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Metamaterials
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Sandia’s Metamaterial Team

Design:
•Lori Basilio
•Larry Warne
•Dave Peters
•William Langston
•Jacques Loui
•William Johnson

Materials:
•Paul Clem
•Shawn Dirk
•Kamiyar Rahimian
•James Carroll
•Jon Ihlefeld
•Alex Lee

Fabrication:
•Igal Brener
•Bruce Burckel
•Greg Ten-Eyck
•Joel Wendt
•James Ginn
•Eric Shaner
•Brandon Passmore
•Daniel Bender
•Rob Ellis

Collaborations:
•Glenn Boreman, UCF/CREOL
•Steve Brueck, UNM
•Ed Kuester, CU Boulder
•Gennady Shvets, UT Austin
•Costas Soukoulis, Iowa State

PI: Mike Sinclair
PM: Rick McCormick
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Other Presentations from our project at META’10

Igal Brener: “Phase and amplitude resolved characterization of IR 
metamaterials and metamaterial-based modulators” this session 
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D. Bruce Burckel: “3-D Metamaterial fabrication using membrane 
projection lithography” session 6A tomorrow 
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Outline

1. Sandia’s Metamaterial program
• Overview
• Highlights: subcells/hpc
• Highlights: low loss polymers

2. Losses of Metal-Based Metamaterials
• stranding to reduce ohmic losses

3. Dielectric resonator based metamaterials
• DR basics
• DR based magnetic metamaterials
• fundamental limitation/restrictions
• Core/shell negative index
• A—B sphere lattices RF demo
• spheres embedded in lossy lattice/negative n metamaterial
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Low IR Absorbing Photo-Patternable

• norbornenering opening 
metathesis polymerization

• Controlled hydrogenation 
prior to crosslinking with the 
thiol-ene coupling reaction 
provides control over the 
amount of crosslinking and 
thus access desired materials 
properties

• final backbone resembles 
polyethylene
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100% olefin
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2 % olefin
IR absorption expected to be as low 
as polyethylene, but:

•better solubility
•photopatternable
•cross-linked
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Finite Metallic Conductivity Complicates 
Numerical Modeling

Problem: Fine mesh required for convergence slows numerical simulations 
and prevents simulation of larger scale structures (e.g. Boeing prism)

• difficult to model devices, gradients, surface effects
Solution: Embed analytic circuit models (subcells) into the numerical 
simulation software

• Sandia’s EIGERTM MOM code
• Dramatic (~1000X) improvement
• Viable to HPC simulation of large 

numbers of unit cells

Subcell Model- Au SRR modeled with wires 
and analytic circuit elements 

(impedance/length & radius of rectangle on 
dielectric substrate)

8  seconds/frequency
32 unknowns & 1 processor

EIGER Wire

Explicit Mesh- Au SRR meshed as 
a lossy-dielectric block (surface mesh) 

3.5  hours/frequency
29,880 unknowns & 64 processors

EIGER
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(THUNDERBIRD: 
53 Tflop, 8690  
processors)

HPC Simulation of Metamaterials 

The design of metamaterial devices typically has relied on 
extraction of the effective properties from simulation of infinite 
periodic arrays of identical unit cells.

In the infrared frequency regime even a 
unit-cell analysis can lead to prohibitively
large computational problems. 
• subcell models can be advantageous

Using Sandia HPC resources, we perform direct numerical 
simulations of finite metamaterials to understand the 
implications of finite metamaterials, such as 
• boundary effects
• effects due to loss in the host (introducing field gradients)
• whole-device simulation

We have designed 3D absorber and negative-index
metamaterials based on effective media theory, with HPC 
simulations showing favorable performance.
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Finite absorbing slab (5 unit cells thick) of impedance 
matched (ε = μ) metamaterial.

•designed to hide the back interface
•lossy dielectric spheres in a lossy medium
•magnetic resonance of the spheres
•matched for normal incidence at 10 μm

Initial design developed using effective media theory
EIGERTM MOM Code: surface mesh scale ~ λ/100
Simulated on Thunderbird (8690 processors / 53 
TFLOPS)

•didn’t use the whole machine for this run
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3D Metamaterial Absorbers
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Absorber Design #1

1 20.5 , 1.5 , oa m b mμ μ μ μ μ= = = =
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Design: An absorbing layer composed 
of 5 spheres in the depth. 

9.5 10 10.5
l th[ ]

EIGER Simulation
Lam 
Lam (with Radiation)

Have also simulated
•5-layer SRR absorber
•5-layer negative index slab

Working towards device level modeling
•Boeing prism??

Impedance matched reflectance minimum 
is observed at the design wavelength
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Metal-Based Metamaterials 

Study of fundamental loss limits vs. ε and μ is ongoing:
• Graded approach:

- “back of the envelope” I2R
- Cummer “Q-Based Design” I2R & parameterized μ
- Tretyakov, Boardman, etc “Poynting Theorem in Dispersive Media” & 
parameterized μ & ε

- Design and model an optimal structure
• We believe that lowest loss will be achieved through maximum “stranding” to 

distribute currents, lower R, and increase Q
- composite “wire material”

Metal metamaterials are the easiest to fab we have a good 3D route
Electronic scattering Ohmic losses Metamaterial loss
It is essential understand the performance limits for metal-based metamaterials
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Loss Conclusions

• Metal Design Bulk Media Permeability Loss 
Tangent Near Unity
– Stranding in mid IR not very effective at 

reducing this level (unlike in THz or lower 
frequencies) (1.5 times increase in area 
illustrated on right)

– Downshifting of SRR resonance can be 
accomplished either with dielectric gap loading 
or with double ring topology

• Dielectric Resonators lead to bulk 
permeability loss tangents that are more than 
an order of magnitude less (for a cubic lattice)

J

A  =  4(w - )p δ δ

w

A =  w2

J
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Compromises Between Cell Size and Low-Loss Metal 
Design

Magnetic Permeability
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Dielectric Spheres Mie scattering
• electric & magnetic dipole resonances
• occur at different frequencies

Array of resonators in a host matrix:
• effective ε and μ values
• Claussius-Mossotti equation or beyond

Overall loss depends on loss tangents of 
resonators and host

• can be significantly lower than metal based 
metamaterials.

Other resonant scattering structures can 
be employed

• cubes
• wires
• anisotropic structures
• readily extendible to IR metamaterials

Electromagnetic scattering by arrays of high-ε resonators can 
lead to low loss electric and magnetic metamaterials.

Low Loss Strategy: Dielectric Resonator 
Metamaterials
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Effective Media Models
MM Design and Guiding Retrieval

• Quasistatic result
– Lam
– Duality
– Clausius-Mosatti
– Waterman
– Holloway & Kuester

• Types of structures at present
– Spheres
– Core-shell structures 
– Two-species spheres

• Dynamic host corrections
– Low-frequency expansion host 

(Draine,Tretyakov, Shivola) 
– Radiation (Layer,Sipe)
– Effective media cutoff (Lerat, Koschny)
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Waterman
Lewin

Spherical Particle Array (ka=0.1) 
εr2=μr2=50 (free-space matrix)

J. Lam (J. Appl. Phys. 60 (12), 1986) 

P. Waterman et. al (J. Appl. Phys. 59, 1986)

L. Lewin (Proc. Inst. Elec. Eng. 94, 1947)

C. Holloway (IEEE Trans. Antennas Propag. 48, 2000)
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RF demonstration of a magnetic 
metamaterial 
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period = 5 mm
period = 5*sqrt(2) or 7.07 mm
time-gated results

GHz measurement
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εr,eff
μr,eff

Model

negative μ negative ε

RF is a good test bed for 
metamaterial development
• high ε materials readily available
• macroscopic dimensions
• easy test

Path to IR 
• lithography cubes

ZrO2, εr = 25, ball diameter = 4 mm

ZrO2, εr = 25, ball diameter = 4 mm
Example: Negative μ metamaterial.

stop band 
coincides with 
region of 
negative μ
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PbTe Sphere Simulations: 
Summary of Results

Host Material is Air for Permeability 
Only
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Largest identified ε in thermal IR is not as 
high as is desired

•extending effective medium theory to 
account for finite size effects

Minimum resonator size & pitch ~ λ0/Nres

Effective medium wavelength must be 
greater than twice the pitch

Accessible region of μ-ε space 
correspond to:

2
NN res

eff ≤

Effective Parameters Limitations with 
Dielectric Resonators

res

0

N
~p λ

res

0

eff

0
eff N

2p2
N

λ
⋅≈⋅>

λ
=λ

Larger values of Nres give access to 
more μ-ε space
ENZ, MNZ accessible

μ

ε

Nres

2*Nres

accessible
region

accessible
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a = 4.66 mm; b = 2.25 mm; p = 2.013a
ε2 = 9.5; ε3 = 100; tan δ2 = 2 × 10-4; tan δ3 = 10-3

calculation by Ed Kuester, U. of Colo.

Re ε
Re μ

Dielectric core/shell particles.
By adjusting the radii and materials in 
a core/shell configuration, the electric 
and magnetic resonances can be 
brought into coincidence. 
Isotropic, low loss material
Demonstrates ability to have a 
negative index without metals.

b

a

ε2,μ2

ε1,μ1

Achieving negative index behavior with 
dielectric resonators: core/shell metamaterials

Combining materials and structures allows independent tuning of ε and μ.

Drawback: particles are difficult to fabricate
experimental verification difficult
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Blue: (Zr,Sn)TiO4

• ε=38
• electric resonance

Pink: (Mg,Ca)TiO3

• ε=20
• magnetic resonance

10mm

NaCl Unit Cell: 
Isotropic Response

5mm
15mm

2mm

Er=38

Er=20

Alternate approach: two-species 
metamaterials 

Overlap the magnetic dipole resonance of one species with the 
electric dipole resonance of the other

Array size: 26 x 26
Foam support structure, 3 layers
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RF Characterization of DNG Array
Transmission bands appear where band-stops of 
the two spheres overlap DNG?
Observed behavior is more complex than 
expected

• Drawback: unit cell size doubles with two-species 
approach --- problems when effective medium λ 
becomes small

Analysis of DNG behavior is continuing
Core/shell spheres & DNG prism

Experiment Evidence 
of DNG?
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PbTe Spheres in SiC Host Layer
Effective Media Design

1 20.997 , 3.467 , oa m b mμ μ μ μ μ= = = =

( ) 21 1 30.5 0.0734, rr r f iεε ε = +=
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Lam (w/o rad): Real(neff)
Lam (w/o rad): Imag(neff)

45.46297-7.180.833036-5.9839111.1093

13.07281-11.660.239538-2.7920110.9911

7.100115-11.340.130098-1.4757410.8659

5.213459-7.259.55E-02-0.6921910.7528

19.39307-0.120.355347-4.26E-0210.6421

28.490950.040.5220511.91E-0210.5246

dB/wlenFOMimag(neff)real(neff)wlen, um

Third approach to negative index:
high-Q resonators in ε<0 matrix

•Palik values for PbTe
•SiC dispersion
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Electrodeposited PbTe; 

(thin film)

Measured optical constants of PbTe : IR VASE

Measured optical loss is significantly lower than Palik values
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Lam (w/o rad): Real(neff)
Lam (w/o rad): Imag(neff)

PbTe Spheres in SiC Host Layer
Effective Media Design
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•Lower tanδ for PbTe
•SiC dispersion
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Summary

Ohmic losses limit transparency of metal based metamaterials 
in the thermal IR

Dielectric resonator based metamaterials are capable of lower 
loss, but face challenges

• very high ε resonator materials not available in thermal IR
• resonator size & spacing must remain in effective medium 

limit
• strategies to tune both e and m can lead to increased unit 

cell size
• residual losses in resonator materials can limit achievable 

effective tanδ.


