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Road map
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* Overall theme: theory for experiments
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Dye-sensitized solar cells

* Growing interest in converting clean solar
energy to electricity at low cost

* Dye-sensitized solar cells (DSCs)
efficient (Gratzel)
(~ 11% for Ruthenium dyes)

commercial DSCs

« Considerable progress in organic sensitizers
— Lower cost than Ru
— Lightweight compared to silicon
— Easily ftune absorption wavelengths
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How do DSCs work?
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Organic sensitizers

* Donor — 7 — Acceptor motif

electron
donor
(aniline)

n-electron conductor

| (thiophene)
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t‘( electron
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electron transfer ;
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» Use time-dependent DFT to predict excited-state
properties of solar dyes
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Charge transfer in TDDFT

 Most DFT methods fail at describing charge
transfer
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Fo (distance between 2 electrons)

 Wrong asymptotic behavior — charge-transfer
excitations severely underestimated
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Modifying the exchange functional

* Replace incorrect DFT portion with long-range
nonlocal exchange’->
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(1) K. Hirao, Univ. of Tokyo
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Benchmarking the LC method

* Need to compare against reliable benchmarks

« Coupled-cluster (CC2) wavefunction
calculations reproduce experimental data well
(extremely computationally demanding)

« Compare long-range corrections (LC-BLYP)
against current popular functionals: B3LYP

Do we see any general trends?
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Benchmarking the LC Ansatz

« Excitation energies
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Benchmarking the LC Ansatz

Overall trends
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Results from the LC formalism

* Long-range exchange vital for describing
properties of solar cell dyes

« Knowing excitation energies/dipoles serve as
guide for experimental synthesis
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A more extensive example

Optical biomarkers
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Amino-terminated beacon sequence
coupled to oligothiophene biomarker

g [ 1
g 1 —a7 || W

Wavelength (nm)

Favorable binding to oligonucleotides and

proteins

Color tunability in the entire visible range
High fluorescence efficiencies
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Chemical functionalization

Chemical modifications result in
different charge-transfer systems

x ° /]
X =NS: D M@ n = 2: bithiophene

2 n = 3: terthiophene
s N-succinimidyl group

> i X-[nT]-S,
0 : /
\ / S \ SCH

X = BC:
o ethylamide group
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EXxcited-state energetics

[J”,-’,.m

 Manifold of excited states

S1 Lowest Unoccupied MO 1
S
S,
./ S, fluorescence Highest Occupied MO
"~ S, absorption \
S, absorption
(charge-transfer) Highest Occupied MO-1

— Can we describe all these processes accurately?
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Diverse test set

» 36 excitation energies (12 S, «— S, absorptions,
12 S, — S, absorptions, and 12 S, — S,
fluorescence de-excitations)

« Can simultaneous description of all excited
states be predicted by TDDFT?

 What role does HF exchange play? Can we just
re-optimize exchange in global hybrid (i.e.
B3LYP) without using LC formalism?
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Benchmarks
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Results from global and LC hybrids

» Distance-dependent exchange provides
consistent treatment for describing various
excitations

« Conventional hybrids unable to capture trends
even if exchange fraction is optimized
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Conclusions

* Long-range exchange vital for describing excited
states of organic photovoltaics

« Excellent synergistic area for theory and
experiment
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Electronic properties

» Large S, dipole moments signify charge transfer
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Optimizing the value of u
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Optimizing the value of u
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Total RMS error for all 8 dyes

Impossible to simultaneously obtain both accurate energies and
R? values by adjusting fraction of exchange in B3LYP
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Optimal values of u vs. a,

Vertical excitation energies for the BC-[3T]-S; biomarker
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LC-BLYP: both S, and S, excitation energies coincide at around
same range of U

B3LYP: no single value of a, which gives reasonable accuracy for both
S;and S,
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