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Abstract a means of observing the interaction of the botnet and other non-

infected hosts.

We started out using traditional HPC tools, but these tools are
designed for a much smaller scale, typically topping out at one to
ten thousand machines. HPC programming libraries and tools also
d.assume complete connectivity between all nodes, with the attendant
‘configuration files and data structures to match; this assumption
holds up very poorly on systems with millions of nodes.

In this paper we describe Megatux, a set of tools we are developing
for rapid provisioning of millions of virtual machines and control-
ling and monitoring them, as well as what we've learned from boot-
ing one million Linux virtual machines on the Thunderbird (4660
nodes) and Hyperion (1024 nodes) clusters. As might be expecte
our tools use hierarchical structures. In contrast to existing HPC
systems, our tools do not require perfect hardware; that all systems
be booted at the same time; and static configuration files that define
the role of each node. :
While we believe these tools will be useful for future HPC sys- 1. Introduction
tems, we are using them today to construct botnets. Botnets haveAs this is written, the discovery of a global botnet has been re-
been in the news recently, as discoveries of their scale (millions of ported that spans thousands of organizations. We used to be sur-
infected machines for even a single botnet) and their reach (global) prised when thousands of machines were "owned”, or taken over.
and their impact on organizations (devastating in financial costs and That surprise now seems quaint: the number of owned machines
time lost to recovery) have become more apparent. A distinguish- is now routinely measured in the millions. The systems span the
ing feature of botnets is their emergent behavior: fairly simple op- globe, and are structured and function without regard to physi-
erational rule sets can result in behavior that cannot be predicted.cal, organizational, or network boundaries. Botnets exploit com-
In general, there is no reducible understanding of how a large net- munication channels as varied as IRC and bug trackers. They are
work will behave ahead of "running it”. "Running it” means ob- flexible: changing 11% of their members each week, or around
serving the actual network in operation or simulating/emulating 5000 per hour. They are resilient, to the point that one botnet
it[1]. Unfortunately, this behavior is only seen at scale, i.e. when was recently reported as existing on its own, without a controller.
at minimum 10s of thousands of machines are infected. To add to They tolerate faults. They frustrate attempts to interact with them,
the problem, botnets typically change at least 11% of the machinesincluding autonomously launching DDOS attacks under certain
they are using in any given week, and this changing population is circumstances[6]. And, finally, they are available: construction kits
an integral part of their behavior. are offered, in the right corners of the Internet, for as little as a few
The use of virtual machines to assist in the forensics of mal- hundred dollars[12].
ware is not new to the cyber security world. Reverse engineering  In fact, we computer scientists might feel a bit of embarrass-
techniques often use virtual machines in combination with code ment: botnets implement all the grand goals of the grid, but they
debuggers. Nevertheless, this task largely remains a manual pro-were not written by any of us — or, at least, anyone who is admit-
cess to get past code obfuscation and is inherently slow. As partting it: there is reason to believe that much of this development
of our cyber security work at Sandia National Laboratories, we are effort is underwritten by criminal organizations.
striving to understand the global network behavior of botnets. We Botnet binaries, or payloads, are designed to frustrate traditional
are planning to take existing botnets, as found in the wild, and run reverse engineering, using automated code obfuscation tools that
them on HPC systems. We have turned to HPC systems to supportvrap the binary in a bundle of spaghetti code. But the real prob-
the creation and operation of millions of Linux virtual machines as lem is much more subtle: botnets, once they come into existence,
and reach a certain scale, exhibit emergent behavior: their actions
*Sandia is a multiprogram laboratory operated by Sandia Cafpo  cannot be understood by examining one bot, but rather must be ob-
tion, a Lockheed Martin Company, for the United States Depant served as the collective behavior unfolds.
of Energys National Nuclear Security Administration undemtcact Defending against botnets requires more understanding than we
DEAC0494AL85000. SAND- 2010-0936C. have today. Understanding them must be preceded by observation
of their behavior. At Sandia, we have begun a project to gain such
understanding by booting millions of virtual machines, installing
a botnet, and monitoring what it does and how it interacts with
other servers in the network. We are, in short, building an emulated
internet in an HPC system. The scale of the HPC system, multiplied
by the scale of the large number of Virtual Machines (VMs) we can
run per node, gives us the scale we need.
To make the emulation realistic, we need a minimum structure
[Copyright notice will appear here once "preprint’ option is removed.] in the network. At minimum, we need to provide the set of services
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that botnets require, such as DNS and BGP; and we will also need 2. ARP table: 100 megabytes
components that botnets are known to use, such as IRC, web, and
mail servers. We must also deal with frequent node reboots; in fact,
we will probably have tasks that force near-continuous reboots of
VMs at random, to more accurately model the real world. Finally, the programming models don't scale either. Program-
Itis also important that the virtual machines be very lightweight: mers take it as a given that their applications can have cognition of
after all, we need to run at least 1024 VMs per physical machine. every node in use, can control placement, and that in some man-
Hence, we need very lightweight Linux images, as we are limited ner they can control each and every node. That may work to small
by memory. The images must also, in turn, not consume a lot node numbers found on a BG/P system, with only 40,000 nodes;
of compute power beyond that needed to emulate infected anditis completely impractical for ten million nodes. While, e.g., MPI
uninfected machines; we are over-committing the CPU by a factor is commonly used as a "process scaffolding” even on many-task
of 1000. We might not run a full Windows desktop, for example, but applications at a small scale[4], it cannot be used at our scale.
rather just enough of one to "close the loop” for a bot to infect it. All of the assumptions underlying HPC software have been
Finally, the VM image should minimize extraneous activity, a.k.a. found wanting for an environment in which we boot millions of
"OS noise”, so it can minimize work it does that is not useful for machines. Hence, we have been challenging these assumptions,
the overall simulation. and building new models for multi-million OS environments. In
Here we can see a relationship to HPC. The host controlling the process, we have begun to believe we may be building systems
operating system and the VMs need to have a small memory foot- software environments for future multi-million-node clusters: the
print. This requirement applies to HPC nodes as well, since the botnet emulation support system can be a prototype system for
application needs most of the memory. The VMs need to use as lit- future HPC machines. Botnet concepts may provide key insights
tle compute power as possible, so as to leave the CPU available forfor how we structure that software so it is resilient, scalable, and
the application; and, as a final point, the VM image must minimize yet still controllable.
noise in order to attain the highest possible efficiency. We have be-
gun to suspect that lessons we learn from this research will apply 2.  \Work to date

to future exascale machines. . ) .
Configuring millions of VMs, done the traditional HPC way, The work to date has proceeded in four phases. The first phase did
would be a daunting task. HPC systems today are designed with ahot involve botnets at all. In this phase, we used the Lguest virtual
few key — and, in our view, unrealistic — assumptions in mind. For machine{9] to boot a one hundred node virtual cluster on an 1BM
example, it is a given that the machine is all up or all down — that <0 laptop. Once we had created lightweight RAM disks for the

it all boots at once, and when one node is lost, the whole machine 3U€Sts, we had 8M images and could boot all 100 in 30 seconds.
JhIS virtual cluster was used to refine the XCPU[8] software as

well as extensions to oneSIS to support the lightweight RAM disks
for the VMSs. It was at this point that we realized we could bring this
-Stechnology to HPC systems; rather than booting 100 machines on
a laptop, we could boot 1000 machines on 1000 HPC nodes. The
application to botnets struck us as a useful first demonstration.

The next step was botnet-oriented. We further extended the one-
SIS software to allow us to boot 5000 guests on a 70-node clus-
ter. We continued to use Lguest in this instance as the CPUs were
too old to allow us to use hardware virtualization. We successfully

3. monitoring: 10 million samples/second, around 128 bytes per
sample

systems knows, they do not deal well with partial reboots.
The "perfect reliability” assumption pervades most HPC soft-

hardware-provided reliable transport. A lost packet on these ma-
chines is as significant an event as a memory error. Unwinding the
network interface when this event occurs is hard, and it is usually
simpler to reboot. On Infiniband, there is a single point of failure
called the OpenSM. Remote DMA does not continuous handle fail-
ures gracefully, to say the least. . .
The configuration software is equally unrealistic. Some Linux- modt_eled the propagation of a trivial worm (modeled after the 1989
based HPC systems, even those with tens of thousands of nodegV0"is worm) in this 5000-node environment. .
The third step was our first million-node run. We performed this

require files such as DHCP setup files, which have an enumeratlonWork on the 4600-node Thunderbird cluster at Sandia. We extended

of a set of values foevery node. In fact almost all Linux HPC
systems we have looked at, even large systems such as the Crag]e onesIS software to support 250 nodes per r]ode, We craghed
number of the support systems on Thunderbird while getting

XT series, have files or kernel structures that are linear in size to the § . . .
number of nodes, e.g. on the XT series there is an ARP table entrythiS many VMs to boot: the Ethemet switch could not handle

on each of 30,000 hosts for the other 29,999 other hosts; this on a2 Million MAC addresses at one time and basically went into
machine which is not using an Ethernet internally, and on which a a seizure as it frantically tried to shuffle its overloaded associative

; : ! : tables. We were grateful for this problem, as it neatly sidestepped
simple polynomial suffices to map the nodes X,Y,Z coordinates to . ! L .
an lrl)g adpdr)éss P v the issues that came with one million ARP table entries per node.

Reliability: Availability and Service (RAS) systems don't pro- The Infiniband network was intolerant of our frequent reboots, and

vide enough data. The sampling rates are far too low: 10 minutes " the end we did not use it. To allow inter-VM communication
is a typical number. A botnet with a million components will have across the phyS|caI netwprk, we partitioned the IP gddress space on
changed 1000 of them in that time, and will have sent many mes- a per-physical-node basis and installed 4600 static routes on each
sages. We will not be able to see any texture in the system statis-Of the 4600 nodes. The'flnal problems all |nv0I_ved the RAS. and
tics. But even systems with such a low sample rate can't simply be con_trol subsyste_ms, particularly IPMI. IPMI prowdgs an unreliable
ramped up: one system we know of, when the sample rate was in_serlal conso_le with 1200 baud thrqughput. If anything goes wrong,
creased to only once per minute, ended up consuming 60% of thethe sysadmin has to run out and hit many reset buttons — 512 in one

CPU. We are targeting a sample rate of once per second for all ten®@5€: IPMI'is not usable for management of clusters where nodes
million VMs are rebooting frequently.

Here are some representative numbers for systems of ten million _Startlng commands on this SC?'e proved d'ﬁ'cu!t' We started out
nodes, configured with existing HPC tools. using XCPL_J, but haq trouble getting t_he communications to s_cale.
That was disappointing as XCPU, in its more recent incarnations,

1. DHCP file: several gigabytes (whether distributed or not, it had a tree spawn capability that should have fanned out well. We
takes this much space) fell back on a hack: we used pdsh to start up command files on the
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physical nodes that, in turn, started up 1000 processes on the VMsPHYSICAL_HOSTS: ehyperion[2-37,74-145,148-283,286-429,

on each node. We thus created a "scalable” process startup, but it is/S_PER_HOST: 1024

hardly what we want. START_VM_NETWORK_AT: 1.0.0.0
Managing the output of one million processes is also a chal- VM_NETMASK: 255.255.0.0

lenge. There is a clear need for intermediate levels of filtering, com- VM_MEM: 30

bination, and control, which in turn implies a hierarchy. We did ex-

periment with some of the existing software that is designed with HOST_OVERLAY _DIR:  host_overlay
hierarchy in mind, such as Supermon[11] and TBON-FS[3]. Super- GUEST_OVERLAY_DIR: guest_overlay
mon was only designed to for a tree-based data collection, not pro-

cessing, and is not appropriate for this purpose. Supermon also use§UEST_INITRAMFS: boot/initramfs-guest.img

a "pull” model, in which data collection is initiated by a request HOST_INITRAMFS: boot/initramfs-host.img

from a central collector. On multi-thousand node systems this had

scaled extremely well, far better than existing "push”-based mod- GUEST_KERNEL: boot/bzImage-2.6.32.8.1guest

els such as Ganglia: Supermon can sample thousands of nodes at ) )
several hz., whereas Ganglia, on the same scale is limited to 1/600# Include modules in HOST image

hz. Nevertheless, the pull model did not hold up well at one mil- USE_MODULES: false
lion nodes. TBON-FS was promising but did not work well in our KERNEL_NAME: 2.6.31-17-generic
testing. As a result we are moving to a modified push model called INC_MODULES: €1000 tg3 kvm-intel kvm-amd
Pushmon.
Overall, the inability of HPC software to scale is what ulti- # Which VM type?
mately presented problems for million-node runs. The tools, usable INC_LGUEST: true
for several thousand nodes, were completely unusable for millions INC_KVM: false
of nodes. At one point we ran into a piece of code that had a hard
limit identifier named UNLIMITED set to 600,000 with a comment GUEST_IMAGE_DIR: src/guest_image
stating that no one would ever have a 600,000 node cluster. HOST_IMAGE_DIR: src/host_image
3. Software we are developing USE_BPROC: true

. . i . OUTPUT_BPROC_CFG: hyperion_bproc.cfg
The software we are developing is designed to run with only one gp 1. 1STEN INTERFACE: brO

configuration file, and without having any information about any

single node, but rather about node ranges. Further, programs thal 1pitramfs template

need configuration are being written to determine that information ppry_To_TEMPLATE:  src/guest_image_template.tgz
from the environment; we call this technique computational con-

figuration, as compared to file-based configuration. The programs
examine their environment and, using simple rules, determine what
their configuration should be. Since computational configuration is
embarrassingly parallel it can be very fast.

31 VMatic builders are not used to thinking on a large scale. We need to
VMatic is a tool for rapidly provisioning virtual machine environ-  get the community thinking in terms of configuration that works
ments. It is an extension of oneSIS, and has a similar configuration computationally, as that is the only way we can work on a large
file, shown in Figure 1. scale.

This simple file is used to generate 1,008,640 fully networked VMatic produces system images that can be uploaded to com-
virtual-machines on Hyperion, an HPC testbed cluster at the pute nodes via network boot. The user is able to specify the con-
Lawrence Livermore National Laboratory. There are 985 physical figuration of both the host and guest images, and allows the user
compute nodes used in this experiment with 1024 virtual machines to set up additional included files via the HO®VERLAY DIR
on each physical node. Each physical node maintains its own 16 bitand GUESTOVERLAY _DIR options. Through the use of multiple
network and serves as a Linux router and DNS server for the local VMatic configuration files, a user can maintain separate build con-
VMs. A DNS server is used as opposed to a local /etc/hosts file figurations for a variety of experiments on multiple clusters. The
since a fully populated host table with 1 million entries is over 50 main config file is used by a new commamnggatux, to config-
megabytes and would exceed the memory allotted each VM. Com- ure the kernels, ram disk files, and other attributes of the host and
munication between the local VM and the host OS is relatively fast guest VMs. The end result is a bootable kernel and initramfs image
since latency is almost zero and does not put any additional burdenthat can be deployed via network boot. On an existing network boot
on the physical network. While we have found this topology to cluster, the only change needed is a change to the boot target and a
be the most scalable, we do have plans for supporting additional kexec or reboot of the cluster.

Figure1l. Sample VMatic configuration file

topologies, allowing users to define richer environments with vir- Once the physical host has done a DHCP request, it has all the
tual Cisco routers and different layouts to produce a more realistic information it needs to configure its own services and configure
Internet emulation. its local virtual machines. The MAC addresses, virtual Ethernet

There is an interesting issue with node numbering as seen indevices, and routes to other networks are all computed as a node
the PHYSICALHOSTS line. The compute node numbering on starts up; there is no central store of MAC addresses for all the
this machine is very irregular. It is driven by node locations in a VMs. This is the beginning of computational configuration of most
rack, rather than by any sensible scheme. As a result, we are stuckf not all other boot time parameters. A single virtual machine takes
with enumerating node ranges, because the node number can not babout one second to fully boot, less the time it takes for the Ethernet
expressed with an equation. For a very large machine, this strangeBridge to enter a forwarding state. At this time, a user may run their
numbering would increase the size of the configuration file quite predefined runtime scripts or issue commands to the VM via Xproc
a bit. This situation shows the problems that ensue when system(described below).
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In addition to provisioning HPC systems, VMatic can also be 3.2.2 xcpu
used to provision lightweight VM’s on a local machine. This has
proven to be invaluable for our development work as it gives each
team member the ability to boot their own virtual cluster on their
laptop. On our laptops, we can reconfigure and start 100 new VMs
in less than 30 seconds. This speed makes testing easy. Develop
ers now have an immediate, convenient, and reliable way for per-
forming automated testing on their code sets without consuming
precious time on limited HPC resources. This mechanism was used
in the creation of our first botnet prototype with successful results
when we started scaling out.

XCPU provides a file-oriented access model to a cluster process
management system. Instead of the custom protocols of BProc,
XCPU uses 9p[7] as the underlying protocol, with resources rep-
resented as file names. The tree is rooted with a set of directory
nodes. In each of the node directories there is a set of process direc-
tories, one for each remote process. In each process directogy ther
are files for the process code; standard input, output, and error; and
miscellaneous files for controlling and debugging the process.

XCPU is designed for hierarchy in the manner in which it
spawns processes. That said, XCPU suffers from the same scala-
32 xproc bilty issues as bproc: there is one 'control point’ for each node and

) each process on each node, and each of these is represented in the

Xproc is the latest in a line of process startup systems we have file system namespace presented at the top level. A list of the name
developed, starting with BProc[5] and continuing with XCPU[8].  space representing the node resources would, by itself, run on for
Xproc uses BProc’s wire protocols and its I/O forwarding design. 10 million lines. This model is simply not scalable to one million
Xproc uses a tree spawn mechanism similar to that of XCPU, and systems. We made use of XCPU in the initial Megatux work but
also moves all the libraries a given command needs to run, as doest quickly became apparent that we need to build a new and more
XCPU. Instead of the ad-hoc command tree spawn technique thatscalable process framework.
BProc uses, Xproc sets up a persistent tree of servers that reduces
the tree spawn overhead. Finally, Xproc uses intermediate nodes in3.2.3 Process modelsthat scale
the tree to aggregate I/O from remote processes, instead of countinga process model that scales has several important attributes:
on the top-level command to aggregate 1/O as in BProc. o

Before we discuss xproc we first give an overview of bproc and  ® Tree structure: the node address space, communications, and

xcpu. those familiar with the two systems can skip the next sections. ~ control must function in a hierarchical manner. No node should
ever need to communicate with all other nodes — it is unlikely

3.21 bproc that they will all be up at the same time anyway.

BProc provides a single unified /proc image of a cluster — hence its ® Ad-hoc: the creation of the hierarchy is dynamic, not controlled
name: Beowulf /procl or BProc. The key concept of BProc is the by a configuration file. Configuration information, such as node
use of process-directed (i.e., voluntary) migration fromnaster naming, must be described by an algorithm of polynomial, not
node to aslave node. When a process migrates from a master, it @ static list.
leaves behind ghost, which provides a hook for process operations  « pynamic: the hierarchy is continuously changing in response to
such as kill, ptrace, and wait. The ghost has no virtual memory, and  fzilures and node restarts.
is little more than a symbolic link to a remote process. e
BProc process migration and process operations are supported * No speC|a_I|zat|on': npdes must be able to perform any role. A
by a set of intrusive patches in the Linux kernel. A major operation ~ Nde thatis functioning as a compute node must be able to take
is the migration itself, as it provides support for “freezing” the on the role of manager of other nodes on demand.
process, bundling it up, and sending it to a bproc slave daemon. The e Aggregation model: Individual nodes are not visible; applica-
slave deamon, in turns, supports a "thawing” operation to restartthe  tions operate in terms of groups of nodes.
process. A process may further migrate from a slave node, the only
difference being that it does not leave a "ghost” behind: to keep
the accounting correct as to the location of a remote process, the
master node must participate in migrations from slave to slave. A ® Decoupled (or asynchronous) operation: the application can
process migrated from a master to a slave can also quickly replicate  inititate an operation (e.g. start a program on a set of nodes)
itself from one slave to others; this capability forms the basis of ~ but can not assume that the operation completes successfully.
the bproc tree spawn. BProc systems such as the Los Alamos Pinl%
cluster demonstrated an ability to start up a 16 MByte MPI process, 24 Xxproc
across 2048 CPUs, in 3 seconds. Xproc is designed around the principles outlined above. XProc is
The kernel, master, and slave daemons form a triumvirate which designed from the start for hierarchy. XProc configuration files
manage the movement and control of processes. Users were proare being modified to contain near-executable code in the form of
vided with a process name space, presented on a single masteequations that define the mapping of node Ip addresses to node
node, which spanned all the processes in the cluster. names. In contrast to the BProc master/slave structure, with two
BProc presented node status and control via the BProc File Sys-specialized daemons, the XProc daemons are the same everywhere
tem, BFS, in which each node was represented as a file. Extendedand can take on the master or slave role as needed. XProc is
attribute operations, as well as ownership and mode, could be setdesigned to deal with nodes as aggregates, and as part of our design
with standard Linux commands, and these settings in turn con- we have removed all the aspects of BPRoc that were designed to
trolled access and node state. work per-node, e.g. the BProc file system. Nodes, even the root
BProc scales well to to a few thousand nodes. It does not scalenode, can fail and the rest of the nodes will reconnect around
to millions of nodes. A ps command which returns millions of lines the fault, without much fuss; in the original BProc, loss of the
of processes is barely managable. Having a file system with a file master daemon would take down all slave nodes associated with
per node is impractical past a few thousand nodes. The systemthat master, hardly a resilient structure.
does not deal well with node outage, and the requirement that  An Xproc process tree consists of a root server, intermediate
all slave node accesses be synchronized with the master node islaemons playing both roles, and a set of daemons at the leaves.
clearly impractical. For scalability and reliability, the nodes must The ultimate clients are at the leaves of the tree, i.e. individual
be decoupled. processes. The ultimate server is at the root of the tree, i.e. the

e The fate of an individual node is unimportant (we make one
exception: the root node).
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program that initiates the million or more commands. If the root (("MARK: 1266084142.710273")0x4336 "o0x4336 s1 #0")
program is lost, it must be restarted ,but the state of the other (("MARK: 1266084143.272552")0x924e "o0x924e s1 #0")
daemons is affected only to the extent that they must reconnect and(("MARK: 1266084145.387336")0x9879 "00x9879 s1 #0")
rebuild the tree — running applications are not lost. Daemons in
internal nodes of the tree control processes below them, and relayFigure 2. Sample of Pushmon output. MARK: denotes the Unix
data up and down the tree. epoch time from the root node and is embedded with the original
Xproc startup uses a dynamic configuration. At the beginning messages using S-expressions.
there is one master. Slave nodes contact the master using the ex-
isting BProc protocol. Consider the case where there are N total
nodes. The first/N slaves to contact the master are designated as push model, with data being periodically pushed from the leaves
secondary masters. Subsequent slaves that check in will be told totg the root. Pushmon is also self-configuring, with the nodes using
checkinto the secondary masters instead, a process we call redireca |ow-cost computation to determine where their parent in the tree
tion. The root can ensure a balance of slaves to secondary mastergs, up to the root. Finally, Pushmon is designed not to just group
by using a simple round-robin allocator. The process is continuous: s-expressions together, as Supermon does, but also to perform
slaves that lose connection to their master can go to the root to becomputations on the S-expressions so as to reduce the data load on
reassigned. The only piece of information the slaves need to havethe network. The computations to be performed can themselves be
to boot is the IP address of the master. The process is also recursivegefined by S-expressions, and interpreted, allowing a great deal of
a change from the Bproc single-level tree model. o flexibility, up to and including symbolic computing. See Figure 2.
Key to making this system work in the presence of failure isto  pata load on the network is also reduced when the VM's rela-
minimize the amount of state retained at all levels. Given the rate tionship to their host OS is taken into account. When considering
of failure, more retained stated equates to more state that needs tqnhe fast communication path between a VM and its host OS, Push-

be unwound when failures occur. It is best to retain not state at all. mon can be used as an effective aggregator to collect messages from
The root node retains no information about redirection commands their child VMs before pushing to the root minimizing load on the

to other nodes. _ physical network.
Each slave is a master of all the VM guests on its node. Hence,  "we are working to build an efficient virtio[10] transport for
the process repeats for the VMs on each physical node. guest to host Pushmon communications. In spite of the plethora of

For physical (non-virtual) nodes, xproc uses the bproc technique yjrtio software that has been written, there is nothing that resembles

of pushing the binary out to the node. We improve on the bproc an efficient pipe. We plan to remedy this problem.
code with some extensions from XCPU. The bpsh command de-

termines all the libraries a program needs and builds an in-memory .

cpio archive of the binary and its libraries. We further allow the user 4. Thingswe've learned
to select additional directories and files to send with the binary. Itis 41 \Which vM?

thus quite easy for the user to send a set of binaries and input files

to a node for execution. Over the past few years we've worked with a humber of virtual

Atthe node, when the command and its cpio archive is received, Machine systems on Linux, deploying them in various modes, from
the daemon creates a process-private mountgtoc, and un- standalone USB b.o.ot media, to virtual nodes on aIapth, to tens of
packs the files there. As long as the command and its children arethousands to a million nodes on an HPC system. We've learned a
executing, the process-private mounts is available; once the pro-Pit about the strengths and weaknesses of each one.
cess and its children have left, the mount disappears. The process-
private mount ensures privacy between multiple users on the same*2  Xen
node and eases administration. Note that users can still leave perOur earliest work was with Xen[2] 2.0 and 3.0. We ported Plan 9 to
sistent files in share ddirectories such as /tmp. both these systems, in the process learning much about their struc-

We further allow users to specify that a local executable can be ture. We found that Xen performance was fairly good, especially in
used, as in XCPU. For this case, the cpio archive can be zero-length3.0; the system was carefully crafted for performance. Embedding
Because the basic onesis initrd includes a useful set of binaries, thisdrivers in the host Linux kernel, instead of in an external process,
process is convenient as well as very fast. We have hence relaxedprovided better throughput: kernel builds on Plan 9 ran in 12 sec-
the BProc/XCPU model of always importing a program. onds on Xen and over 70 seconds on early releases of KVM.

For host to guest VM commands, it makes no sense to send 1024 Xen is not without its issues. The Python management frame-
copies of a binary to VMs running on the same machine. We use thework, with its XML-RPC, proved to be difficult to set up in a
private mount point to advantage here: instead of mounting a RAM lightweight mode on a USB stick; these problems carried over to
disk, we mount a shared block device that is written by the host, and setting up lightweight VMs. Xen needs a huge amount of base soft-
read-only to the guest. We then invoke the local-execution switch: ware just to work at all. The hypervisor/host kernel split requires
since the binaries are by any reasonable definiton local. While using a multi-boot loader, which limits options on network boot.
there is an issue with shared block devices, we neatly finesse it byFinally, the performance advantage is not as great as it used to be.
mounting the device read-only; other potential issues are resolvedWe tried using Xen for Megatux but in the end found it to be too
by the fact that the mount goes away when the command exits. Thefragile when used outside a full Linux desktop. It has too many
result is a very efficient system for physical machine-to-machine dependencies on a fully configured environment.
process startup, and a system that is near-optimal for host to guest
process startup. 43 Lguest

Lguest[9] is a "paravirtual only” hypervisor. It does not suppeslr

33 pushmon 1/0 devices, only emulated ones. There is not an external process;
Pushmon is a hierarchical monitoring system built from Supermon[11fje kernel memory space forms part of the overall Iguest process.
Like Supermon, Pushmon uses S-expressions to describe the datalhe kernel driver switches between the kernel, running in Ringl,

and is designed for hierarchy, with Pushmon nodes functioning as and the support program, running in Ring 3. Communications be-

both clients and servers. Unlike Supermon, Pushmon relies on atween the two is via virtio[10] queues.
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Lguest performance is in some ways stunning, with a startup Migrating has no use to us in for Megatux, and we have doubts
time for a kernel of roughly a second. Lguest I/O has never been about its value in real HPC applications. We say this having run the
particularly fast for I/O, however, with Plan 9 kernel builds running BProc system for ten years: BProc supported very fast migration
at almost 120 seconds the most recent time we measured it. Lguestcross the cluster, and we never found it useful in support of
is limited to 32-bit mode and therefore presents a problem for resilience and fault-tolerance. It is easy enough to move a process
application requiring a x864 architecture. or a VM; what'’s hard is dealing with all the related external state,

Because of the integration of the guest VM and the support pro- particularly network connection information in the switches, that
cess in one address space, Lguest is very easy to use in a limited enhas to be recreated. Infiniband and RDMA would be particularly
vironment. We've built an Lguest-based distribution called THNX problematic. Multiply the scale by 1000, as we are doing, and the
which boots to a simple shell with a BusyBox environment and problem looks even harder. Better to have a programming model
supports a Plan 9 guest. It works well and is easy to use. which tolerates the disappearance of a VM and soldiers on than

On newer systems, we can boot 1000 Lguest virtual machines halt all 9,999,999 VMs while the missing one is resuscitated and
in under a minute. The load on the host, once these machines arall hosts and switches are updated.
running, is not measurable when the machines are idle.

6. Conclusions

. . ) We described Megatux, a set of tools which we use to rapidly de-
KVM is a newer hypervisor that functions only on processors oy virtual machines. We are using Megatux on a range of systems,
with virtualization hardware, such as Intel VT or AMD SVM.  gome six years old, others very new. Even on systems with hard-
KVM integrates a hypervisor into the kernel directly, avoiding the - \yare virtualization, we have achieved the best performance with
hypervisor/kernel split of Xen. KVM supports VM guest IO using | gyestin 32-bit mode with PAE enabled. KVM is in principle more
QEMU, i.e. an external process. . _ , , efficient, but in practice, due to its QEMU support process, is far
KVM is a bit harder than Lguest to integrate into a lightweight o5 efficient. Our tools are new and designed to be self-configuring,
VM image, due to its dependency on QEMU, which is a rather given that even the smallest configuration files on 1000-node sys-
heavy program. QEMU depends on no less than 52 shared libraries{ems palloon to unmanageable size on ten million node systems.
requiring a total of 14 Mbytes of space. While this space is not e yse a technique called computational configuration, in which
required in each guest, and the code is shared, the data is not. Thearameters are set by an algorithm, rather than a configuration file
virtual address space of each QEMU is 60 Mbytes, with a resident gntry. |n the future system builders must structure their systems

set size of at least 8 Mbytes. with computational configuration in mind; many of them are not
We were able to measure KVM performance on newer systems. doing so today.

On AMD Barcelona systems with 32 Gbytes of memory we could
boot 1000 virtual machines in under 2 minutes. Even on an X300
laptop we can boot 50 VMs with no trouble. The machine is Acknowledgments

completely unusable until the guests are started, at which point the Sandia National Labs paid for this via LDRD funding.
overhead is very low so long as the machines are idle.
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