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Abstract

3D Integration approaches exist for wafer-to-wafer, die-to-
wafer, and die-to-die assembly, each with distinct merits.
Creation of "seamless" wafer scale focal plane arrays on the
order of 6-8” in diameter drives very demanding yield
requirements and understanding. This work established a
Monte Carlo model of our exploratory architecture in order to
assess the trades of the various assembly methods. The model
results suggested an optimum die size, number of die stacks
per assembly, number of layers per stack, and quantified the
value of sorting for optimizing the assembly process.

Driver Application

We have investigated various 3D assembly processes as
part of an internal Laboratory Directed Research and
Development (LDRD) exploratory effort for the development
of wafer-scale focal planes. The notion assumes construction
of seamless focal planes of at least 6” in diameter, scalable to
even larger sizes. Seamless means a focal plane effectively
having no gaps in the detector field. Further, the complexity
of the pixel used in of the application — ~100’s of transistors
in support of per pixel A/D and other specialized
functionality— over constrained the available 2D area.

This infers multiple issues: 1) the solution requires a 3-4
layer 3D assembly to meet the 2D area constraint, and 2) yield
likely precludes a realistic single-layer monolithic focal plane
of this size, which infers an even less likely task of yielding a
multi-wafer stack. Given the seamless construction and yield
limit, it was realized early in development that the focal plane
would require unique assembly of closely spaced 4-side
abuted 3D stacks. Still yield would need to be well understood
and modeled for successful results. If developed early, such a
yield model would be effective in making assembly trades.
Although we developed a model specifically for the focal
plane application, the approach and results suggest broader
application to 3D assembly in general.

Monte Carlo analyses have long been used to effectively
model statistical processes such as the variance of production
builds. [1] For this approach one must establish a set of
variables that define the variance of the build and then
statistically establish a large population of samples
numerically representative of the build as described by the
randomness of the defined variances. Then apply one or more
deterministic methods, assembly processes in this case, to
create a resultant population that can be further analyzed for
trends and variances. The beauty of this procedure for a
production build is that one can simulate many times the
volume of the production without ever building a single part.

Model Definition

The baseline architecture assumed that multiple layers
would be assembled to create what would be referred to as 3D
stacks. Each stack represents a modular unit that includes all
of the functionality for possessing a standalone 2D block of

pixels. These stacks would then be assembled presumably by
the same or similar 3D technique onto a “motherboard”
carrier in close proximity to one another. Figure 1 illustrates a
demonstration version of this assembly.

Figure 1: Wafer Scale Focal Plane Demo Cartoon

This approach assumes that by keeping the motherboard
simple, high wafer scale yields could be achieved. It also
assumes adequate testing to ensure known good die stacks for
the assembly. The small 4x4 array chosen for the
demonstration simplifies the overall task, but retains proof of
all of the needed processes, including stack construction, stack
assembly to wafer, a 4-side abutable design with close
proximity placement, and a scaleable approach.

Key to the success of this or any other assembly depends
on the determination of the following factors:

e  What wafer process yields are required?
e  What is the optimum die size?
e How many layers could be stacked?
e Would test coverage is needed?
e  Will the final assembly have acceptable yield?
e How extendable is the concept?
Model Variables

Model variables were defined for each of the factors of
interest in the model definition.

Wafer Defect Density, D,

Two models are commonly considered to provide good
first order estimates for determining die yields, given in
Equation 1 and Equation 2.

Yp = g~ VADe
Equation 1: Seeds Model

o= (A5)

Equation 2: Murphy Model
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The Seeds model is empirically derived and generally
considered a more conservative estimate. The more advanced
Murphy model has lower yield at larger DO values and greater
yield at lower DO representative of yield learning that comes
with process maturity, typical of process production. Both
models rely on knowledge of die area and process defeat
density.

Since the modeling objective is to predict trends versus
absolute numbers, the actual defect yield model contributes
little significance to the actual results. Comparisons were
made between the two, but the simpler Seeds model was
found to be sufficient for the purposes of this work.

More important to the model outcome is the determination
of Dy requirements. It is easy to assume overly optimistic
wafer yields given modern processing facilities. But wafer
yields depend strongly on the design being fabricated. [2]
DRAM facilities enjoy the highest yields since their process
ideally targets a single repetitive design per fab line. A
process line for a single irregular design, such as a high-
volume X86 processor, would generally have a degraded
defect density. An ASIC process line typically suffers greater
degraded processing due to variances in the design pushing
manufacturing tolerances. Development facilities, common to
the processing of prototype or exploratory designs such as the
focal plane of discussion, typically experience even worse
defect density. Therefore, for comparison, the model used a
range of values to envelop everything from the most
optimistic processing to the realistic scenario of development
facilities.

Die Size

Die Size impacts yield in multiple ways making its
optimization one of the harder determinations without a
model. Picking too small a die size increases die yield but
simultaneously drives up the number of die stacks per
assembly and number of assembly operations. In contrast
selecting too large a die would limit die and stack yields. Die
size also impacts the number of die per wafer. Die sizes
ranging from medium to very large were selected for the
model. The notion of small die was eliminated from
consideration on the basis of extending the design to larger
scale.

Number of Layers Stacked

Obviously the number of layers stacked directly impacts
yield, but the number of layers also directly correlates to
circuit design partitioning, number of interconnects, and other
circuit design optimization factors. So knowing an optimum
for the number of layers early in the design helps determine
such circuit design trades.

Stack Sort Methods

Similar to the investigations of others [3], of primary
interest in model development was knowing whether some
form of optimization of assembly would significantly impact
yield. Secondly, what level of difficulty is associated with the
optimization. To help determine this, three methods of wafer
sort were modeled.

1. Random Stacking. Random stacking represents
completely arbitrary production assembly. No
testing, expense, or effort is made to favor yield.
Since the model generates wafer maps in a random

fashion, random assembly can be implemented
simply by stacking wafers in sequential order. That
is, wafer stack 1 = wafer 1 of layers 1-4, wafer stack
2 = wafer 2 of layers 1-4, etc. This is just one random
case. Many cases could be computed and averaged.
This was not done since a statistically significant
number of lots are included in the analysis.

2. Basic Sorted Stacked. Random stacking does not
take into account zero or low yielding wafers. Sorted
assembly applies the simplest of testing, expense,
and effort to sort wafers in order of yield for
assembly. For basic sorted assembly, the wafers are
sorted by vyield, highest to lowest. The highest
yielding wafer of level 1 is then paired with the
highest yielding wafer of level 2, and so forth for the
appropriate number of layers. This should favor yield
with a minimum of effort.

3. Optimized Sort. An actual ideally optimized sort
appears analogous to the problem of optimizing a
“traveling salesman” route. It requires exhaustive
matching and comparison of wafers, which quickly
exceeds reasonable resources relative to any possible
gains. For purposes of modeling an alternate
definitive method was suggested for the optimized
sort, as follows:

i. Sort all the wafers by yield, highest to lowest.
ii. Compute all the possible stack yields for the
first layer 1 wafer against all the layer 2
wafers.
iii. Pick the highest maxima of wafer results or
first maxima if more than one of equal value.
iv. Eliminate those wafers from the mix.
v. Repeat from step 2 until a stack is created for
all wafers in a lot.
This is a non-exhaustive solution as any given set of
wafers could yield more than one maximum, but it is
assumed good enough, particularly relative to the
low level of resource required to perform the
optimization.

Testing

The certainty to which each die is known good or known

good die (KGD) statistics certainly strongly influence
assembly yield. Also, assembling multiple parts together
becomes the multiplicative result of the yields for each
process step involved.

Assuming that all die have equal yield certainty and that the
yield of each process step is well known, the formula of
Equation 3 defines the aggregate assembly yield.

(g}
Ya=Yp" -Yereps - Ysreps - -
Equation 3: Aggregate Assembly Yield

This information is necessary in order to make absolute
yield assessment. However, to simply assess relative
differences, the impact of KGD yield and assembly operations
was assumed to be constant per a given implementation and
therefore was not directly included it in the model. That is, an
assembly with » die on a motherboard yields based on the
number of die and certainty of goodness per die independent



of whether the die is a single-layer die or a multi-layer stack.
The assumption here is that die stacks can be tested as
thoroughly as individual die. This factor becomes not just an
assumption, but a necessity in terms of yielding die stacks.
This emphasizes the importance of testing for yielding a
finished assembly and bounds the scaling of the assembly.

From an operations standpoint the same holds. That is, the
yield of the operation falls out as a common factor when
comparing yields for die size and sorting methods. In this
sense the model treats the assembly operations as unity
factors. Again for determining absolute yields this is not valid.
But the initial assessment of interest in the model was to
determine if we could adequately yield assemblies at all. If
one can not yield to ideal operations there is no reason to
determine assessment of operation yields.

Other Factors

A number of other factors play into the model and could
easily be modified. Two of these include wafer size and lot
size. Both of these were fixed for all generated data runs.
Single nominal fixed-values for each of these terms was
deemed sufficient, since Monte Carlo analysis provides good
indicators for trends. Larger lot sizes and wafer sizes only
support assumptions for design scaling. Wafer size was
constrained to 6” based on certain program drivers that
dictated a specific 6” process line. Likewise, the lot size was
set at 10 wafers based on the same specific process line.

Monte Carlo Analysis and Parameters
As outlined the objective was to create a Monte Carlo
analysis based on the parameters and assumptions stated
above.
The analysis was performed using a Perl script written
specifically for the task. The basic script simply builds a
population of wafers based on the input parameters, which
follow:
e 100 lots of 10 wafers ea for each of 4 stack layers
(4000 total wafers per case).

e 8 Die sizes and quantities assuming 6” wafers —
10:120, 15:45, 20:24, 25:14, 30:9, 35:7, 40:4, 45:4,
where 10:120 means 120 die per wafer @ 10 mm.

e D, values of 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, and 1.0

defects per square cm.

e 3 stack methods: RANDOM, SORTED, OPTIMUM.

e Stacks of 2, 3, and 4 layers.

The script first builds a database of wafer yield maps,
equivalent to what might be generated from testing wafers.
All wafer maps are independently and randomly generated for
uncorrelated results, representative of production. The wafer
map creation does not take into account systematic yield
issues such as center to edge wafer gradients, etc. The analysis
parameters create 4000 total wafers for each die case. With 8
die sizes and 7 defect densities that equates to 224,000 total
wafer maps and 6,356,000 die. This is considered very large
for the expected low volume focal plane builds. However,
such quantities may be insufficient for other applications.

The script saves the wafer maps in an SQLite database for
reuse. All stacking, whether 2, 3, or 4 layers and regardless of
sorting method use the same wafer maps for a direct
comparison of results. This correlation equates to performing

multiple production runs with different processes while using
the same pieceparts, thus giving an objective comparison of
the processes.

From this database of wafer maps, the script assembles
1,589,000 individual die stacks for each of 2, 3, and 4 layer
stacks by each of three stacking methods, ~14.3M total.
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Figure 2: Die Yield vs Die Size and Defect Density

Observations

Before assessing model results a number of checks were
made on the database to ensure integrity and serve as a sanity
check and validation. For example, Figure 2 shows die yield
as a function of die size and defect density that is consistent
with Seeds model.
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Figure 3: Stacking Method, D0=0.5

Primary interest for the model was to determine value of
presorting wafers before assembly. Figure 3 shows a summary
of 2, 3, and 4 layer stacks for a range of die sizes and side by



side comparison of the 3 sort methods. This case is for a Dy of
0.5 defects per cm®. For large die sizes Optimized Stacking
clearly yields better than Sorted Stacking that clearly yields
better than Random Stacking. For 2 layer stacks and 45 mm
die the difference is nearly an order of magnitude. At small
die size all methods yield nearly equivalent. For nominal
sizes, the ratio of Optimized to Random increases roughly by
the power of the number of layers stacked.
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Figure 4: Stack Yields Per Lot vs Die Size

Figure 4 pictures a typical example case that shows stack
yield is fairly independent of the number of layers. Note, as
stated, this assumes ideal assembly operations and ideal KGD
yields, which must be taken into account. The point here is the
weak impact of die yield with all other factors being equal.
Even without assembly process considerations the model
determined that a complete baseline assembly would require a
minimum of two product lots for each die layer in order to
complete 1 focal plane assembly. This factored into economic
and planning decisions for the program.[4]

A significant finding for the model involved determining
minimum necessary processing defect level requirements for
the baseline design. At a die size of 20 mm on 6” wafers a
defect density of 0.175 defects per cm” translates to only 1
successful assembly per lot on average, which does not take
into account lot-to-lot variances.

Conclusions

The described Monte Carlo analysis proved useful in
determining yields and trades in the fabrication of wafer scale
focal plane assemblies. Observations from the model suggest
significant value in implementing a straightforward wafer
sorting process based on yield in order to increase overall
focal plane array. These observations further influenced
factors such as baseline design die size and the number of
layers of circuit partitioning for ensuring a successful focal
plane result.
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