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Solid Lubrication Becomes Increasingly 
Challenging As Component Dimensions Shrink

MoS2-lubricated machine 
parts

new fabrication methods 
enable smaller metallic parts

Lubricating small parts of complex shape 
is a challenge at present.

A size decreases, existing lubrication 
approaches are not feasible.

No successful lubrication approach exists 
for sliding contacts in microsystems.
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hub

gear rotation
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sliding interfaces

FIB section 
through hub
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• device operates at 60-80°C in a hermetic package

• PFDA vapor pressure allows re-deposition of passivation layer

• also use reset voltage pulse to snap spring tip off of substrate

Texas Instruments’ Digital Micromirror Array -
A Dynamic Contact Success Story

Surface Treatments Investigated

• chlorosilane monolayers

• fluorinated ethers and other 
boundary lubricants

• solid films (diamond-like carbon, 
nitrides)

• perfluoroalkanoic acids (PFDA, 
C10F19O2H) gave high reliability

Array of ~106 Al-alloy mirrors 
modulate reflected light

• limited sliding (~10nm)

S. Henck, Tribol. Letters 1997

Keys to success: limited sliding, special actuation signals, repassivation, 
and not stored in contact
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600 microns

Material Changes to Mitigate Adhesion, Friction and 
Wear in MEMS Have Met With Limited Success

t:aC comb drive,
T.A. Friedmann, Sandia

150 m150 m150 m

Diamond-bonded Amorphous Carbon Films

• although net residual stress can be relaxed to zero, 
gradients remain

• upon release, compliant structures curl–not functional

Small Structures from Nanocrystalline Diamond

• resonators

• AFM tips

SiC Structural Layers

• high temperature CVD required

• etch in KOH > 600°C, or O2/CHF3 plasmas; selectivity only ~5:1

Conformal SiC Thin Films on Si

• CVD deposition using 1,3-disilabutane

• growth at 650º to 800ºC

• adhesion still a potential issue

M. Mehregany et. al, Proc. IEEE 86 
(1998) p. 1594

W.R. Ashurst et. al, Tribology Letters 17 
(2004) p. 195-198
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Our Best Chemisorbed SAM Films Do Not 
Survive Mechanical Contact
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D. Tanner et. al, 
International 
Reliability Physics 
Symposium, 1998

D.A. Hook, S.J. Timpe, M.T. 
Dugger and J. Krim, J. Appl. 
Phys., 104 (2008) p. 034303
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Alcohols Reduce Adhesion Between 
Silicon Surfaces

Lower surface tension, limited adsorbed film thickness, and high 
molar volume of alcohols limit capillary adhesion

K. Strawhecker, D.B. Asay, J. McKinney and 
S.H. Kim, Trib. Lett. 19 (2005) p.17-21

Adsorbed film thickness by ATR-FTIR

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08

Parial Pressure (bar)

A
d

h
e
s
io

n
 (

n
o

rm
a
li
ze

d
 t

o
 

d
ry

 c
a
s
e
)

Ethanol Butanol Pentanol

0

2

4

6

8

10

12

14

16

0% 20% 40% 60% 80% 100%
P/Psat

N
u

m
b

e
r 

o
f 

M
o

n
o

la
y

e
rs

WATER Ethanol Propanol Butanol Pentanol

D.B. Asay and S.H. Kim, Langmuir 23
(2007) pp. 12174 - 12178

 (erg/cm2) V (cm3/mol)

water 72.8 18.1

ethanol 21.8 58.7

1-butanol 24.6 91.2

1-pentanol 24.9 108.7

Si AFM tip on Si

• for C ≥ 2, adsorb 1-2 monolayers at 
0.1 < P/Psat < 0.9
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Vapor Phase Lubrication of Silicon Reduces 
Friction in Macroscale Sliding

No measurable wear for P/Psat ≥ 8%

• corresponds to monolayer coverage from ATR-FTIR data

SiO2 ball on Si 

98 mN load, 1.5 mm/s

N2 + pentanol
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D.B. Asay, M.T. Dugger, J.A. Ohlhausen and 
S.H. Kim, Langmuir 24 (2008) p. 155-159.
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MEMS Device Testing in Controlled 
Environments

Device packaged in 24-pin DIP

Process image data to give forces

• adhesion

• static friction

• dynamic friction

dry N2

MEMS Environmental 
Test Chamber

Probe Station and 
Drive Electronics

Timed Image Capture 
Displacement vs Input (V)

10 m

Fad = Funload – Fload + Fr

= a(Vc
2-Vp

2) + kx

Ffr = Fpush – Fpull - Fr

= a(Vslip
2) 

Fd = kx



Dugger WOM2009, MEMS Wear.ppt:99

Unprecedented Operating Life of MEMS 
Tribometers is Observed with VPL

MEMS tribometer

• operate < 104 cycles with CF3 monolayers

• no failure in > 108 cycles with alcohol vapor
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Slide
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D.B. Asay, M.T. Dugger, J.A. Ohlhausen and 
S.H. Kim, Trib. Lett. 29 (2008) p. 67-74.
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Increased Operating Life of Gear Train with 
Vapor Phase Lubrication

gear train on aging module
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gear 1 (output gear)

gear 6

left/right
actuator

up/down
actuator

50 m
gear 3 
assembly

contacts:
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sigma = 0.069
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sigma = 0.304100 Hz

500 Hz

FOTAS monolayer alone, t50 = 4.7x104

With VPL, device was stopped at 4.8x108

cycles without failure

• 1000 ppm pentanol, <100 ppm H2O
D. Tanner, Sandia
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20% Psat pentanolair

latch-unlatch motion

VPL is Effective on MEMS Devices with Thermal 
Actuators

VPL with pentanol produces extraordinary operating life in a variety of MEMS 
devices

single crystal silicon Fiber Switch

100 m100 m

5x106 cycles in air 5x106 cycles in 20% Psat 
pentanol
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High MW Product Forms in the Contact
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High MW Reaction Product Observed on 
MEMS Device

Thermally-actuated device, 5x108 cycles in 
pentanol at P/Psat=0.2, without failure (fails at 
5x105 in air) 
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no evidence of wear, but deposit at dimple contact

ToF-SIMS 
spectral imaging
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Polymerization Not Required for Wear 
Prevention

Reaction product accompanies 
surface damage

•previously, no wear for P/Psat > 
monolayer

•higher contact pressure requires 
higher lubricant vapor pressure 
to avoid wear

Wearless sliding is achievable 
without reaction product 
formation

730 MPa
wear

480 MPa
no wear

50% pentanol10% pentanolAr +
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reaction product 
fragmentation spectrum

ToF-SIMS with AXIA reaction 
product spatial maps
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Packaging Solution Required to Enable VPL 
over Large Temperature Range

• bound at high T by need to have monolayer coverage (P/Psat~0.10)

• bound at low T by preventing multilayer adsorption and condensation 
(P/Psat~0.95)

Ideal source would supply constant P/Psat over desired operating 
temperature range
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Vapor Delivery Approach:  In-Situ Generation
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TGA Data for Bis Ammonium Salt

Weight Loss (%) 1st Derivative

31% weight loss (calculated 39%)

Explored thermally 
driven reactions to 
deliver a vapor as 
needed:

1) Retro-ene reaction
• Deliver alcohols or 

thiols
2) Hoffman elimination 
reaction

• Deliver olefins
3) Thermally removable 
protecting group 
chemistry

• Deliver olefins

TGA data shows the decomposition of a diammonium salt to 
produce 1-butene

Shawn Dirk, SNL
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Alcohol VPL on Other Materials
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Summary

• Chemisorbed monolayer lubricants do not survive repeated mechanical 
contact in MEMS

• Vapor phase lubrication can eliminate wear in MEMS contacts via 
continuous surface passivation

– pentanol vapor reduces friction and results in non-measurable wear

– ability to replenish lubricant film from the vapor phase

• Vapor Phase Lubrication is applicable to a wide range of materials, 
dependent upon adsorption isotherm and surface chemistry

• In-situ generation and multi-component vapors can increase allowable 
operating temperature range

• Reliable MEMS devices with rubbing surfaces are now feasible


