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Abstract

3D Integration approaches exist for wafer-to-wafer, die-to-
wafer, and die-to-die assembly, each with distinct merits. 
Creation of "seamless" wafer scale focal plane arrays on the 
order of 6-8” in diameter drives very demanding yield 
requirements and understanding. This work established a 
Monte Carlo model of our exploratory architecture in order to 
assess the trades of the various assembly methods. The model 
results suggested an optimum die size, number of die stacks 
per assembly, number of layers per stack, and quantified the 
value of sorting for optimizing the assembly process.

Driver Application
We have investigated various 3D assembly processes as 

part of an internal Laboratory Directed Research and 
Development (LDRD) exploratory effort for the development 
of wafer-scale focal planes. The notion assumes construction 
of seamless focal planes of at least 6” in diameter, scalable to 
even larger sizes. Seamless means a focal plane effectively 
having no gaps in the detector field. Further, the complexity 
of the pixel used in of the application — ~100’s of transistors 
in support of per pixel A/D and other specialized 
functionality— over constrained the available 2D area.

This infers multiple issues: 1) the solution requires a 3-4 
layer 3D assembly to meet the 2D area constraint, and 2) yield 
likely precludes a realistic single-layer monolithic focal plane 
of this size, which infers an even less likely task of yielding a 
multi-wafer stack. Given the seamless construction and yield 
limit, it was realized early in development that the focal plane 
would require unique assembly of closely spaced 4-side 
abuted 3D stacks. Still yield would need to be well understood 
and modeled for successful results. If developed early, such a 
yield model would be effective in making assembly trades. 
Although we developed a model specifically for the focal 
plane application, the approach and results suggest broader 
application to 3D assembly in general.

Monte Carlo analyses have long been used to effectively 
model statistical processes such as the variance of production 
builds. [1] For this approach one must establish a set of 
variables that define the variance of the build and then 
statistically establish a large population of samples 
numerically representative of the build as described by the 
randomness of the defined variances. Then apply one or more 
deterministic methods, assembly processes in this case, to 
create a resultant population that can be further analyzed for 
trends and variances. The beauty of this procedure for a 
production build is that one can simulate many times the 
volume of the production without ever building a single part.

Model Definition
The baseline architecture assumed that multiple layers 

would be assembled to create what would be referred to as 3D 
stacks. Each stack represents a modular unit that includes all 
of the functionality for possessing a standalone 2D block of 

pixels. These stacks would then be assembled presumably by 
the same or similar 3D technique onto a “motherboard” 
carrier in close proximity to one another. Figure 1 illustrates a 
demonstration version of this assembly.

Figure 1: Wafer Scale Focal Plane Demo Cartoon

This approach assumes that by keeping the motherboard 
simple, high wafer scale yields could be achieved. It also 
assumes adequate testing to ensure known good die stacks for 
the assembly. The small 4x4 array chosen for the 
demonstration simplifies the overall task, but retains proof of 
all of the needed processes, including stack construction, stack 
assembly to wafer, a 4-side abutable design with close 
proximity placement, and a scaleable approach.

Key to the success of this or any other assembly depends 
on the determination of the following factors:

 What wafer process yields are required?

 What is the optimum die size?

 How many layers could be stacked?

 Would test coverage is needed?

 Will the final assembly have acceptable yield?

 How extendable is the concept?

Model Variables
Model variables were defined for each of the factors of 

interest in the model definition.

Wafer Defect Density, D0

Two models are commonly considered to provide good 
first order estimates for determining die yields, given in 
Equation 1 and Equation 2.

Equation 1: Seeds Model

Equation 2: Murphy Model
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The Seeds model is empirically derived and generally 
considered a more conservative estimate. The more advanced 
Murphy model has lower yield at larger D0 values and greater 
yield at lower D0 representative of yield learning that comes 
with process maturity, typical of process production. Both 
models rely on knowledge of die area and process defeat 
density. 

Since the modeling objective is to predict trends versus 
absolute numbers, the actual defect yield model contributes 
little significance to the actual results. Comparisons were 
made between the two, but the simpler Seeds model was 
found to be sufficient for the purposes of this work.

More important to the model outcome is the determination 
of D0 requirements. It is easy to assume overly optimistic 
wafer yields given modern processing facilities. But wafer 
yields depend strongly on the design being fabricated. [2] 
DRAM facilities enjoy the highest yields since their process 
ideally targets a single repetitive design per fab line. A 
process line for a single irregular design, such as a high-
volume X86 processor, would generally have a degraded 
defect density. An ASIC process line typically suffers greater 
degraded processing due to variances in the design pushing 
manufacturing tolerances. Development facilities, common to 
the processing of prototype or exploratory designs such as the 
focal plane of discussion, typically experience even worse 
defect density. Therefore, for comparison, the model used a 
range of values to envelop everything from the most 
optimistic processing to the realistic scenario of development 
facilities.

Die Size
Die Size impacts yield in multiple ways making its 

optimization one of the harder determinations without a 
model. Picking too small a die size increases die yield but 
simultaneously drives up the number of die stacks per 
assembly and number of assembly operations. In contrast 
selecting too large a die would limit die and stack yields. Die 
size also impacts the number of die per wafer.  Die sizes 
ranging from medium to very large were selected for the 
model. The notion of small die was eliminated from 
consideration on the basis of extending the design to larger 
scale.

Number of Layers Stacked
Obviously the number of layers stacked directly impacts 

yield, but the number of layers also directly correlates to 
circuit design partitioning, number of interconnects, and other 
circuit design optimization factors. So knowing an optimum 
for the number of layers early in the design helps determine 
such circuit design trades.

Stack Sort Methods
Similar to the investigations of others [3], of primary 

interest in model development was knowing whether some 
form of optimization of assembly would significantly impact 
yield. Secondly, what level of difficulty is associated with the 
optimization. To help determine this, three methods of wafer 
sort were modeled. 

1. Random Stacking. Random stacking represents 
completely arbitrary production assembly. No 
testing, expense, or effort is made to favor yield.
Since the model generates wafer maps in a random 

fashion, random assembly can be implemented 
simply by stacking wafers in sequential order. That
is, wafer stack 1 = wafer 1 of layers 1-4, wafer stack 
2 = wafer 2 of layers 1-4, etc. This is just one random 
case. Many cases could be computed and averaged. 
This was not done since a statistically significant
number of lots are included in the analysis.

2. Basic Sorted Stacked. Random stacking does not 
take into account zero or low yielding wafers. Sorted 
assembly applies the simplest of testing, expense, 
and effort to sort wafers in order of yield for 
assembly. For basic sorted assembly, the wafers are 
sorted by yield, highest to lowest. The highest 
yielding wafer of level 1 is then paired with the 
highest yielding wafer of level 2, and so forth for the 
appropriate number of layers. This should favor yield 
with a minimum of effort.

3. Optimized Sort. An actual ideally optimized sort 
appears analogous to the problem of optimizing a 
“traveling salesman” route. It requires exhaustive 
matching and comparison of wafers, which quickly 
exceeds reasonable resources relative to any possible 
gains. For purposes of modeling an alternate 
definitive method was suggested for the optimized 
sort, as follows:

i. Sort all the wafers by yield, highest to lowest.
ii. Compute all the possible stack yields for the 

first layer 1 wafer against all the layer 2 
wafers. 

iii. Pick the highest maxima of wafer results or 
first maxima if more than one of equal value.

iv. Eliminate those wafers from the mix.
v. Repeat from step 2 until a stack is created for 

all wafers in a lot.
This is a non-exhaustive solution as any given set of 
wafers could yield more than one maximum, but it is 
assumed good enough, particularly relative to the 
low level of resource required to perform the 
optimization. 

Testing
The certainty to which each die is known good or known 

good die (KGD) statistics certainly strongly influence 
assembly yield. Also, assembling multiple parts together 
becomes the multiplicative result of the yields for each 
process step involved. 
Assuming that all die have equal yield certainty and that the 
yield of each process step is well known, the formula of 
Equation 3 defines the aggregate assembly yield. 

Equation 3: Aggregate Assembly Yield

This information is necessary in order to make absolute 
yield assessment. However, to simply assess relative 
differences, the impact of KGD yield and assembly operations 
was assumed to be constant per a given implementation and 
therefore was not directly included it in the model. That is, an 
assembly with n die on a motherboard yields based on the 
number of die and certainty of goodness per die independent 



of whether the die is a single-layer die or a multi-layer stack. 
The assumption here is that die stacks can be tested as 
thoroughly as individual die. This factor becomes not just an 
assumption, but a necessity in terms of yielding die stacks. 
This emphasizes the importance of testing for yielding a 
finished assembly and bounds the scaling of the assembly.

From an operations standpoint the same holds. That is, the 
yield of the operation falls out as a common factor when 
comparing yields for die size and sorting methods. In this 
sense the model treats the assembly operations as unity 
factors. Again for determining absolute yields this is not valid. 
But the initial assessment of interest in the model was to 
determine if we could adequately yield assemblies at all. If 
one can not yield to ideal operations there is no reason to 
determine assessment of operation yields.

Other Factors
A number of other factors play into the model and could 

easily be modified. Two of these include wafer size and lot 
size. Both of these were fixed for all generated data runs. 
Single nominal fixed-values for each of these terms was 
deemed sufficient, since Monte Carlo analysis provides good 
indicators for trends. Larger lot sizes and wafer sizes only 
support assumptions for design scaling. Wafer size was 
constrained to 6” based on certain program drivers that 
dictated a specific 6” process line. Likewise, the lot size was 
set at 10 wafers based on the same specific process line. 

Monte Carlo Analysis and Parameters
As outlined the objective was to create a Monte Carlo 

analysis based on the parameters and assumptions stated 
above.

The analysis was performed using a Perl script written 
specifically for the task. The basic script simply builds a 
population of wafers based on the input parameters, which 
follow:

 100 lots of 10 wafers ea for each of 4 stack layers 
(4000 total wafers per case).

 8 Die sizes and quantities assuming 6” wafers –
10:120, 15:45, 20:24, 25:14, 30:9, 35:7, 40:4, 45:4, 
where 10:120 means 120 die per wafer @ 10 mm.

 D0 values of 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, and 1.0 
defects per square cm.

 3 stack methods: RANDOM, SORTED, OPTIMUM.

 Stacks of 2, 3, and 4 layers.
The script first builds a database of wafer yield maps, 

equivalent to what might be generated from testing wafers. 
All wafer maps are independently and randomly generated for 
uncorrelated results, representative of production. The wafer 
map creation does not take into account systematic yield 
issues such as center to edge wafer gradients, etc. The analysis 
parameters create 4000 total wafers for each die case. With 8 
die sizes and 7 defect densities that equates to 224,000 total 
wafer maps and 6,356,000 die. This is considered very large 
for the expected low volume focal plane builds. However, 
such quantities may be insufficient for other applications.

The script saves the wafer maps in an SQLite database for 
reuse.  All stacking, whether 2, 3, or 4 layers and regardless of 
sorting method use the same wafer maps for a direct 
comparison of results. This correlation equates to performing 

multiple production runs with different processes while using 
the same pieceparts, thus giving an objective comparison of 
the processes.

From this database of wafer maps, the script assembles 
1,589,000 individual die stacks for each of 2, 3, and 4 layer 
stacks by each of three stacking methods, ~14.3M total.

Figure 2: Die Yield vs Die Size and Defect Density

Observations
Before assessing model results a  number of checks were 

made on the database to ensure integrity and serve as a sanity 
check and validation. For example, Figure 2 shows die yield 
as a function of die size and defect density that is consistent 
with Seeds model.

Figure 3: Stacking Method, D0=0.5

Primary interest for the model was to determine value of 
presorting wafers before assembly. Figure 3 shows a summary 
of 2, 3, and 4 layer stacks for a range of die sizes and side by 



side comparison of the 3 sort methods. This case is for a D0 of 
0.5 defects per cm2. For large die sizes Optimized Stacking 
clearly yields better than Sorted Stacking that clearly yields 
better than Random Stacking. For 2 layer stacks and 45 mm 
die the difference is nearly an order of magnitude. At small 
die size all methods yield nearly equivalent. For nominal 
sizes, the ratio of Optimized to Random increases roughly by 
the power of the number of layers stacked.

Figure 4: Stack Yields Per Lot vs Die Size

Figure 4 pictures a typical example case that shows stack 
yield is fairly independent of the number of layers. Note, as 
stated, this assumes ideal assembly operations and ideal KGD 
yields, which must be taken into account. The point here is the 
weak impact of die yield with all other factors being equal. 
Even without assembly process considerations the model 
determined that a complete baseline assembly would require a 
minimum of two product lots for each die layer in order to 
complete 1 focal plane assembly. This factored into economic 
and planning decisions for the program.[4]

A significant finding for the model involved determining 
minimum necessary processing defect level requirements for 
the baseline design. At a die size of `20 mm on 6” wafers a 
defect density of 0.175 defects per cm2 translates to only 1 
successful assembly per lot on average, which does not take 
into account lot-to-lot variances.

Conclusions
The described Monte Carlo analysis proved useful in 

determining yields and trades in the fabrication of wafer scale 
focal plane assemblies. Observations from the model suggest 
significant value in implementing a straightforward wafer 
sorting process based on yield in order to increase overall 
focal plane array. These observations further influenced 
factors such as baseline design die size and the number of 
layers of circuit partitioning for ensuring a successful focal 
plane result.
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