

LPC / SPI Analysis Tool

Prototype System for Analysis of LPC / SPI Bus Devices

March 24, 2010

**Tiffany A. S. Pierce
Sandia National Laboratories**

Overview

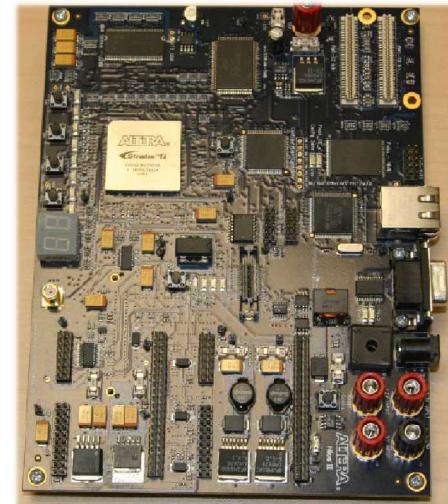
- **Introduction**
 - Motivation
 - Overview of LPC / SPI
- **LPC/SPI Analysis System**
 - Components
 - Passive Analysis
 - Active Analysis
- **Examples**
 - SPI analysis
 - LPC analysis

Introduction: Motivation

- Want to support development, debugging, and analysis for a variety of LPC/SPI devices and drivers
- Understanding bus traffic can help identify where bugs and protocol errors occur

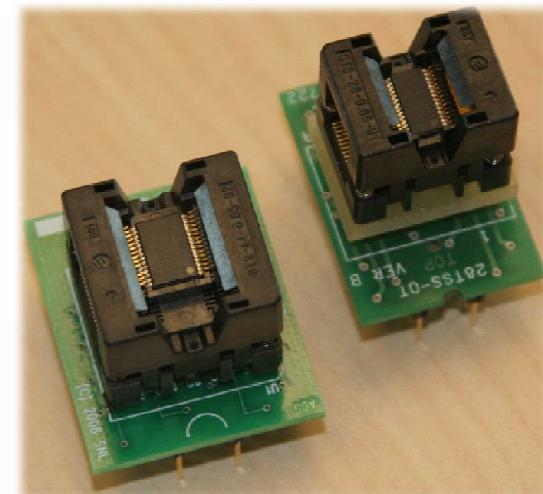
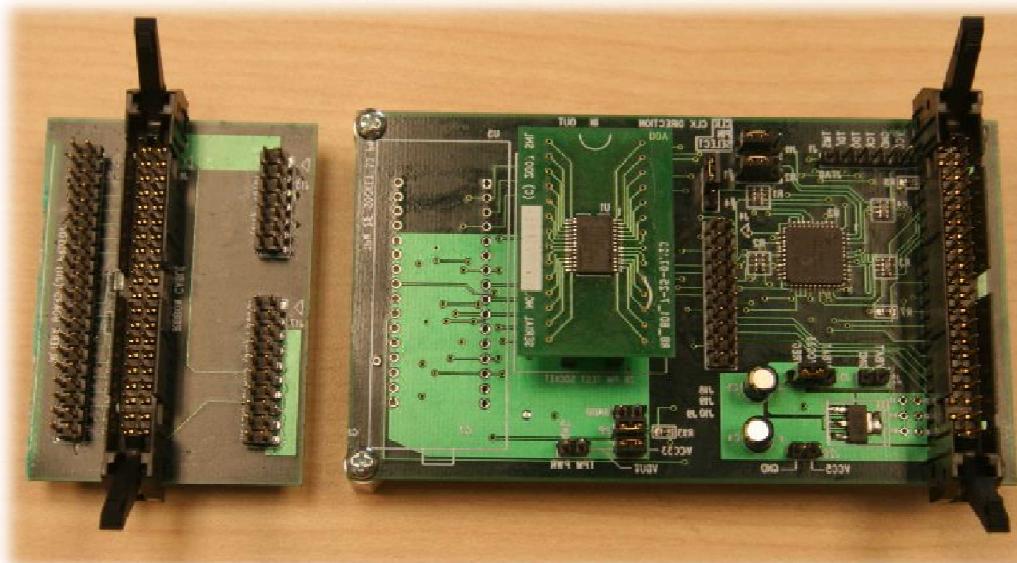
- Large volume of data on SPI or LPC buses
- Data needs to be parsed, filtered, interpreted
- Needs:
 - Observe devices interacting with a system
 - Isolate buggy devices to protect motherboard

Introduction



- **LPC / SPI buses**
 - Shared bus; data visible for any device on bus
 - Relatively few pins used
- **LPC devices**
 - BIOS, serial and parallel ports, legacy keyboard, mouse, Trusted Platform Module (TPM)
- **SPI devices**
 - EEPROM, Flash memory, Ethernet, Real-time Clock
- **Need for Custom Solution – existing solutions don't do what we want.**
- **We developed a combined hardware and software system for LPC/SPI bus analysis**

System Components: Hardware

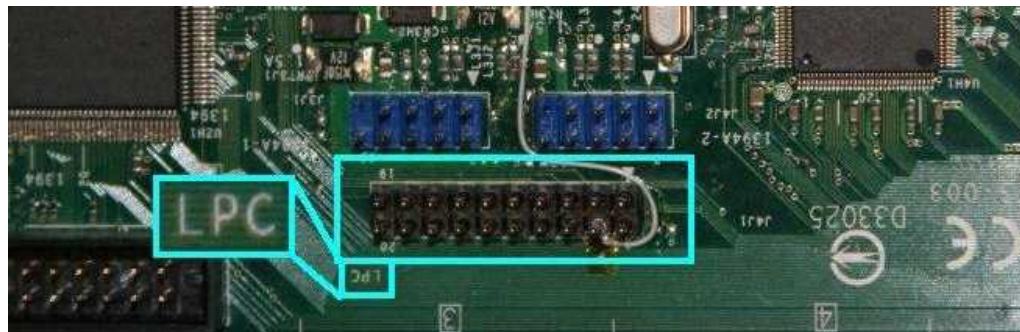
- **FPGA prototyping board**
 - Ethernet communications
 - Data Buffering
 - LPC/SPI basic protocol recognition
- **Analyzer board**
 - Plug-in to motherboard header
 - Passive analysis
- **Analysis machine**
 - Separate PC; not DUT
 - Runs analysis software
 - User Interface

System Components: Hardware

- **Host board**
 - Connects to FPGA board to send/receive data
 - Used to interact with loose components
 - Variety of pin setups for LPC / SPI devices
 - Some devices may require custom sockets

System Components: Software


- Runs on separate analysis machine
- Saves and reloads data for future work
- Passive analysis
 - Displays and Filters LPC & SPI data
 - Searchable events
 - Identifies protocol errors
- Active analysis
 - Send/receive events on host board
 - Parses and builds some device-specific commands
 - Prototype stage
 - Not implemented for most devices

Passive Analysis

- Set up and connect the hardware components
- Connect analysis board to LPC or SPI header
- Good for driver development and debugging
 - Identify protocol errors
 - Compare expected data with actual data
 - Analyze speed of hardware resources

Active Analysis

- Set up and connect the system with host board
- Plug in device-in question
- Generate commands and data with software
- View, analyze and interpret output
- Use for debugging and acceptance testing
 - Check behavior of DUT against specifications
 - Verify performance under normal operating conditions
 - Protect system from malfunctioning device

Example: SPI device traffic

- Which devices are these events to/from?
 - NIC, BIOS, memory
- Slow Read or Fast Read?
- User Interface will
 - Interpret SPI protocol
 - Establish filters to show relevant data
 - Ex: ignore BIOS events

Events				
ID	Status	MOSI	MISO	
3361550	UxUU	UxUU	Uxff	UU:UU:1U.368594
3361551	0x00	0x00	0xff	00:00:10.368594
3361552	0x00	0xff	0x01	00:00:10.368594
3361553	0x00	0xff	0x00	00:00:10.368594
3361554	0x00	0xff	0x00	00:00:10.368594
3361555	0x00	0xff	0x00	00:00:10.368594
3361556	0x00	0xff	0xf6	00:00:10.368594
3361557	0x00	0xff	0xf6	00:00:10.368594
3361558	0x00	0xff	0x04	00:00:10.368594
3361559	0x00	0xff	0x08	00:00:10.368594
3361560	0x00	0xff	0xf6	00:00:10.368594
3361561	0x00	0xff	0x0c	00:00:10.368594
3361562	0x00	0xff	0x45	00:00:10.368594
3361563	0x00	0xff	0xbe	00:00:10.368594
3361564	0x00	0xff	0x13	00:00:10.368594
3361565	0x00	0xff	0xee	00:00:10.368594
3361566	0x00	0xff	0xf5	00:00:10.368594
3361567	0x00	0xff	0x07	00:00:10.368594
3361568	0x00	0xff	0x45	00:00:10.368594
3361569	0x00	0xff	0xbd	00:00:10.368594
3361570	0x00	0xff	0x0e	00:00:10.368594
3361571	0x00	0xff	0xf9	00:00:10.368594
3361572	0x00	0xff	0xf4	00:00:10.368594
3361573	0x00	0xff	0x0f	00:00:10.368594
3361574	0x00	0xff	0xd9	00:00:10.368594
3361575	0x00	0xff	0xf4	00:00:10.368594
3361576	0x00	0xff	0x07	00:00:10.368594
3361577	0x00	0xff	0x45	00:00:10.368594
3361578	0x00	0xff	0xbc	00:00:10.368594
3361579	0x00	0xff	0x0b	00:00:10.368594
3361580	0x00	0xff	0x49	00:00:10.368594
3361581	0x00	0xff	0xf4	00:00:10.368594
3361582	0x00	0xff	0x0c	00:00:10.368594
3361583	0x00	0xff	0xa7	00:00:10.368594

Export...

Example: SPI device traffic

- SPI protocol parsing provides better interpretation

ID	Mnemonic	Opcode	Data Dir.	Section	Address	Length	Data (Hex)	Data (ASCII)
888307	Slow Read	0x03	Slave -> Master	NIC	0x001027	1	a7	.
888308	Slow Read	0x03	Slave -> Master	NIC	0x001004	2	ed 57	.W
888310	Slow Read	0x03	Slave -> Master	NIC	0x001027	1	a7	.
888311	Slow Read	0x03	Slave -> Master	NIC	0x001006	2	00 08	..
888312	Slow Read	0x03	Slave -> Master	NIC	0x001024	4	00 00 05 a7
30256	Fast Read	0x0b	Slave -> Master	Unknown	0x7ef480	64	67 88 46 18 b9 18 00 ▶	g.F....g.F...t..\$...g..▶
30257	Fast Read	0x0b	Slave -> Master	BIOS	0xd9e40	64	ec a1 0d 10 04 7e 00 ▶~.....@.....▶
30258	Fast Read	0x0b	Slave -> Master	Unknown	0x7ef480	64	67 88 46 18 b9 18 00 ▶	g.F....g.F...t..\$...g..▶

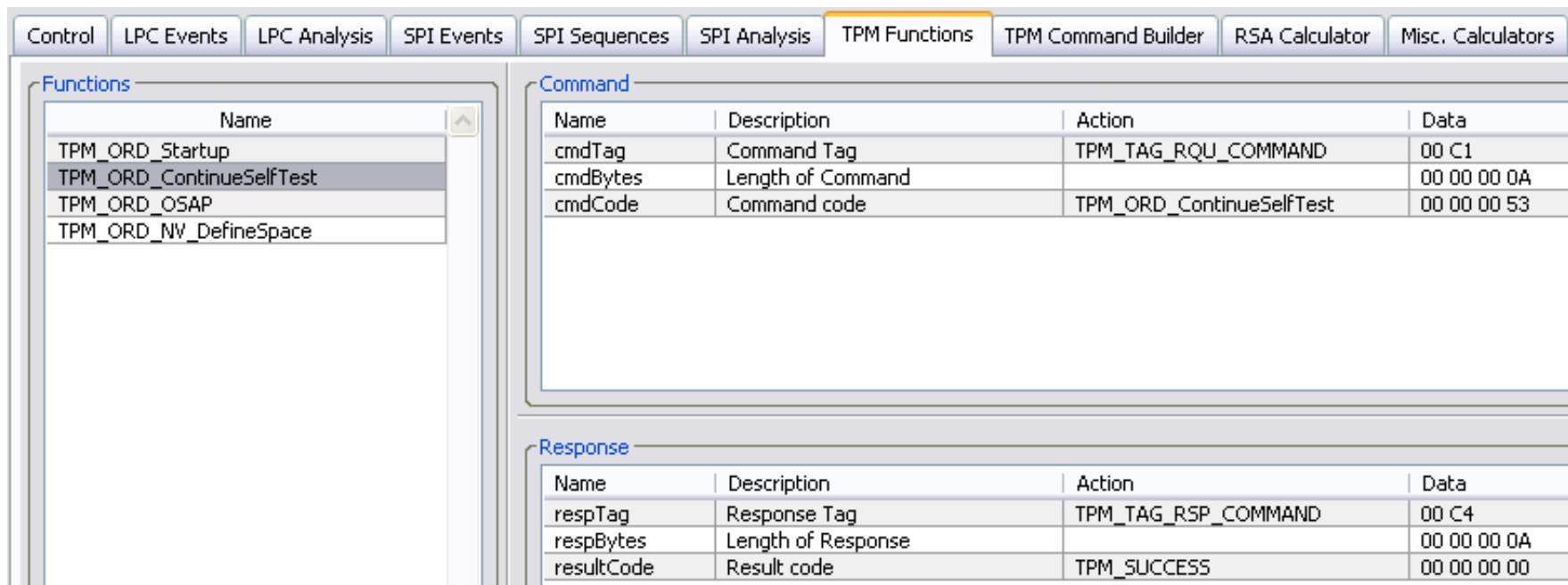
Events Shown: 6 / 7205330

Over 7.2 million SPI events captured

Example: LPC Passive Analysis

- During computer boot, large volume of data
- Parse, filter, analyze protocols
- Verify assumptions about resource usage
- This data still needs interpretation

Events


ID	Master	Cycle Type	Direction	Address	Data	Aborted	Decoder Error	Protocol Error	Timestamp
1031	Host	I/O	Write	0x00000084	0x0a	True	False	False	00:01:11.801290
1032	Host	I/O	Read	0x000000c6a	0x0a	False	False	False	00:01:11.801290
1033	Host	I/O	Write	0x00000084	0x0a	True	False	False	00:01:11.801290
1034	Host	I/O	Read	0x000000c6a	0x0a	False	False	False	00:01:11.801290
1035	Host	I/O	Write	0x00000084	0x0a	True	False	False	00:01:11.801290
1036	Host	I/O	Read	0x000000c6a	0x0a	False	False	False	00:01:11.801290
1037	Host	I/O	Write	0x00000084	0x0a	True	False	False	00:01:11.801290
1038	Host	I/O	Read	0x000000c6a	0x0a	False	False	False	00:01:11.801290
1039	Host	I/O	Write	0x00000084	0x0a	True	False	False	00:01:11.801290
1040	Host	I/O	Read	0x000000c6a	0x0a	False	False	False	00:01:11.801290
1041	Host	I/O	Write	0x00000084	0x0a	True	False	False	00:01:11.801290
1042	Host	I/O	Read	0x000000c6a	0x0a	False	False	False	00:01:11.801290
1043	Host	I/O	Write	0x00000084	0x0a	True	False	False	00:01:11.801290
1044	Host	I/O	Read	0x000000c6a	0x0a	False	False	False	00:01:11.801290

Example: LPC Active Analysis


- Active Analysis of an LPC device
- Generate commands to send to 'loose' device
- Proof of Concept: communication with Trusted Platform Module (TPM)

Name	Description	Action	Data
cmdTag	Command Tag	TPM_TAG_RQU_COMMAND	00 C1
cmdBytes	Length of Command		00 00 00 0A
cmdCode	Command code	TPM_ORD_ContinueSelfTest	00 00 00 53

Name	Description	Action	Data
respTag	Response Tag	TPM_TAG_RSP_COMMAND	00 C4
respBytes	Length of Response		00 00 00 0A
resultCode	Result code	TPM_SUCCESS	00 00 00 00

Example: LPC device traffic

- Trusted Platform Modules
 - Monitor how the TPM is being used by software
 - Exercise devices to verify specification compliance (e.g. use of deprecated commands)
 - Observe how drivers use the device
 - Help develop custom security drivers.
- User interface also provides hash calculator to verify understanding of commands, specifications

Building a TPM Seal Command

Editing template: TPM_ORD_Seal

UNSAVED CHANGES

#	Size	Type	Name	Value	Description
1	2	UINT16 < TPM_RQU_>	cmdTag	0x00C2	TPM_TAG_RQU
2	4	UINT32	cmdBytes	0x00000097	Length of Command
3	4	UINT32 < TPM_COMM_>	cmdCode	0x00000017	TPM_ORD_Seal
4	4	UINT32 < TPM_KEY_H_>	keyHandle	0x40000000	Handle of a loaded key that can perform
5	20	UINT160 < TPM_AUTH_>	encAuth	0x86195DA53D69399CABD1048	The encrypted AuthData for the sealed
6	4	UINT32	pcrInfoSize	0x00000036	The size of the pcrInfo parameter. If 0 it
7	54	TPM_PCR_INFO_IN	pcrInfo		The PCR selection information. The call
	2	UINT16 < TPM_STRUC_>	tag	0x0006	TPM_TAG_PCR
	1	BYTE < TPM_LOCALITY_>	localityAtCreation	0x00	This SHALL be the locality modifier when
	1	BYTE < TPM_LOCALITY_>	localityAtRelease	0x0A	This SHALL be the locality modifier required
	5	TPM_PCR_SELECTION	creationPCRSelection		This SHALL be the selection of PCRs active
	2	UINT16	sizeOfSelect	0x0003	The size in bytes of the pcrSelect struct
	3	BYTE	pcrSelect	0x00000000	This SHALL be a bit map that indicates if
	5	TPM_PCR_SELECTION	releasePCRSelection		This SHALL be the selection of PCRs to be released
	2	UINT16	sizeOfSelect	0x0003	The size in bytes of the pcrSelect struct
	3	BYTE	pcrSelect	0x00000000	This SHALL be a bit map that indicates if
	20	UINT160 < TPM_DIGEST_>	digestAtCreation		This SHALL be the composite digest value at creation
	20	UINT160 < TPM_DIGEST_>	digestAtRelease		This SHALL be the digest of the PCR index at release
8	4	UINT32	inDataSize	0x0000000A	The size of the inData parameter
9	10	BYTE	inData	0x00000000000000000000000000000000	The data to be sealed to the platform and
10	4	UINT32 < TPM_AUTH_H_>	authHandle	0x001AAC13	The authorization session handle used for
11	20	UINT160 < TPM_NONCE_>	nonceOdd	0x00000000000000000000000000000000	Nonce generated by system associated with the session
12	1	BOOL	continueAuthSession	0x00	BOOL FALSE
13	20	UINT160 < TPM_AUTH_>	pubAuth	0x5C795484D8BDAC1FE21FC52	The authorization session digest for input

Create

Edit

Save Edit

Configure Calculations

Save To File

Cancel Edit

Perform Calculations

Send Command

Sandia
National
Laboratories

Conclusions

- **Prototype LPC / SPI Bus Analyzer**
 - Can be extended to parse/exercise more devices
 - Flash memory, legacy BIOS, keyboard & mouse, USB, Ethernet, etc
- **Passive Analysis**
 - Debugging
 - Identifying available functionality
 - Analysis of use of system resources
- **Active Analysis**
 - Acceptance testing and verification
 - Isolation of a malfunctioning part
 - Carefully targeted debugging

Questions / Discussion
