
Non-intrusive Uncertainty Quantification Using
Random Fields in Parallel Finite Element Codes

Brian Carnes
John Red-Horse

bcarnes@sandia.gov

Sandia National Laboratories
Albuquerque, NM

Feb 24-26, 2010
SIAM Conference on Parallel Processing

for Scientific Computing

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000.

Carnes (Sandia) UQ in Parallel FE SIAM PP10 1 / 24

SAND2010-1225C

Outline

Non-intrusive Uncertainty Quantification
KL Representations of Random Fields
A Parallel KL Solver
Application: Porous Flow & Geomechanics
Future Work

Carnes (Sandia) UQ in Parallel FE SIAM PP10 2 / 24

Non-intrusive Uncertainty Quantification

Non-intrusive UQ performs many simulations at different
realizations of random inputs
Useful for generating efficient surrogate models
Inputs can be scalars or distributed fields (space, time)
Code modification: support heterogeneous field data
Exploits parallelism at two levels:

I Parallel sampling for many UQ methods: MC, LHS, stochastic
collocation, PCE

I Application parallelism
Random field discretization must also be parallel:

I Compute realizations (easy)
I Generate discretizations, e.g. KL eigenproblem (harder)

Carnes (Sandia) UQ in Parallel FE SIAM PP10 3 / 24

Sources of Uncertainty: RVs and RFs

Random variables (RVs)
I Based on probability space (Ω,S, P)
I RV is (measurable) function from Ω into R
I Often used in simulations for scalar simulation model inputs
I Scalar model outputs then become RVs

Random fields (RFs)
I Distributed in space and/or time as

a(x, ω), x ∈ D, ω ∈ Ω

I At each point x the value a(x, ·) is an RV
I Discretization is needed to approximate an infinite number of RVs
I Goal: make the RF case look like the case of a small vector of RVs
I This applies to both intrusive and non-intrusive UQ

Carnes (Sandia) UQ in Parallel FE SIAM PP10 4 / 24

Non-intrusive UQ Framework (Sandia)

RealizeRF:
encore

Sierra Code
Material Info: User Input

Data: ExodusII

Postprocess:
encore

ExodusII ExodusII

Text RV file Text parm file

Dakota

Output text file

{
s 
}

us

Dakota input deck

User­defined function shell script

ExodusII file

KL user commandsComputeKL

file.exo

UQ user commands

Postprocess commands

Carnes (Sandia) UQ in Parallel FE SIAM PP10 5 / 24

KL Representation of RFs
We can view RFs as mean plus fluctuation

a(x, ω) = m(x) + α(x, ω)

Karhunen-Loeve (KL) series is a generalization of SVD to RFs
KL series is computed from an orthogonal basis of eigenvectors
{φj} in L2(D) (scaled by eigenvalues λj)

α(x, ω) =
∞∑

j=1

√
λj ηj(ω) φj(x)

The coefficients {ηj} are zero-mean, uncorrelated RVs.
Computed from experimental data by projection:

ηj(ω) ≡ 1√
λj

∫
D

α(x, ω) φj(x) dx

Carnes (Sandia) UQ in Parallel FE SIAM PP10 6 / 24

RF Discretization

Approximations are obtained by truncating the series
The number of RV coefficients (stochastic dimension) is truncated
We have gone from infinite to finite number of RV coordinates
Deterministic component φj(x) approximated using FE basis

φj(x) ≈
∑

i

Φi
j vi(x) ∈ Vh ⊂ L2(D)

Generating a parallel KL realization requires
I Distributed data: eigenvector coefficients {Φi

j}
I Globally shared data: small vectors of correlated random variables
{ηj}, eigenvalues {λj}

Assembly of realizations requires no parallel communication

Carnes (Sandia) UQ in Parallel FE SIAM PP10 7 / 24

KL Realizations

We plot realizations using different number of terms
The RV coefficients ηj are assumed i.i.d. standard normal

Figure: Realizations with 2, 4, 8, 16 terms (in xy-plane)

Carnes (Sandia) UQ in Parallel FE SIAM PP10 8 / 24

KL Eigenproblem

Covariance kernel (final connection to data):

C(x, y) ≡ E[α(x, ω) α(y, ω)]

KL expansion requires solution of eigenproblem:∫
D

∫
D

C(x, y) φ(y) v(x) dy dx = λ

∫
D

φ(x) v(x) dx, v ∈ L2(D)

C is symmetric positive definite, so eigenvalues are real, positive,
and decrease to zero (Mercer’s theorem).
We are interested only in largest eigenvalues

Carnes (Sandia) UQ in Parallel FE SIAM PP10 9 / 24

Discrete KL Solver

FE approximation using Vh ⊂ L2(D) leads to generalized
eigenproblem

A Φ = λ BΦ

Dense matrix A, sparse matrix B (both SPD)

Aij ≡
∫

D

∫
D

C(x, y) vi(y) vj(x) dy dx, Bij ≡
∫

D
vi(x) vj(x) dx

Assembly of B matrix is standard (mass matrix)
Assembly of dense A matrix requires double element loop

Carnes (Sandia) UQ in Parallel FE SIAM PP10 10 / 24

Lib/App Implementation of KL Solver

Chose to parallelize matrix assembly independent of application
Each processor provides MPI communicator and arrays of

I local integration points for all local elements
I volume weights (Jacobian times quadrature weights)
I FE basis function values

App does not have to do any parallel communication

Carnes (Sandia) UQ in Parallel FE SIAM PP10 11 / 24

Parallel Computing Considerations

Main goals: apply many processors to
I achieve speedup for a problem of fixed size
I solve very large problems efficiently

Local storage is limited - data is distributed among procs
Cost of communication much higher than computation
Code must run on many platforms
Work must be load balanced
Choice of parallel communication method

I We will use MPI for all parallel operations

Carnes (Sandia) UQ in Parallel FE SIAM PP10 12 / 24

Challenges for Parallelization of KL Solver

RF may not be evenly distributed (load imbalance)
I mesh typically uniformly distributed on nodes
I RFs on surfaces and subdomains

Each node can hold only a fraction of the mesh
Matrix storage must be scalable

I for very large problems, storage may be impractical

Assembly must be efficient and scalable
Preconditioning needed for iterative eigensolver
Eigensolver must be parallel.

Carnes (Sandia) UQ in Parallel FE SIAM PP10 13 / 24

Matrix Storage Limitations

Let N be num elements, P be num procs
Assume each proc has N/P mesh elements (balanced load)

I Range for N: O(104)-O(109)
I Range for P: O(101)-O(105)

Need to store N2 matrix entries, N2/P per proc
I Compare to O(N/P) per proc for sparse matrices

Range for N2/P: O(103)-O(1013)
Matrix storage will be impractical for very large problems
This suggests ultimately a matrix-free approach

Carnes (Sandia) UQ in Parallel FE SIAM PP10 14 / 24

Parallel Matrix Storage
Row storage scheme (current implementation)

I N/P × N dense row block on each proc
I Requires element data from P procs to assemble

Square submatrix storage
I Each proc has N/

√
P × N/

√
P dense submatrix

I Block width is
√

P (N/P)
I Requires element data from 2

√
P procs to assemble

Matrix free (storage as needed for matvec)

Carnes (Sandia) UQ in Parallel FE SIAM PP10 15 / 24

Parallel Assembly
Each proc starts with N/P elements
Local diagonal blocks computed in serial
Row storage: loop over (P − 1) nonlocal columns

I Send/receive data between pairs of procs
I Assemble using localized data

Square submatrix storage
I Each proc needs data from 2

√
P procs

I Fewer communication calls

Carnes (Sandia) UQ in Parallel FE SIAM PP10 16 / 24

Eigensolver and Preconditioner

The eigensolver is an iterative block Davidson solver
(Arbenz et. al.,“A Comparison of Eigensolvers for Large-scale 3D
Modal Analysis Using AMG-Preconditioned Iterative Methods”,
IJNME, 64 (2005))
Implemented in the Trilinos/Anasazi library (trilinos.sandia.gov)
Requires only matvec operation
Computes only a subset of eigenvalues (largest)
Can leverage preconditioner of dense matrix A

I Plan is to implement block Jacobi
I Storage of diagonal N2/P2 submatrix per proc
I One time generation cost

Carnes (Sandia) UQ in Parallel FE SIAM PP10 17 / 24

Application: KL Problem

Example of kernel with correlation length scale L = 7.92e+3

C(x, y) = exp(−|x − y|/L)

Domain is brick with Lx = Ly = 2.64e+4 and Lz = 2.4e+3

Coarse mesh size is about 2.64e+3

Hex meshes with N = 103, 153, 203, 303, 403, 603, 803 elements

Figure: Eigenfunctions 1, 4, 8, 12 (in xy-plane) on 153 mesh

Carnes (Sandia) UQ in Parallel FE SIAM PP10 18 / 24

KL solver performance (cluster)

Thunderbird: 2 procs/node, 6 GB/node, Infiniband, Open MPI
Ran four different meshes from 8k to 216k elements

Carnes (Sandia) UQ in Parallel FE SIAM PP10 19 / 24

Application: Porous Flow & Geomechanics

Problem from Dean et. al., “A Comparison of Techniques for
Coupling Porous Flow and Geomechanics”, SPE J. (2006), 11(1),
132-140.
Single phase fluid depletion from central well (Aria)
Poroelastic deformation of solid matrix (Adagio)
Coupling from fluid pore pressure and displacements
Random fields have constant mean and variance scaling

I Initial pore pressure distribution (Aria and Adagio)
I Relative permeability scaling (Aria)
I Young’s modulus (Adagio)

Response function is the pressure at a point in the well at final
time

Carnes (Sandia) UQ in Parallel FE SIAM PP10 20 / 24

DAKOTA Inputs

DAKOTA is a toolkit including many non-intrusive UQ algorithms
A PCE surrogate model of the response function is used
PCE coefficients are estimated by evaluating the coupled
Aria/Adagio model a fixed number of times
Can also use advanced sampling/quadrature methods
Each RV can use the same RV coefficients or independent ones

I We assume i.i.d. standard normal for now

The surrogate model is evaluated 100k times to generate statistics
We compute response levels for six probability levels (including
tails)

Carnes (Sandia) UQ in Parallel FE SIAM PP10 21 / 24

Effect of number of model evaluations

Two RVs used (two term RF expansions), same for all RFs
Model evaluations increased from 4-64.

Carnes (Sandia) UQ in Parallel FE SIAM PP10 22 / 24

Solution States

We plot fluid pore pressure and Von Mises stress for a realization

Carnes (Sandia) UQ in Parallel FE SIAM PP10 23 / 24

Future Work

PCE expansions of RF
Parallel scaling (MPI profiling)
Preconditioning
Library interface to experimental data
Matrix free KL solver
Move lib code to Trilinos/STK-Encore
Simple ExodusII-based exec based on STK-Encore/STK-Mesh

Carnes (Sandia) UQ in Parallel FE SIAM PP10 24 / 24

