mach Number Reacting Flow Modeling

- Large range of length scales
 - Combustion system size $\mathcal{O}(0.01\text{--}10) \text{ m}$
 - Internal flame structures $\mathcal{O}(100) \mu\text{m}$
 - Turbulence length scales
 - on the order of flame length scales at high Re
- Large range of time scales
 - Flow time scales can be slow: $\mathcal{O}(10) \text{ ms}$
 - Fast chemical time scales: $\mathcal{O}(1) \text{ ns}$
- Chemical model complexity
 - Methane-air $\sim 53 \text{ sp}$
 - nHeptane-air $\sim 560 \text{ sp}$
 - isoOctane-air $\sim 870 \text{ sp}$
- Multiphase, Radiation, Turbulence

Flame Vortex Interaction

Edge Flames

Dimensionless Low Mach Number Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial(\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p + \frac{1}{\text{Re}} \nabla \cdot \left\{ \mu [(\nabla \mathbf{v}) + (\nabla \mathbf{v})^T] - \frac{2}{3} \mu (\nabla \cdot \mathbf{v}) \mathbf{U} \right\}$$

$$\rho c_p \frac{DT}{Dt} = \frac{(\gamma - 1)}{\gamma} \frac{dp_o}{dt} + \frac{1}{\text{RePr}} \nabla \cdot (\lambda \nabla T) - \frac{\rho}{\text{ReSc}} \sum_{i=1}^N c_{p,i} \mathbf{V}_i \cdot \nabla T - \text{Da} \sum_{i=1}^N h_i w_i$$

$$\frac{\partial(\rho Y_i)}{\partial t} + \nabla \cdot (\rho \mathbf{v} Y_i) = -\frac{1}{\text{ReSc}} \nabla \cdot (\rho Y_i \mathbf{V}_i) + \text{Da} w_i \quad i = 1, \dots, N$$

$$p_o = \frac{\rho T}{W}$$

- Low Mach No., no body forces, bulk viscosity, or radiation
- Ideal gas, neglect Soret & Dufour effects — \mathbf{U} is the unit tensor

Time Integration of Multi-D Low M Reacting Flow

- Density and Species update

$$\frac{\partial \rho}{\partial t} = \rho \left(-\frac{1}{T} \frac{\partial T}{\partial t} - \overline{W} \sum_{i=1}^N \frac{1}{W_i} \frac{\partial Y_i}{\partial t} \right)$$

$$\frac{\partial(\rho Y_i)}{\partial t} = -\nabla \cdot (\rho \mathbf{v} Y_i) - \frac{1}{\text{ReSc}} \nabla \cdot (\rho Y_i \mathbf{V}_i) + \text{Da } w_i \quad i = 1, \dots, N$$

- Projection scheme solution for \mathbf{v}

$$\frac{\partial(\rho \hat{\mathbf{v}})}{\partial t} = -\nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \nabla \cdot \left\{ \mu [(\nabla \mathbf{v}) + (\nabla \mathbf{v})^T] - \frac{2}{3} \mu (\nabla \cdot \mathbf{v}) \mathbf{U} \right\}$$

$$\nabla^2 p = \frac{1}{\Delta t} \left[\nabla \cdot (\rho \hat{\mathbf{v}}) + \frac{\partial \rho}{\partial t} \right]; \quad \rho \mathbf{v} = \rho \hat{\mathbf{v}} - \Delta t \nabla p$$

- Alternate constructions

- (T, Y_i) rather than $(\rho, \rho Y_i)$ update
- \mathbf{v} rather than $(\rho \mathbf{v})$ projection

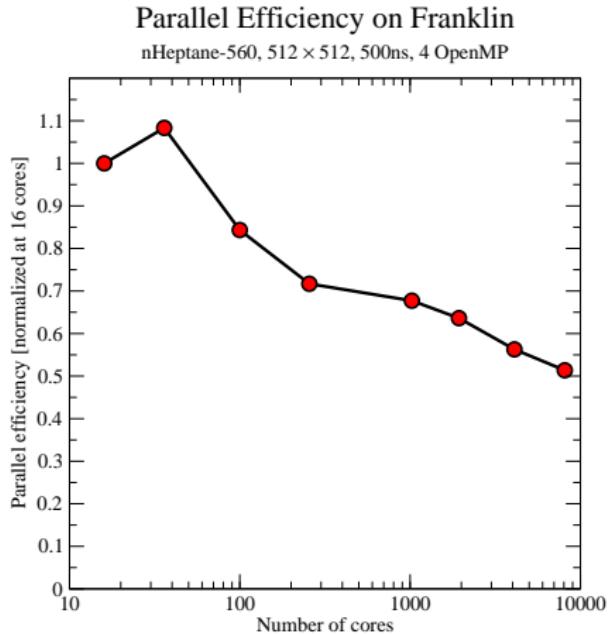
Time Integration of Stiff PDEs

- Species and energy conservation equations

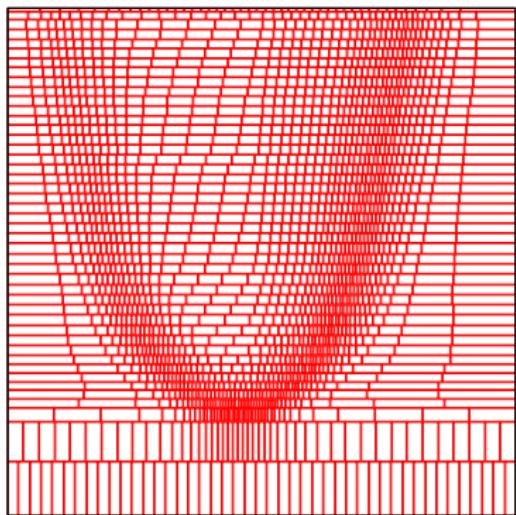
$$\frac{du}{dt} = C + D + R$$

- Explicit: Stiffness necessitates ~ 1 ns time steps
- Implicit:
 - Ok w/stiffness, but no need for implicit convection
- IMEX: Additive Implicit R , Explicit $C + D$
 - Deals well with chemical stiffness
 - Challenged by explicit diffusional stability
- Operator-Split: $C_{\Delta t/2} D_{\Delta t/2} R_{\Delta t} D_{\Delta t/2} C_{\Delta t/2}$
 - Explicit C
 - Explicit Runge Kutta Chebyshev (RKC) D
 - Implicit R

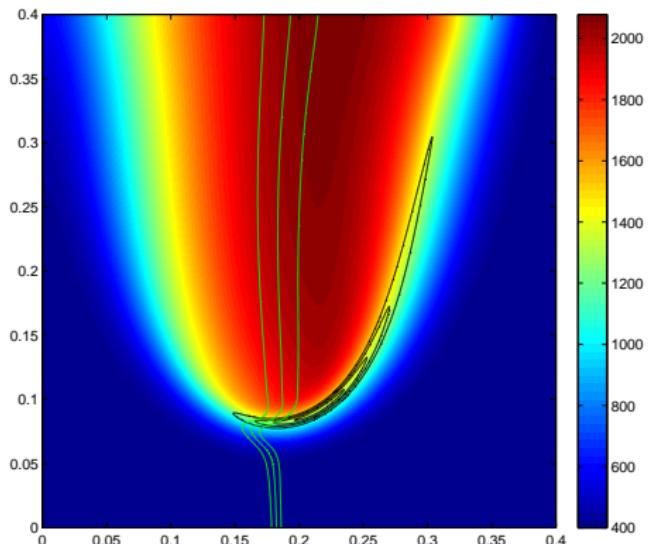
Computational Performance – NERSC Franklin


Cray XT4; 9,532 compute nodes; 2.3 GHz quad-core AMD Opt.

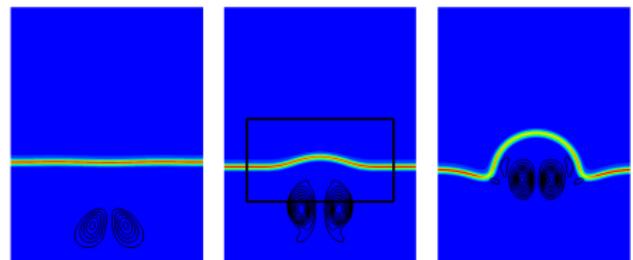
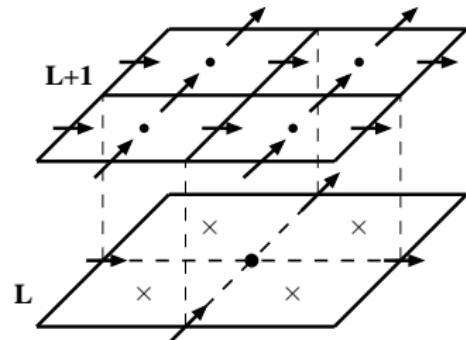
CPU Time per time step, 512×512 mesh, 100 cores:


Mech	Parallelism	LINPACK	LAPACK	LAPACK ^{opt}	LAPACK ^{opt} _{nJ}
M560	MPI/OpenMP	198 min	53 min	22 min	37 min
	MPI only	–	–	25 min	37 min
M139	MPI/OpenMP	79 sec	90 sec	56 sec	121 sec
	MPI only	–	–	67 sec	120 sec
M66	MPI/OpenMP	20 sec	21 sec	17 sec	33 sec
	MPI only	–	–	22 sec	33 sec

Scalability – NERSC Franklin


- 2D nHeptane edge flame
- 560 species, 2538 rxns
- Fixed 512×512 mesh
- 51% parallel efficiency on 8000 cores

nHeptane Edge Flame – M560 – NERSC Franklin



Domain Decomposition

Global Flame Structure

Adaptive Mesh Refinement

- Structured mesh hierarchy
- Mesh libraries
 - Grace, Chombo
- High order spatial derivatives, interpolants, and filters
- Fourth-order low Mach reacting flow construction

Current HPC Requirements — Franklin

- Typical problems
 - Methane-air premixed flame-vortex
 - nHeptane edge flame
- # cores: 500-2000
- Aggregate Memory : 24 GB
- I/O per Run: 20 GB, 6 GB checkpoint files
- On-Line Storage: 30 GB
- Software and Services:
 - DVODE/sundials, LAPACK, hypre, Chombo, NERSC Consulting, craypat
- Data Transfer: 80 GB/yr

Current HPC Requirements — Primary codes

- **dflame:**

- 2D uniform mesh finite-difference Fortran-77
- 2^{nd} -order in space and time
- Projection scheme for momentum equations
 - FFT Poisson elliptic pressure solver
- Operator Split implicit/explicit time integration
- MPI+OpenMP parallelism

- **cfrfs:**

- 2D Structured Adaptive mesh finite difference
 - CCA + {C++, C, Fortran-77}
- 4^{th} -order in space, 2^{nd} in time
- Projection scheme for momentum equations
 - hypre GMRES elliptic pressure solver
- Operator Split implicit/explicit time integration
- MPI parallelism

Current HPC Requirements — Limitations

- **dflame:**
 - Uniform mesh
 - 50% strong scalability at 8000 cores
 - Need to evaluate if/how this can be improved
- **cfrfs:**
 - MPI but no OpenMp
 - Dynamic load balancing is more challenging
 - Have yet to explore scalability in the O(10) K core range

Future HPC Requirements — 3-5 Years

- Methane/nHeptane/isoOctane edge and jet flames
- # cores: $\sim 100K$
- 35M computational hrs
 - Presuming $\sim 60\%$ parallel efficiency
- Aggregate Memory : 1-2 TB
- I/O per Run: 1-10 TB, 100-250 GB checkpoint files
- On-Line Storage: 3 TB
- Data Transfer: 10 TB/yr
- Archival Storage: 15 TB

Impact of 50× NERSC Resources Now

- For a given mesh size, and N species:
 - Memory $\propto N$
 - CPU $\propto N^2$
- $N_{\text{nHeptane}}/N_{\text{methane}} \sim 10$

Factor of 50 enables doing roughly the same methane flame with detailed nHeptane models

Enables parametric runs of laboratory-scale laminar flames with detailed nHeptane chemistry

However, we need to address parallel efficiency before we could go beyond $\mathcal{O}(10 K)$ cores