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Quantum computing with singlet/triplet 
states
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Petta et al., Science 2005
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Quantum states are singlet and triplet of two-electron double quantum dot.

Electrons can be isolated from the reservoirs and spin state is detected using 
electrometery.

DC and pulsed voltages are used to control the qubit.
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Identified critical risk: Disorder at amorphous Si/SiO2 interface

Defect density required?  

 Electrical drift and noise

- local fluctuations in trap occupation

• Minimize damage created to interface during processing
• Move electrons away from interface (donors)
• Improve the defects at the interface (SiGe)

 Single e- dot formation: 

- defects create unwanted
fluctuations in potential landscape

Challenges to MOS system

 Spin coherence:  

- paramagnetic defects

MPL1
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MPL1 Mention Lyon's T1, T2 measurements in MOS systems as another motivation for SiGe and donor approaches.  Better 
interface and further from interface respectively
Michael Lilly, 2/3/2010
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1. Front end: MDL (K. Eng, K. Childs)
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2D electron gas formed at 
Si/SiO2 interface

Si MOS stack
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sSi

SiGe

x

Qubit spacing 
from defect

SiGe integration

SiGe/sSi approach:

• Si DQD platform provides starting point to SiGe or donor integration 
• Use strained Si on Insulator (SOI) as starting substrate 
• SiGe growth to form enhancement mode SiGe/sSOI structures

Initial work is a collaboration with D. Savage, U. Wisconsin

sSi/SiGe integration
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Design of electrostatic gated nanostructures

Double top gate

n+

SiO2
field

SiO2 gate oxide n+

poly-Sifull process flow
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SiO2 gate oxide n+

poly-Si - + - -+Single polysilicon layer
minimal processing

• MDL processing
• E-beam lithography
• Poly-Si etch
• Strip metal
• Poly-Si reoxidation
• Deposit ALD Al2O3

• Etch via holes
• Deposit top gate
• Forming gas anneal
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Back-end fabrication: results 

• Quantum point contacts and quantum dots with good transport characteristics 
have been fabricated

• Yield is a key issue

• Many variations in the queue in parallel

DQD poly gate etch After ALD and Al metal
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MPL4 will also need CV table if CV is introduced at this point
Michael Lilly, 2/3/2010
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ALD Process Damage

Understanding the 
charge in ALD is 
complicated by 
coupled process 
effects
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Disorder characterization for process steps

DQD process

• MDL processing
• E-beam lithography
• Poly-Si etch
• Strip metal
• Poly-Si reoxidation
• Deposit ALD Al2O3

• Etch via holes
• Deposit top gate and 

contact pads
• Forming gas anneal
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Nanostructure fabrication has strong impact on mobility

Forming gas is important for cleaning up interface
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Nordberg et al., PRB (2009)
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Modeling quantum dot structures
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Capacitance model for electrometer sensitivity
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Experiment:
CC = 0.09 ± 0.01 aF

Capacitive Model:
CC = 0.092 aF
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• Using measured gate capacitances, the charge sense signal magnitude, and dI/dVG, CC can be found experimentally

• Confidence exists that we can predict the magnitude of a charge sense signal in similar geometries with a capacitive simulation
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Outline

MOS quantum dots for quantum computing

Fabrication

Electrostatically gated quantum dots and electrometry

Donor devices

Next steps: yield and single electrons
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Donor – DQD devices
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Changes to standard DQD process

DQD process
• MDL processing
• E-beam lithography
• Poly-Si etch

• Strip metal
• Poly-Si reoxidation

• Deposit ALD Al2O3

• Etch via holes
• Deposit top gate and contact pads

Donor-DQD process
• MDL processing
• E-beam lithography
• Poly-Si etch
• EBL for implant window
• Donor implantation
• Strip metal
• Poly-Si reoxidation?
• Implant activation anneal
• Deposit ALD Al2O3

• Etch via holes
• Deposit top gate and contact pads
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Implanted donor distribution

30keV phosphorus
80keV antimony

Phosphorus:
• Less implant damage
• Activates at low temp (800 0C)
• High diffusivity
• High straggle

Antimony:
• More implant damage
• Activates at higher temp (900+ 0C)
• Low diffusivity
• Low straggle

Donor-DQD process
• MDL processing
• E-beam lithography
• Poly-Si etch
• EBL for implant window
• Donor implantation
• Strip metal
• Poly-Si reoxidation?
• Implant activation anneal
• Deposit ALD Al2O3

• Etch via holes
• Deposit top gate and contact pads
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Implant activation anneal

30 seconds 24 minutes

Phosphorus 30 nm 200 nm

Antimony 0.8 nm 6 nm

Donor-DQD process
• MDL processing
• E-beam lithography
• Poly-Si etch
• EBL for implant window
• Donor implantation
• Strip metal
• Poly-Si reoxidation?
• Implant activation anneal
• Deposit ALD Al2O3

• Etch via holes
• Deposit top gate and contact pads

Poly-Si reoxidation is 24 minutes at 900 0C.
Implant activation anneal is 30 seconds at 900 0C.

Diffusion lengths for 900 0C anneals.
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Outline

MOS quantum dots for quantum computing

Fabrication

Electrostatically gated quantum dots and electrometry

Donor devices

Next steps: yield and single electrons
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Outlook for single electron

Sample 131 can be operated with lower electron number.

Fewer electrons requires larger 
voltage on depletion gates.

Vpg

Vag = 2.2 V
Vdbg = Vqg = Vrg = 0 V

TCAD modeling of 131

Capacitance to top gate provides dot size

C = 14.7 aF
d = 187 nm (assuming circular dot)
N ~ 400 electrons (assuming 2DEG density)

Gate voltage and risk

Disorder dots for low electron number?
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Reverse charge sensing

Capacitive coupling between the external QPC gate and the main QD is so small, that 
gate compensation on the QD is almost unnecessary
Noisy, no parallel field & broad CB line widths => warm fridge and alter wiring

400μV SD
1mV SD
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DQD designs for either single or double gates

• Recent designs minimize size
• Can be operated in single poly (minimal process) for diagnostics
• Consistent with donor implant
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Silicon fab quantum dots

One path to  improve yield is to minimize back-end processing 
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 4 V

G
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all pinchers (V)

Wg = -75 V, T = 0.25 K

Large (180 nm features) quantum dots from MDL appear to have
very repeatable gates and show Coulomb blockade.

EBL is approved for the MDL silicon fab.

0.18 m front-end lithography Coulomb blockade in MDL dot
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additional supporting slides
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Back-end fabrication details: depletion gates

Device window opens to the SiNx etch stop. 

300nm negative EBL resist patterned to form one of the 
Qubit structures   
CHF3 used to etch SiNx down to poly-Si
HBr used to etch poly-Si down to gate oxide
Acetone spray used to clear residual EBL resist

100 um
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Back-end fabrication details: anneals, ALD and 
top gate

H2O2 removes W down to poly-Si pads and n+ contacts
H3PO4 removes Si3N4 in device region
900°C 24min re-oxidation in dry O2

600Å Al2O3 deposited via ALD over entire surface (200°C process)

1000Å Aluminum blanket metallization patterned with etch-back 
in field to form Top Gate
Al2O3 patterned for BOE etch of ALD above poly-Si and n+ bond 
pads
1000Å Aluminum deposited to form bond pads for vias

100 um

SiO2 SiO2

Silicon Substrate with 100Å or 350Å Gate Oxide

n+n+

1000Å poly-Si 1000Å poly-Si

250 Å Nitride 
etch stop

AlAl Al
Al Al
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Initial data

Greg Ten Eyck,
Joel Wendt,
Denise Tibbetts,
Beverly Silva

RF compatible nanoelectronics
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T = 0.25 K~ 0.03 V

~ 700 nm
Minimizing the stray capacitance in an rf-device
requires much smaller sizes.  We have developed
a front-end structure specifically for rf experiments.



Slide 35

-2.4 -2.0 -1.6 -1.2
-10

-5

0

5

10

 V
d

s 
(m

V
)

 Vpoly (V)

N = 4i

N = 4i+1

Disorder dots diamonds

0.30 0.35 0.40 0.45 0.50
-10

-5

0

5

10

WQ (V)

V
d

s 
(m

V
)

0

1.000E-5

G (
-1
)

Vtg = 5 V
WQPC = -1 V
T ~ 20 mK



Slide 36

Electron temperature in quantum dots
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