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Non-intrusive Uncertainty Quantification

@ Non-intrusive UQ performs many simulations at different
realizations of random inputs

Useful for generating efficient surrogate models
Inputs can be scalars or distributed fields (space, time)

]
o
@ Code modification: support heterogeneous field data
@ Exploits parallelism at two levels:

» Parallel sampling for many UQ methods: MC, LHS, stochastic

collocation, PCE

» Application parallelism

Random field discretization must also be parallel:

» Compute realizations (easy)
» Generate discretizations, e.g. KL eigenproblem (harder)
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Sources of Uncertainty: RVs and RFs

@ Random variables (RVs)
» Based on probability space (2, S, P)
» RV is (measurable) function from Q into R
» Often used in simulations for scalar simulation model inputs
» Scalar model outputs then become RVs

@ Random fields (RFs)
» Distributed in space and/or time as

alx,w), x€D, weN

At each point x the value a(x, -) is an RV

Discretization is needed to approximate an infinite number of RVs
Goal: make the RF case look like the case of a small vector of RVs
This applies to both intrusive and non-intrusive UQ

vVvyVvYy
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Non-intrusive UQ Framework (Sandia)

Dakota
: Text parm file /I/
/ User-defined function shell script \ ®
u

Output text file

RealizeRF: Sierra Code R .
encore Material Info: User Input Postprocess: :
encore
: Data: Exodusl|

ExoduslI file

Carnes (Sandia) UQ in Parallel FE SIAM PP10 5/24



KL Representation of RFs

@ We can view RFs as mean plus fluctuation
a(x,w) = m(x) + a(x,w)

@ Karhunen-Loeve (KL) series is a generalization of SVD to RFs

@ KL series is computed from an orthogonal basis of eigenvectors
{#;} in L?(D) (scaled by eigenvalues )\;)

w) =Y VA m(w) é()
j=1

@ The coefficients {7;} are zero-mean, uncorrelated RVs.
@ Computed from experimental data by projection:

\F/ () 6(x) dv
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RF Discretization

@ Approximations are obtained by truncating the series

@ The number of RV coefficients (stochastic dimension) is truncated
@ We have gone from infinite to finite number of RV coordinates

@ Deterministic component ¢;(x) approximated using FE basis

Z@’ vi(x) € V, C L*(D)

@ Generating a parallel KL realization requires

» Distributed data: eigenvector coefficients {®!}
» Globally shared data: small vectors of correlated random variables
{n;}, eigenvalues {);}

@ Assembly of realizations requires no parallel communication
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KL Realizations

@ We plot realizations using different number of terms

@ The RV coefficients 7; are assumed i.i.d. standard normal

Figure: Realizations with 2, 4, 8, 16 terms (in xy-plane)
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KL Eigenproblem

@ Covariance kernel (final connection to data):

C(x,y) = Ela(x,w) afy,w)]

@ KL expansion requires solution of eigenproblem:

// (x,y) ¢ x)dydx =\ /gb dx, veL*D)

@ Cis symmetric positive definite, so eigenvalues are real, positive,
and decrease to zero (Mercer’s theorem).

@ We are interested only in largest eigenvalues
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Discrete KL Solver

@ FE approximation using V;, C L*(D) leads to generalized
eigenproblem
Ad =ABP

@ Dense matrix A, sparse matrix B (both SPD)

Aj = /D /D C(x,y) vi(y) vj(x) dydx, B;= /D vi(x) vj(x) dx

@ Assembly of B matrix is standard (mass matrix)
@ Assembly of dense A matrix requires double element loop
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Lib/App Implementation of KL Solver

@ Chose to parallelize matrix assembly independent of application
@ Each processor provides MPlI communicator and arrays of

» local integration points for all local elements
» volume weights (Jacobian times quadrature weights)
» FE basis function values

@ App does not have to do any parallel communication

Trilinos Lib uQ Lib App Code
Anasazi KL Solver ] banteh
: File.exo
-Eigenproblem (A,B) A &

- SolverMgr
- Eigensolution (A, @) [ Applnterface SIERRA ]
] I Applnterface
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Parallel Computing Considerations

@ Main goals: apply many processors to

» achieve speedup for a problem of fixed size
» solve very large problems efficiently

@ Local storage is limited - data is distributed among procs
@ Cost of communication much higher than computation
@ Code must run on many platforms

@ Work must be load balanced
@ Choice of parallel communication method
» We will use MPI for all parallel operations

Carnes (Sandia) UQin Parallel FE SIAM PP10 12/24



Challenges for Parallelization of KL Solver

@ RF may not be evenly distributed (load imbalance)

» mesh typically uniformly distributed on nodes
» RFs on surfaces and subdomains

Each node can hold only a fraction of the mesh
Matrix storage must be scalable
» for very large problems, storage may be impractical

Assembly must be efficient and scalable
Preconditioning needed for iterative eigensolver
Eigensolver must be parallel.
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Matrix Storage Limitations

Let N be num elements, P be num procs
Assume each proc has N/P mesh elements (balanced load)
» Range for N: 0(10%)-0(10%)
» Range for P: 0(10')-0(10%)
@ Need to store N? matrix entries, N? /P per proc
» Compare to O(N/P) per proc for sparse matrices
Range for N2 /P: 0(10%)-0(10'3)
Matrix storage will be impractical for very large problems
This suggests ultimately a matrix-free approach
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Parallel Matrix Storage

@ Row storage scheme (current implementation)
» N/P x N dense row block on each proc
» Requires element data from P procs to assemble

@ Square submatrix storage

» Each proc has N/+/P x N/+/P dense submatrix
» Block width is /P (N/P)
» Requires element data from 21/P procs to assemble

@ Matrix free (storage as needed for matvec)

G o
P1
P2
P2 P3
P3
Row Storage Block Storage
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Parallel Assembly

@ Each proc starts with N/P elements
@ Local diagonal blocks computed in serial
@ Row storage: loop over (P — 1) nonlocal columns
» Send/receive data between pairs of procs
» Assemble using localized data
@ Square submatrix storage
» Each proc needs data from 2 /P procs
» Fewer communication calls

Send Right, Receive Left
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Eigensolver and Preconditioner

@ The eigensolver is an iterative block Davidson solver
(Arbenz et. al.,“A Comparison of Eigensolvers for Large-scale 3D
Modal Analysis Using AMG-Preconditioned lterative Methods”,
IUNME, 64 (2005))

@ Implemented in the Trilinos/Anasazi library (trilinos.sandia.gov)

@ Requires only matvec operation

@ Computes only a subset of eigenvalues (largest)
@ Can leverage preconditioner of dense matrix A

» Plan is to implement block Jacobi
» Storage of diagonal N?/P? submatrix per proc
» One time generation cost
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Application: KL Problem

@ Example of kernel with correlation length scale L = 7.92¢+3

C(x,y) = exp(—|x — y|/L)

@ Domain is brick with L, = L, = 2.64e+4 and L, = 2.4¢+3
@ Coarse mesh size is about 2.64¢-+3
@ Hex meshes with N

103, 153,203,303, 403, 603, 803 elements

Figure: Eigenfunctions 1, 4, 8, 12 (in xy-plane) on 15° mesh
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KL solver performance (cluster)

@ Thunderbird: 2 procs/node, 6 GB/node, Infiniband, Open MPI
@ Ran four different meshes from 8k to 216k elements
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Application: Porous Flow & Geomechanics

@ Problem from Dean et. al., “A Comparison of Techniques for
Coupling Porous Flow and Geomechanics”, SPE J. (2006), 11(1),
132-140.

@ Single phase fluid depletion from central well (Aria)

@ Poroelastic deformation of solid matrix (Adagio)

@ Coupling from fluid pore pressure and displacements

@ Random fields have constant mean and variance scaling

» Initial pore pressure distribution (Aria and Adagio)
» Relative permeability scaling (Aria)
» Young’s modulus (Adagio)

@ Response function is the pressure at a point in the well at final

time
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DAKOTA Inputs

@ DAKOTA is a toolkit including many non-intrusive UQ algorithms
@ A PCE surrogate model of the response function is used

@ PCE coefficients are estimated by evaluating the coupled
Aria/Adagio model a fixed number of times

@ Can also use advanced sampling/quadrature methods
@ Each RV can use the same RV coefficients or independent ones
» We assume i.i.d. standard normal for now

@ The surrogate model is evaluated 100k times to generate statistics

@ We compute response levels for six probability levels (including
tails)
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Effect of number of model evaluations

@ Two RVs used (two term RF expansions), same for all RFs
@ Model evaluations increased from 4-64.
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Solution States

@ We plot fluid pore pressure and Von Mises stress for a realization

Pore vonmises
3700 se0 200 4300

3647.305 3891.609 . 4322.17
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Future Work

PCE expansions of RF

Parallel scaling (MPI profiling)

Preconditioning

Library interface to experimental data

Matrix free KL solver

Move lib code to Trilinos/STK-Encore

Simple Exodusll-based exec based on STK-Encore/STK-Mesh
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