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ABSTRACT

Photovoltaic (PV) system performance models are relied
upon to provide accurate predictions of energy production
for proposed and existing PV systems under a wide
variety of environmental conditions. Ground based
meteorological measurements are only available from a
relatively small number of locations. In contrast, satellite-
based radiation and weather data (e.g., SUNY database)
are becoming increasingly available for most locations in
North America, Europe, and Asia on a 10x10 km grid or
better. This paper presents a study of how PV
performance model results are affected when satellite-
based weather data is used in place of ground-based
measurements.

1. INTRODUCTION

Photovoltaic (PV) system performance models are relied
upon to provide accurate predictions of energy production
for proposed and existing PV systems under a wide
variety of environmental conditions. Ground based
measurements, including typical meteorological year
(TMY) data, are only available from a relatively small
number of locations. In contrast, satellite-based radiation
and weather data (e.g., SUNY database) are becoming
increasingly available for most locations in North
America, Europe, and Asia on a 10 by 10 km grid or
better. Several studies have compared satellite-based
radiation data with ground-based measurements (e.g.,[1])
but far less work has been done to evaluate the results of
using satellite data as input to PV performance models
[2]. Because each performance model is unique and has
specific sensitivities to model input parameters the use of
satellite-based irradiance inputs will have different effects
depending upon which model is used.

In this study, we consider the performance of a small (1
kW) c-Si grid-tied PV system deployed at Sandia
National Laboratories (SNL) in Albuguerque, NM
between April 2007 and March 2008. We measured
irradiance (direct normal, diffuse horizontal, and global
horizontal), air temperature, and wind speed, among other
weather parameters during the deployment. We also
monitored electrical performance on the DC (current and
voltage) and AC (power) sides of the inverter. In addition
we obtained hourly satellite estimates of direct normal
and global horizontal irradiance as well as air temperature
and wind speed. In the following sections of this paper
we will first compare the ground-based measurements to
those estimated from satellite imagery. Second, we will
employ several PV performance models using both
ground and satellite-based weather inputs and compare
model results of electrical performance and measured
performance.

2. DATA ACQUISITION METHODS

Ground-based measurements of weather parameters made
at 2-minute intervals were collected at SNL's PV weather
station adjacent to the PV test array. Direct normal
irradiance (DNI) was measured with two pyrheliometers
(a Kipp & Zonen CH1 and an Eppley NIP), diffuse
horizontal irradiance (DHI) was measured with two
Eppley PSP pyranometers (one fitted with a shade disk
and the other with a shade band). Global horizontal
irradiance (GHI) was measured with a Kipp & Zonen
CM21 pyranometer. Air temperature was monitored with
two Climatronics Aspirated Shield Temperature Sensors
and wind speed was measured with a Climatronics Wind
Mark Il Wind Sensor at 10 m above ground level.
Weather data were processed to obtain representative



hourly values consistent with the Typical Meteorological
Year (TMY) model. Specifically, irradiance data was
combined in order that the total amount of energy
reaching the sensor during the 60 minutes preceding the
hour is reported. Hourly values of temperature and wind
speed are reported as average values from the period
spanning 30 minutes before and after the hour. Because
satellite data represents instantaneous estimates of
irradiance, the average of irradiance at the present hour
and one hour prior was used to estimate the total amount
of energy reaching the ground during the previous hour.

Satellite-based irradiance estimates (DNI and GHI) for
the same period were obtained from Clean Power
Research's SolarAnywhere database for a 10x10 km area
that includes the location of the PV test array. Details on
how irradiance data are generated are available elsewhere
(e.9., [3]). SolarAnywhere also provides instantaneous
estimates of air temperature and wind speed at hourly
intervals at each satellite pixel. These data are
interpolated from the METAR network of ground stations
(several 1000s in the US) — this worldwide network feeds
aviation forecasts and the National Weather Services’ real
time modeling process with ongoing ground-based data.
The source of these data are referred to as "satellite-
based” in this paper even though they are derived from
ground stations.

For several brief periods during the one-year deployment,
the PV system went offline for maintenance. Weather
data obtained during these periods is excluded from the
comparisons and analyses described in this report.
Similarly, data during the night and occasional periods
when either ground or satellite measurements were
missing were also excluded.

3. COMPARISON OF WEATHER DATA FROM
GROUND AND SATELLITE SOURCES

Satellite-based estimates of radiation, temperature, and
wind speed are not expected to be as accurate as ground-
based measurements of these parameters for a number of
reasons. First, the satellite-based estimates are indirect
interpretations of data observed from space (irradiance)
and widely-spaced ground stations (temperature and
winds speed) and therefore are associated with all the
uncertainties inherent in generalized modeling. Second,
the spatial and temporal resolution of the satellite imagery
is coarse when compared with our ground based
measurements. The satellite-based values are calculated
from snapshot images of the earth and do not distinguish
differences between locations within a single pixel.
These factors can cause significant deviations between
satellite and ground measurements, especially during
partly cloudy conditions. Figure 1 compares ground-

based measurements and satellite estimates of irradiance
for two days. The raw ground measurements are plotted
in grey at a 1-min interval. The hourly data is averaged
over a one hour window and plotted as red crosses.
Satellite estimates of hourly averages are also shown as
blue circles. These estimates are the average of the
instantaneous satellite values on the hour and for the
previous hour and plotted 9in between. It is evident from
the figure that the satellite data is quite accurate during
clear conditions (first half of day 1), but that the satellite
estimates can deviate significantly from the hourly
averages during periods of partly cloudy conditions.
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Fig. 1. Two day example of irradiance record comparing
ground measurements and satellite-based estimates.

Table 1 lists the mean and standard deviation of the
residuals (difference between satellite estimates and
ground measurements). Residuals for GHI are
significantly smaller than for DNI. Scatter plots
comparing ground and satellite-based values of GHI,
DNI, air temperature, and wind speed are shown in Figure
2. The correlations between ground and satellite
estimates of global horizontal irradiance and air
temperature are significantly stronger (R® values of 0.92
and 0.97, respectively) than the correlations for direct
normal irradiance and wind speed (R? values of 0.78 and
0.5, respectively).

It is interesting to note that the temperature and wind
speed residuals appear to be sensitive to the time
derivative of the "satellite™ estimates for these parameters.
Figure 3 shows that there is a positive correlation between
the "satellite" temperature and wind speed residuals and
the time derivative of these quantities. In other words,
when these "satellite” values change significantly from
one hour to the next, the residual tends to be higher than
normal, which indicates poor agreement with ground-
based measurements at these times. This correlation
suggests that one characteristic of the satellite estimates is
occasional hours when temperature and/or wind speed
appear to change rapidly while the ground measurements



do not. A similar correlation is not evident for the
satellite irradiance estimates. A plausible explanation of
this pattern is that the METAR data are interpolated from
instantaneous measurements made every hour from a
network of stations while the ground data from the SNL
weather station use mean values calculated from many
measurements over the hour. The difference between
time averaging frequent measurements and spatial
interpolation of widely-spaced hourly measurements
might explain the correlation observed, especially during
periods when weather fronts are passing over the area.

TABLE 1. RESIDUAL SUMMARY STATISTICS
(WEATHER INPUTS)

Variable Mean Stdev

GHI Residual (W/m?) 0.019 83.061
DNI Residual (W/nt) 17.257|  166.452
Temp Residual (deg C) 0.157 1.811
Wind Speed Residual (m/s) 0.114 2.183

4. SIMULATION OF PLANE OF ARRAY
IRRADIANCE

Most PV performance models require as input DNI and
GHI. Both weather datasets examined here included both
of these components. The first step performed by the
models is to calculate the plane of array (POA) irradiance.
There are a number of different radiation models that
have been developed for this purpose. The model by Hay
and Davies [4] accounts for increased diffuse radiation
near the sun (circumsolar diffuse). The model by Reindl
et al. [5] added the effect of horizon brightening; in
addition to the circumsolar diffuse. The model by Perez
et al. [6,7] accounts for both of these components using an
empirically-based method. In order to identify any effect
due to the choice of radiation model, we compared POA
irradiance predicted by these three radiation models to
irradiance measured with a pyranometer mounted at POA.
The results of this comparison indicated that at this site
and during this test period there is little difference
between POA radiation predicted by the models and
measured by the pyranometer. The Perez model fit the
measured data slightly better than either of the other two
models but all performed very well (R? values > 0.99 in
all cases. We will use the Perez radiation model for all
subsequent calculations presented.

N
<
£
=S
T
O
2
o
©
)
0
0100 300 500 700 9001100
Ground GHI (W/m"2)
___ 10004
(<\| -3
£ 8004
= 600:
g 3
9 400“
2 2004 : »
(0 — 5 .‘ . .
04 "';":.'.I-.'.'rl.'.'h'l.'".'l:"l.'";""l'"I"'I"'
0100 300 500 700 9001100
Ground DNI (W/m"2)
O
o 307
[}
T
a 204
£
4V}
= 104
2
2 o
w o
-10
184
164 D

Sat. Wind Speed (m/s)
P
1
|

H— -

L I L I L N L UL L L N B UL L
0122345678910 12 14
Ground Wind Speed (m/s)

Fig. 2. Scatter plots of satellite vs. ground measurements
of (A) global horizontal irradiance, (B) direct normal
irradiance, (C) air temperature, and (D) wind speed.

Lines are linear fits to the data.
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Fig. 3. Correlations between residuals and time
derivatives for satellite air temperature and wind speed
estimates.

5._SIMULATION OF PV DC POWER OUTPUT

Two commonly used performance models were examined
in this validation study. The names of the models are kept
anonymous, but they were selected to represent two
fundamental conceptual approaches for PV modeling.
Model 1 uses an empirical fitting approach while Model 2
represents the array as an equivalent circuit with a single
diode. Both models were run twice, once with ground-
based weather data and once with satellite-based inputs.
Other than weather inputs, all model parameters were
identical between runs. Derate factors on the DC side
were excluded from the analysis (no derate was assumed).
This was done to compare each model's ability to translate
weather to power output without including each model's
unigue way of handling derate factors such as soiling and
resistive losses, which might have affected the
comparison.

To compare measured and simulated performance, hourly
values of DC power output are compared. Figure 4
presents scatter plots of modeled DC power against
measured power for both models using both weather
datasets. Although the scatter is greater for the
simulations based on satellite data, the annual bias error is
very similar between ground and satellite-based
simulations for a given model. At this stage of the
comparison, we can conclude that the use of satellite data
as model input for this array only appears to increase the
variance in the hourly values power predictions, but has
little effect on the annual bias. In other words, annual
energy estimates vary more from the choice of model than
from the source of the weather data.

We also made comparisons of energy produced over
longer periods (days and months). The results indicate
that the R? values of daily output from the satellite runs
are nearly identical to those shown for hourly output, but
that the R? values are significantly higher for the monthly
output comparisons (0.9536 for Model 1 and 0.9817 for
Model 2). One reason that daily values exhibit a similar
amount of scatter might be related to the position of the
SNL site, which is located directly to the west of the
Sandia mountain front, which rises about 5,000 ft above
the eastern plain. The mountains directly affect local
cloud patterns, which can vary over short spatial scales at
this site, which might explain why the daily residuals vary
as much as the hourly ones.

6._RESIDUAL ANALYSIS AND VALIDATION OF PV
PERFORMANCE MODELS

Analysis of model residuals (difference between modeled
and measured values) provides a useful approach for
investigating differences between models. Residual
analysis is based on examining the distribution and
sensitivity of residuals with respect to other time-varying
variables in the analysis. Table 2 lists summary statistics
for the model residuals of DC power for the four model
runs considered.

TABLE 2. RESIDUAL SUMMARY STATISTICS

Model Mean (W) | Stdev (W)
Model 1 (Ground) 29.6 26.7
Model 1(Satellite) 31.7 98.7
Model 2 (Ground) 15.1 27.6
Model 2 (Satellite) 16.5 98.9

The relationship between predictions of a "perfectly
valid" model and measured performance should be



"statistical" rather than deterministic. This is because
models are based on mathematical functions and model
parameters are derived to match mean behavior, not
point-by-point behavior of the system [8]. Furthermore,
all measurements (weather and performance) are
characterized by uncertainties, meaning that any
particular measured value is a sample from some
underlying uncertainty distribution, which is often poorly
defined. For these reasons, a completely valid model is
one which results in residuals that are randomly
distributed with respect to all variables in the analysis.
Therefore, model validation can be summarized as a
process of testing whether model residuals are random
with respect to other simulation variables. There are a
number of different approaches to testing the randomness
of residuals. These are discussed in the sections below.

6.1 Stepwise Regression

Stepwise regression can be applied to residuals to identify
and rank simulation variables in order of their
contribution to the variance in residuals. Stepwise
regression is based on performing a series of linear
regressions of the form:

Y=b,+> bX; (1)

where Y is a vector of dependent variables and X is a set
of P vectors of independent variables included in the
stepwise model. The b coefficients in (1) can be used to
develop a prediction model, if desired. In the first step,
the method tests the linear regression between Y (in our
case, model residuals) and a set of independent variables
(time-varying variables in the analysis) to see which
variable results in the best linear fit (highest R?). For the
second and subsequent steps, additional independent
variables are added to the regression in order of which
variable provides the highest R? value for each step. This
process continues until the probability (p) that an effect is
due to chance is exceeded. For our application we are
interested in the order of the X variables that are selected
for the model and the resulting R? values. This method is
limited in that it can only identify linear trends, but if
applied judiciously, it can shed light on which variables
are most correlated with model residuals and help to
quantify the validity of a PV performance model.

To illustrate the utility of stepwise regression for this
application, we ran a stepwise analysis on the DC power
residuals for the four sets of model results displayed in
Fig 4 and summarized in Table 2. The independent
variables included in the analysis were global horizontal
irradiance (GHI), direct normal irradiance (DNI), air
temperature (Temp), wind speed (WS), wind direction

(WDir), angle of incidence (AOI), and air mass (AM).
For the models using satellite data, the irradiance,
temperature, and wind speed data (SA_GHIa, SA_DNiIa,
SA_Temp, and SA_WS) were obtained from that dataset
and wind direction was not included. Table 3 lists the
first four parameters identified in the stepwise analysis (p
=0.05).

TABLE 3. STEPWISE REGRESSION RESULTS

Model 1 (Ground)
Order Variable |R?

Incremental R?

1{Temp 0.2302 0.2302
2(DNI 0.3143 0.0841
3|WS 0.3301 0.0158
4|A0I 0.3350 0.0049

Model 1 (Satellite)
Order Variable |R?

Incremental R?

1|SA_Temp 0.0281 0.0281
2|SA_DNiIa 0.0573 0.0292
3[AMa 0.0736 0.0163
4|SA_WS 0.0776 0.0040

Model 2(Ground)
Order Variable |R?

Incremental R?

1|AQI 0.0886 0.0886
2|AMa 0.2115 0.1229
3[GHI 0.2575 0.0459
4|DHI 0.2646 0.0071

Modkel 2 (Satellite)
Order Variable |R?

Incremental R?

1|SA_DNla 0.0288 0.0288
2|AMa 0.0655 0.0368
3[SA_GHla 0.0753 0.0098
4|SA_Temp 0.0794 0.0041

The interpretation of these results is made by examining
the variables that are identified and the R? and
incremental R? values for each step. For example, the
model residuals for Model 1 (Ground) exhibit a
correlation with air temperature that accounts for
approximately 23% of the variance in the residuals. This
correlation is illustrated graphically in Fig 5. After
correcting for this effect, an additional 8% of the variance
is accounted for by including a correction for DNI. It
must be noted that the standard deviation of model
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Fig. 4. Scatter plots comparing measured and modeled
DC power for two models each run with ground and
satellite weather data. 1:1 lines shown in red.

residuals for this model are already quite small (Table 2),
so that the total 31% reduction in the variance (square of
standard deviation) obtained by including corrections for
these two variables would result in a change in the
standard deviation for this model from 26.7 W to 22.2 W
per hour. The variables listed in the next two steps
account for such small reductions in variance they are not
discussed here.
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Fig. 5. Scatter plot of model residuals vs. ground-based
air temperature for Model 1 illustrating the correlation
present.

Looking at the results for Model 1 (Satellite), we see the
same two variables (temperature and DNI) appear in the
first two steps, each accounting for about 3% of the
residual variance. The standard deviation in model
residuals for the models based on satellite data is more
than three times greater than it is for the ground-based
models. Thus, a total 6% change in this variance results
in a reduction in the standard deviation of the residuals
that is of similar magnitude to that obtained for the
ground-based simulation. This result suggests that results
from Model 1 might be improved by adjustment to the
temperature parameters used as input to the model or
perhaps the use of an alternate form of the temperature
correction. Additional comparisons from different arrays
and sites are needed before the nature of the improvement
is evident.

The results for Model 2 exhibit a pattern different from
that observed for Model 1. For the ground-based model
run, AOI, AM, and GHI together account for
approximately 26% of the variance in model residuals.
For the satellite-based runs, DNI and AM account for a
total of about 7% of the variance. The appearance of AOI
and AM as sensitive variables for Model 2 (Ground) runs
suggests a possible complication of interpreting the
stepwise regression results. These two parameters are



functionally related and exhibit a complex but predictable
relationship, which is shown in Figure 6. Although this
relationship is not linear, these two variables are
correlated and therefore corrections involving one of
these parameters affect the sensitivity of the model to the
other variable. For this reason, it is difficult to entirely
separate the effects of these parameters with stepwise
regression.
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Fig. 6. Scatter plot of Air Mass (AM) vs. Angle of
Incidence (AOI) showing complex functional
relationship.

The fact that model residuals for Model 2 are sensitive to
a different set of variables than Model 1 indicates
differences between these models and point to areas
where each of these models could be improved.

6.2 Graphical Residual Analysis

One of the limitations of stepwise linear regression is that
it only tests for linear relationships between the dependant
and independent variables. A more general approach
based on graphical methods may also be useful, especially
if there are significant non-linear relationships between
model residuals and input variables. One such approach
is to bin residuals by the selected time-varying variable
and plot mean residuals in each bin against the binned
midpoint value. Figures 7 to 10 show these graphical
results for four selected variables. The points show the
mean residuals at each bin midpoint, while the lines in the
figures represent smoothed fits to data intended to show
general patterns.
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Fig. 7. Plot of mean residuals as a function of air
temperature.

The relationship between residuals and temperature
(Figure 7) appears to be quite linear, especially for the
model runs with ground-based weather. It appears that
there may be a systematic error at low temperatures in the
model runs made with satellite data (residual peak at
temperatures near and below zero degrees C). This may
reflect the complication that snow on the ground or ice in
the atmosphere brings to estimating radiation.
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Fig. 8. Plot of mean residuals as a function of direct
normal irradiance.
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Fig. 9. Plot of mean residuals as a function of global
horizontal irradiance.

Figures 8 and 9 show plots of mean residuals as a
function of radiation components, GHI and DNI,
respectively. Both models exhibit a slight positive
correlation with DNI, as was identified in stepwise
results. Both models exhibit little to no correlation with

GHL.



Figure 10 shows plots of mean residuals as a function of
air mass. There is a large increase in the mean residuals
at high air mass values, which is seen for both models, but
is especially large for the runs with satellite-based
weather. This pattern may reflect a limitation of the
models to represent the effects of high air mass, which is
used as a proxy for spectral effects in the models. Or,
perhaps, the high residuals reflect complications with
predicting when inverters have enough light to operate.
Regardless of the cause, periods of high air mass do not
correspond with large amounts of energy production from
PV systems and therefore this nonlinearity is likely to be
academic.
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Fig. 10. Plot of mean residuals as a function of air mass.

7. SUMMARY AND CONCLUSIONS

Based on results from our test array in Albuquerque, NM,
it appears that, PV performance models run with site-
specific ground data provide the most accurate energy
prediction from the system. However, models run with
satellite derived weather inputs can provide very good
estimates of the total energy produced by the array over
longer time periods because errors associated with
satellite-based weather are greatest over short time
periods (hours or days). Over hourly intervals, the
standard deviation of model residuals for DC power was
more than three times larger for satellite-based
simulations compared with ground-based runs. But the
bias errors (mean of the residuals) were not very sensitive
to whether ground-based or satellite data were used. If
this result holds for locations in general, it suggests that
satellite data are suitable for predicting energy output for
proposed projects. In fact, if multiple years of archival
satellite data are available for modeling, insights about
annual variability in energy production for a given site
can be gleaned, information which is lacking when only
TMY data are used for such predictions.

8. FUTURE WORK

The scope of the present study was quite limited (single
PV technology (cSi), single location, fixed tilt array, etc.).
Future work will continue to develop and apply the model
validation methods discussed here to a greater variety of

PV systems. In addition, future studies are needed to
determine whether satellite-based irradiance can be used
for system monitoring applications. Because of the larger
errors in satellite weather over short time periods, it
remains to be seen whether these data are suitable for
such an application.
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