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Abstract
In this paper we describe Megatux, a set of tools we are developing
for rapid provisioning of millions of virtual machines and control-
ling and monitoring them, as well as what we’ve learned from boot-
ing one million Linux virtual machines on the Thunderbird (4660
nodes) and Hyperion (1024 nodes) clusters. As might be expected,
our tools use hierarchical structures. In contrast to existing HPC
systems, our tools do not require perfect hardware; that all systems
be booted at the same time; and static configuration files that define
the role of each node.

While we believe these tools will be useful for future HPC sys-
tems, we are using them today to construct botnets. Botnets have
been in the news recently, as discoveries of their scale (millions of
infected machines for even a single botnet) and their reach (global)
and their impact on organizations (devastating in financial costs and
time lost to recovery) have become more apparent. A distinguish-
ing feature of botnets is their emergent behavior: fairly simple op-
erational rule sets can result in behavior that cannot be predicted.
In general, there is no reducible understanding of how a large net-
work will behave ahead of ”running it”. ”Running it” means ob-
serving the actual network in operation or simulating/emulating
it[1]. Unfortunately, this behavior is only seen at scale, i.e. when
at minimum 10s of thousands of machines are infected. To add to
the problem, botnets typically change at least 11% of the machines
they are using in any given week, and this changing population is
an integral part of their behavior.

The use of virtual machines to assist in the forensics of mal-
ware is not new to the cyber security world. Reverse engineering
techniques often use virtual machines in combination with code
debuggers. Nevertheless, this task largely remains a manual pro-
cess to get past code obfuscation and is inherently slow. As part
of our cyber security work at Sandia National Laboratories, we are
striving to understand the global network behavior of botnets. We
are planning to take existing botnets, as found in the wild, and run
them on HPC systems. We have turned to HPC systems to support
the creation and operation of millions of Linux virtual machines as
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a means of observing the interaction of the botnet and other non-
infected hosts.

We started out using traditional HPC tools, but these tools are
designed for a much smaller scale, typically topping out at one to
ten thousand machines. HPC programming libraries and tools also
assume complete connectivity between all nodes, with the attendant
configuration files and data structures to match; this assumption
holds up very poorly on systems with millions of nodes.

1. Introduction
As this is written, the discovery of a global botnet has been re-
ported that spans thousands of organizations. We used to be sur-
prised when thousands of machines were ”owned”, or taken over.
That surprise now seems quaint: the number of owned machines
is now routinely measured in the millions. The systems span the
globe, and are structured and function without regard to physi-
cal, organizational, or network boundaries. Botnets exploit com-
munication channels as varied as IRC and bug trackers. They are
flexible: changing 11% of their members each week, or around
5000 per hour. They are resilient, to the point that one botnet
was recently reported as existing on its own, without a controller.
They tolerate faults. They frustrate attempts to interact with them,
including autonomously launching DDOS attacks under certain
circumstances[6]. And, finally, they are available: construction kits
are offered, in the right corners of the Internet, for as little as a few
hundred dollars[12].

In fact, we computer scientists might feel a bit of embarrass-
ment: botnets implement all the grand goals of the grid, but they
were not written by any of us – or, at least, anyone who is admit-
ting it: there is reason to believe that much of this development
effort is underwritten by criminal organizations.

Botnet binaries, or payloads, are designed to frustrate traditional
reverse engineering, using automated code obfuscation tools that
wrap the binary in a bundle of spaghetti code. But the real prob-
lem is much more subtle: botnets, once they come into existence,
and reach a certain scale, exhibit emergent behavior: their actions
cannot be understood by examining one bot, but rather must be ob-
served as the collective behavior unfolds.

Defending against botnets requires more understanding than we
have today. Understanding them must be preceded by observation
of their behavior. At Sandia, we have begun a project to gain such
understanding by booting millions of virtual machines, installing
a botnet, and monitoring what it does and how it interacts with
other servers in the network. We are, in short, building an emulated
internet in an HPC system. The scale of the HPC system, multiplied
by the scale of the large number of Virtual Machines (VMs) we can
run per node, gives us the scale we need.

To make the emulation realistic, we need a minimum structure
in the network. At minimum, we need to provide the set of services
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that botnets require, such as DNS and BGP; and we will also need
components that botnets are known to use, such as IRC, web, and
mail servers. We must also deal with frequent node reboots; in fact,
we will probably have tasks that force near-continuous reboots of
VMs at random, to more accurately model the real world.

It is also important that the virtual machines be very lightweight:
after all, we need to run at least 1024 VMs per physical machine.
Hence, we need very lightweight Linux images, as we are limited
by memory. The images must also, in turn, not consume a lot
of compute power beyond that needed to emulate infected and
uninfected machines; we are over-committing the CPU by a factor
of 1000. We might not run a full Windows desktop, for example, but
rather just enough of one to ”close the loop” for a bot to infect it.
Finally, the VM image should minimize extraneous activity, a.k.a.
”OS noise”, so it can minimize work it does that is not useful for
the overall simulation.

Here we can see a relationship to HPC. The host controlling
operating system and the VMs need to have a small memory foot-
print. This requirement applies to HPC nodes as well, since the
application needs most of the memory. The VMs need to use as lit-
tle compute power as possible, so as to leave the CPU available for
the application; and, as a final point, the VM image must minimize
noise in order to attain the highest possible efficiency. We have be-
gun to suspect that lessons we learn from this research will apply
to future exascale machines.

Configuring millions of VMs, done the traditional HPC way,
would be a daunting task. HPC systems today are designed with a
few key – and, in our view, unrealistic – assumptions in mind. For
example, it is a given that the machine is all up or all down – that
it all boots at once, and when one node is lost, the whole machine
must be restarted. As anyone who has used or administered these
systems knows, they do not deal well with partial reboots.

The ”perfect reliability” assumption pervades most HPC soft-
ware and hardware. For example, on many HPC systems, there is
hardware-provided reliable transport. A lost packet on these ma-
chines is as significant an event as a memory error. Unwinding the
network interface when this event occurs is hard, and it is usually
simpler to reboot. On Infiniband, there is a single point of failure
called the OpenSM. Remote DMA does not continuous handle fail-
ures gracefully, to say the least.

The configuration software is equally unrealistic. Some Linux-
based HPC systems, even those with tens of thousands of nodes,
require files such as DHCP setup files, which have an enumeration
of a set of values forevery node. In fact almost all Linux HPC
systems we have looked at, even large systems such as the Cray
XT series, have files or kernel structures that are linear in size to the
number of nodes, e.g. on the XT series there is an ARP table entry
on each of 30,000 hosts for the other 29,999 other hosts; this on a
machine which is not using an Ethernet internally, and on which a
simple polynomial suffices to map the nodes X,Y,Z coordinates to
an IP address.

Reliability, Availability, and Service (RAS) systems don’t pro-
vide enough data. The sampling rates are far too low: 10 minutes
is a typical number. A botnet with a million components will have
changed 1000 of them in that time, and will have sent many mes-
sages. We will not be able to see any texture in the system statis-
tics. But even systems with such a low sample rate can’t simply be
ramped up: one system we know of, when the sample rate was in-
creased to only once per minute, ended up consuming 60% of the
CPU. We are targeting a sample rate of once per second for all ten
million VMs.

Here are some representative numbers for systems of ten million
nodes, configured with existing HPC tools.

1. DHCP file: several gigabytes (whether distributed or not, it
takes this much space)

2. ARP table: 100 megabytes

3. monitoring: 10 million samples/second, around 128 bytes per
sample

Finally, the programming models don’t scale either. Program-
mers take it as a given that their applications can have cognition of
every node in use, can control placement, and that in some man-
ner they can control each and every node. That may work to small
node numbers found on a BG/P system, with only 40,000 nodes;
it is completely impractical for ten million nodes. While, e.g., MPI
is commonly used as a ”process scaffolding” even on many-task
applications at a small scale[4], it cannot be used at our scale.

All of the assumptions underlying HPC software have been
found wanting for an environment in which we boot millions of
machines. Hence, we have been challenging these assumptions,
and building new models for multi-million OS environments. In
the process, we have begun to believe we may be building systems
software environments for future multi-million-node clusters: the
botnet emulation support system can be a prototype system for
future HPC machines. Botnet concepts may provide key insights
for how we structure that software so it is resilient, scalable, and
yet still controllable.

2. Work to date
The work to date has proceeded in four phases. The first phase did
not involve botnets at all. In this phase, we used the Lguest virtual
machine[9] to boot a one hundred node virtual cluster on an IBM
X60 laptop. Once we had created lightweight RAM disks for the
guests, we had 8M images and could boot all 100 in 30 seconds.
This virtual cluster was used to refine the XCPU[8] software as
well as extensions to oneSIS to support the lightweight RAM disks
for the VMs. It was at this point that we realized we could bring this
technology to HPC systems; rather than booting 100 machines on
a laptop, we could boot 1000 machines on 1000 HPC nodes. The
application to botnets struck us as a useful first demonstration.

The next step was botnet-oriented. We further extended the one-
SIS software to allow us to boot 5000 guests on a 70-node clus-
ter. We continued to use Lguest in this instance as the CPUs were
too old to allow us to use hardware virtualization. We successfully
modeled the propagation of a trivial worm (modeled after the 1989
Morris worm) in this 5000-node environment.

The third step was our first million-node run. We performed this
work on the 4600-node Thunderbird cluster at Sandia. We extended
the oneSIS software to support 250 nodes per node, We crashed
a number of the support systems on Thunderbird while getting
this many VMs to boot: the Ethernet switch could not handle
one million MAC addresses at one time and basically went into
a seizure as it frantically tried to shuffle its overloaded associative
tables. We were grateful for this problem, as it neatly sidestepped
the issues that came with one million ARP table entries per node.
The Infiniband network was intolerant of our frequent reboots, and
in the end we did not use it. To allow inter-VM communication
across the physical network, we partitioned the IP address space on
a per-physical-node basis and installed 4600 static routes on each
of the 4600 nodes. The final problems all involved the RAS and
control subsystems, particularly IPMI. IPMI provides an unreliable
serial console with 1200 baud throughput. If anything goes wrong,
the sysadmin has to run out and hit many reset buttons – 512 in one
case. IPMI is not usable for management of clusters where nodes
are rebooting frequently.

Starting commands on this scale proved difficult. We started out
using XCPU, but had trouble getting the communications to scale.
That was disappointing as XCPU, in its more recent incarnations,
had a tree spawn capability that should have fanned out well. We
fell back on a hack: we used pdsh to start up command files on the
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physical nodes that, in turn, started up 1000 processes on the VMs
on each node. We thus created a ”scalable” process startup, but it is
hardly what we want.

Managing the output of one million processes is also a chal-
lenge. There is a clear need for intermediate levels of filtering, com-
bination, and control, which in turn implies a hierarchy. We did ex-
periment with some of the existing software that is designed with
hierarchy in mind, such as Supermon[11] and TBON-FS[3]. Super-
mon was only designed to for a tree-based data collection, not pro-
cessing, and is not appropriate for this purpose. Supermon also uses
a ”pull” model, in which data collection is initiated by a request
from a central collector. On multi-thousand node systems this had
scaled extremely well, far better than existing ”push”-based mod-
els such as Ganglia: Supermon can sample thousands of nodes at
several hz., whereas Ganglia, on the same scale is limited to 1/600
hz. Nevertheless, the pull model did not hold up well at one mil-
lion nodes. TBON-FS was promising but did not work well in our
testing. As a result we are moving to a modified push model called
Pushmon.

Overall, the inability of HPC software to scale is what ulti-
mately presented problems for million-node runs. The tools, usable
for several thousand nodes, were completely unusable for millions
of nodes. At one point we ran into a piece of code that had a hard
limit identifier named UNLIMITED set to 600,000 with a comment
stating that no one would ever have a 600,000 node cluster.

3. Software we are developing
The software we are developing is designed to run with only one
configuration file, and without having any information about any
single node, but rather about node ranges. Further, programs that
need configuration are being written to determine that information
from the environment; we call this technique computational con-
figuration, as compared to file-based configuration. The programs
examine their environment and, using simple rules, determine what
their configuration should be. Since computational configuration is
embarrassingly parallel it can be very fast.

3.1 VMatic

VMatic is a tool for rapidly provisioning virtual machine environ-
ments. It is an extension of oneSIS, and has a similar configuration
file, shown in Figure 1.

This simple file is used to generate 1,008,640 fully networked
virtual-machines on Hyperion, an HPC testbed cluster at the
Lawrence Livermore National Laboratory. There are 985 physical
compute nodes used in this experiment with 1024 virtual machines
on each physical node. Each physical node maintains its own 16 bit
network and serves as a Linux router and DNS server for the local
VMs. A DNS server is used as opposed to a local /etc/hosts file
since a fully populated host table with 1 million entries is over 50
megabytes and would exceed the memory allotted each VM. Com-
munication between the local VM and the host OS is relatively fast
since latency is almost zero and does not put any additional burden
on the physical network. While we have found this topology to
be the most scalable, we do have plans for supporting additional
topologies, allowing users to define richer environments with vir-
tual Cisco routers and different layouts to produce a more realistic
Internet emulation.

There is an interesting issue with node numbering as seen in
the PHYSICALHOSTS line. The compute node numbering on
this machine is very irregular. It is driven by node locations in a
rack, rather than by any sensible scheme. As a result, we are stuck
with enumerating node ranges, because the node number can not be
expressed with an equation. For a very large machine, this strange
numbering would increase the size of the configuration file quite
a bit. This situation shows the problems that ensue when system

PHYSICAL_HOSTS: ehyperion[2-37,74-145,148-283,286-429,...
VMS_PER_HOST: 1024
START_VM_NETWORK_AT: 1.0.0.0
VM_NETMASK: 255.255.0.0
VM_MEM: 30

HOST_OVERLAY_DIR: host_overlay
GUEST_OVERLAY_DIR: guest_overlay

GUEST_INITRAMFS: boot/initramfs-guest.img
HOST_INITRAMFS: boot/initramfs-host.img

GUEST_KERNEL: boot/bzImage-2.6.32.8.lguest

# Include modules in HOST image
USE_MODULES: false
KERNEL_NAME: 2.6.31-17-generic
INC_MODULES: e1000 tg3 kvm-intel kvm-amd

# Which VM type?
INC_LGUEST: true
INC_KVM: false

GUEST_IMAGE_DIR: src/guest_image
HOST_IMAGE_DIR: src/host_image

USE_BPROC: true
OUTPUT_BPROC_CFG: hyperion_bproc.cfg
BP_LISTEN_INTERFACE: br0

# Initramfs template
PATH_TO_TEMPLATE: src/guest_image_template.tgz

Figure 1. Sample VMatic configuration file

builders are not used to thinking on a large scale. We need to
get the community thinking in terms of configuration that works
computationally, as that is the only way we can work on a large
scale.

VMatic produces system images that can be uploaded to com-
pute nodes via network boot. The user is able to specify the con-
figuration of both the host and guest images, and allows the user
to set up additional included files via the HOSTOVERLAY DIR
and GUESTOVERLAY DIR options. Through the use of multiple
VMatic configuration files, a user can maintain separate build con-
figurations for a variety of experiments on multiple clusters. The
main config file is used by a new command,megatux, to config-
ure the kernels, ram disk files, and other attributes of the host and
guest VMs. The end result is a bootable kernel and initramfs image
that can be deployed via network boot. On an existing network boot
cluster, the only change needed is a change to the boot target and a
kexec or reboot of the cluster.

Once the physical host has done a DHCP request, it has all the
information it needs to configure its own services and configure
its local virtual machines. The MAC addresses, virtual Ethernet
devices, and routes to other networks are all computed as a node
starts up; there is no central store of MAC addresses for all the
VMs. This is the beginning of computational configuration of most
if not all other boot time parameters. A single virtual machine takes
about one second to fully boot, less the time it takes for the Ethernet
Bridge to enter a forwarding state. At this time, a user may run their
predefined runtime scripts or issue commands to the VM via Xproc
(described below).
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In addition to provisioning HPC systems, VMatic can also be
used to provision lightweight VM’s on a local machine. This has
proven to be invaluable for our development work as it gives each
team member the ability to boot their own virtual cluster on their
laptop. On our laptops, we can reconfigure and start 100 new VMs
in less than 30 seconds. This speed makes testing easy. Develop-
ers now have an immediate, convenient, and reliable way for per-
forming automated testing on their code sets without consuming
precious time on limited HPC resources. This mechanism was used
in the creation of our first botnet prototype with successful results
when we started scaling out.

3.2 xproc

Xproc is the latest in a line of process startup systems we have
developed, starting with BProc[5] and continuing with XCPU[8].
Xproc uses BProc’s wire protocols and its I/O forwarding design.
Xproc uses a tree spawn mechanism similar to that of XCPU, and
also moves all the libraries a given command needs to run, as does
XCPU. Instead of the ad-hoc command tree spawn technique that
BProc uses, Xproc sets up a persistent tree of servers that reduces
the tree spawn overhead. Finally, Xproc uses intermediate nodes in
the tree to aggregate I/O from remote processes, instead of counting
on the top-level command to aggregate I/O as in BProc.

Before we discuss xproc we first give an overview of bproc and
xcpu. those familiar with the two systems can skip the next sections.

3.2.1 bproc

BProc provides a single unified /proc image of a cluster – hence its
name: Beowulf /proc, or BProc. The key concept of BProc is the
use of process-directed (i.e., voluntary) migration from amaster
node to aslave node. When a process migrates from a master, it
leaves behind aghost, which provides a hook for process operations
such as kill, ptrace, and wait. The ghost has no virtual memory, and
is little more than a symbolic link to a remote process.

BProc process migration and process operations are supported
by a set of intrusive patches in the Linux kernel. A major operation
is the migration itself, as it provides support for ”freezing” the
process, bundling it up, and sending it to a bproc slave daemon. The
slave deamon, in turns, supports a ”thawing” operation to restart the
process. A process may further migrate from a slave node, the only
difference being that it does not leave a ”ghost” behind: to keep
the accounting correct as to the location of a remote process, the
master node must participate in migrations from slave to slave. A
process migrated from a master to a slave can also quickly replicate
itself from one slave to others; this capability forms the basis of
the bproc tree spawn. BProc systems such as the Los Alamos Pink
cluster demonstrated an ability to start up a 16 MByte MPI process,
across 2048 CPUs, in 3 seconds.

The kernel, master, and slave daemons form a triumvirate which
manage the movement and control of processes. Users were pro-
vided with a process name space, presented on a single master
node, which spanned all the processes in the cluster.

BProc presented node status and control via the BProc File Sys-
tem, BFS, in which each node was represented as a file. Extended
attribute operations, as well as ownership and mode, could be set
with standard Linux commands, and these settings in turn con-
trolled access and node state.

BProc scales well to to a few thousand nodes. It does not scale
to millions of nodes. A ps command which returns millions of lines
of processes is barely managable. Having a file system with a file
per node is impractical past a few thousand nodes. The system
does not deal well with node outage, and the requirement that
all slave node accesses be synchronized with the master node is
clearly impractical. For scalability and reliability, the nodes must
be decoupled.

3.2.2 xcpu

XCPU provides a file-oriented access model to a cluster process
management system. Instead of the custom protocols of BProc,
XCPU uses 9p[7] as the underlying protocol, with resources rep-
resented as file names. The tree is rooted with a set of directory
nodes. In each of the node directories there is a set of process direc-
tories, one for each remote process. In each process directory there
are files for the process code; standard input, output, and error; and
miscellaneous files for controlling and debugging the process.

XCPU is designed for hierarchy in the manner in which it
spawns processes. That said, XCPU suffers from the same scala-
bilty issues as bproc: there is one ’control point’ for each node and
each process on each node, and each of these is represented in the
file system namespace presented at the top level. A list of the name
space representing the node resources would, by itself, run on for
10 million lines. This model is simply not scalable to one million
systems. We made use of XCPU in the initial Megatux work but
it quickly became apparent that we need to build a new and more
scalable process framework.

3.2.3 Process models that scale

A process model that scales has several important attributes:

• Tree structure: the node address space, communications, and
control must function in a hierarchical manner. No node should
ever need to communicate with all other nodes – it is unlikely
that they will all be up at the same time anyway.

• Ad-hoc: the creation of the hierarchy is dynamic, not controlled
by a configuration file. Configuration information, such as node
naming, must be described by an algorithm of polynomial, not
a static list.

• Dynamic: the hierarchy is continuously changing in response to
failures and node restarts.

• No specialization: nodes must be able to perform any role. A
node that is functioning as a compute node must be able to take
on the role of manager of other nodes on demand.

• Aggregation model: Individual nodes are not visible; applica-
tions operate in terms of groups of nodes.

• The fate of an individual node is unimportant (we make one
exception: the root node).

• Decoupled (or asynchronous) operation: the application can
inititate an operation (e.g. start a program on a set of nodes)
but can not assume that the operation completes successfully.

3.2.4 xproc

Xproc is designed around the principles outlined above. XProc is
designed from the start for hierarchy. XProc configuration files
are being modified to contain near-executable code in the form of
equations that define the mapping of node Ip addresses to node
names. In contrast to the BProc master/slave structure, with two
specialized daemons, the XProc daemons are the same everywhere
and can take on the master or slave role as needed. XProc is
designed to deal with nodes as aggregates, and as part of our design
we have removed all the aspects of BPRoc that were designed to
work per-node, e.g. the BProc file system. Nodes, even the root
node, can fail and the rest of the nodes will reconnect around
the fault, without much fuss; in the original BProc, loss of the
master daemon would take down all slave nodes associated with
that master, hardly a resilient structure.

An xproc process tree consists of a root server, intermediate
daemons playing both roles, and a set of daemons at the leaves.
The ultimate clients are at the leaves of the tree, i.e. individual
processes. The ultimate server is at the root of the tree, i.e. the
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program that initiates the million or more commands. If the root
program is lost, it must be restarted ,but the state of the other
daemons is affected only to the extent that they must reconnect and
rebuild the tree – running applications are not lost. Daemons in
internal nodes of the tree control processes below them, and relay
data up and down the tree.

Xproc startup uses a dynamic configuration. At the beginning
there is one master. Slave nodes contact the master using the ex-
isting BProc protocol. Consider the case where there are N total
nodes. The first

√

N slaves to contact the master are designated as
secondary masters. Subsequent slaves that check in will be told to
check in to the secondary masters instead, a process we call redirec-
tion. The root can ensure a balance of slaves to secondary masters
by using a simple round-robin allocator. The process is continuous:
slaves that lose connection to their master can go to the root to be
reassigned. The only piece of information the slaves need to have
to boot is the IP address of the master. The process is also recursive,
a change from the Bproc single-level tree model.

Key to making this system work in the presence of failure is to
minimize the amount of state retained at all levels. Given the rate
of failure, more retained stated equates to more state that needs to
be unwound when failures occur. It is best to retain not state at all.
The root node retains no information about redirection commands
to other nodes.

Each slave is a master of all the VM guests on its node. Hence,
the process repeats for the VMs on each physical node.

For physical (non-virtual) nodes, xproc uses the bproc technique
of pushing the binary out to the node. We improve on the bproc
code with some extensions from XCPU. The bpsh command de-
termines all the libraries a program needs and builds an in-memory
cpio archive of the binary and its libraries. We further allow the user
to select additional directories and files to send with the binary. It is
thus quite easy for the user to send a set of binaries and input files
to a node for execution.

At the node, when the command and its cpio archive is received,
the daemon creates a process-private mount at/xproc, and un-
packs the files there. As long as the command and its children are
executing, the process-private mounts is available; once the pro-
cess and its children have left, the mount disappears. The process-
private mount ensures privacy between multiple users on the same
node and eases administration. Note that users can still leave per-
sistent files in share ddirectories such as /tmp.

We further allow users to specify that a local executable can be
used, as in XCPU. For this case, the cpio archive can be zero-length.
Because the basic onesis initrd includes a useful set of binaries, this
process is convenient as well as very fast. We have hence relaxed
the BProc/XCPU model of always importing a program.

For host to guest VM commands, it makes no sense to send 1024
copies of a binary to VMs running on the same machine. We use the
private mount point to advantage here: instead of mounting a RAM
disk, we mount a shared block device that is written by the host, and
read-only to the guest. We then invoke the local-execution switch:
since the binaries are by any reasonable definiton local. While
there is an issue with shared block devices, we neatly finesse it by
mounting the device read-only; other potential issues are resolved
by the fact that the mount goes away when the command exits. The
result is a very efficient system for physical machine-to-machine
process startup, and a system that is near-optimal for host to guest
process startup.

3.3 pushmon

Pushmon is a hierarchical monitoring system built from Supermon[11].
Like Supermon, Pushmon uses S-expressions to describe the data,
and is designed for hierarchy, with Pushmon nodes functioning as
both clients and servers. Unlike Supermon, Pushmon relies on a

(("MARK: 1266084142.710273")0x4336 "o0x4336 s1 #0")
(("MARK: 1266084143.272552")0x924e "o0x924e s1 #0")
(("MARK: 1266084145.387336")0x9879 "o0x9879 s1 #0")

Figure 2. Sample of Pushmon output. MARK: denotes the Unix
epoch time from the root node and is embedded with the original
messages using S-expressions.

push model, with data being periodically pushed from the leaves
to the root. Pushmon is also self-configuring, with the nodes using
a low-cost computation to determine where their parent in the tree
is, up to the root. Finally, Pushmon is designed not to just group
S-expressions together, as Supermon does, but also to perform
computations on the S-expressions so as to reduce the data load on
the network. The computations to be performed can themselves be
defined by S-expressions, and interpreted, allowing a great deal of
flexibility, up to and including symbolic computing. See Figure 2.

Data load on the network is also reduced when the VM’s rela-
tionship to their host OS is taken into account. When considering
the fast communication path between a VM and its host OS, Push-
mon can be used as an effective aggregator to collect messages from
their child VMs before pushing to the root minimizing load on the
physical network.

We are working to build an efficient virtio[10] transport for
guest to host Pushmon communications. In spite of the plethora of
virtio software that has been written, there is nothing that resembles
an efficient pipe. We plan to remedy this problem.

4. Things we’ve learned
4.1 Which VM?

Over the past few years we’ve worked with a number of virtual
machine systems on Linux, deploying them in various modes, from
standalone USB boot media, to virtual nodes on a laptop, to tens of
thousands to a million nodes on an HPC system. We’ve learned a
bit about the strengths and weaknesses of each one.

4.2 Xen

Our earliest work was with Xen[2] 2.0 and 3.0. We ported Plan 9 to
both these systems, in the process learning much about their struc-
ture. We found that Xen performance was fairly good, especially in
3.0; the system was carefully crafted for performance. Embedding
drivers in the host Linux kernel, instead of in an external process,
provided better throughput: kernel builds on Plan 9 ran in 12 sec-
onds on Xen and over 70 seconds on early releases of KVM.

Xen is not without its issues. The Python management frame-
work, with its XML-RPC, proved to be difficult to set up in a
lightweight mode on a USB stick; these problems carried over to
setting up lightweight VMs. Xen needs a huge amount of base soft-
ware just to work at all. The hypervisor/host kernel split requires
using a multi-boot loader, which limits options on network boot.
Finally, the performance advantage is not as great as it used to be.
We tried using Xen for Megatux but in the end found it to be too
fragile when used outside a full Linux desktop. It has too many
dependencies on a fully configured environment.

4.3 Lguest

Lguest[9] is a ”paravirtual only” hypervisor. It does not support real
I/O devices, only emulated ones. There is not an external process;
the kernel memory space forms part of the overall lguest process.
The kernel driver switches between the kernel, running in Ring1,
and the support program, running in Ring 3. Communications be-
tween the two is via virtio[10] queues.
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Lguest performance is in some ways stunning, with a startup
time for a kernel of roughly a second. Lguest I/O has never been
particularly fast for I/O, however, with Plan 9 kernel builds running
at almost 120 seconds the most recent time we measured it. Lguest
is limited to 32-bit mode and therefore presents a problem for
application requiring a x8664 architecture.

Because of the integration of the guest VM and the support pro-
cess in one address space, Lguest is very easy to use in a limited en-
vironment. We’ve built an Lguest-based distribution called THNX
which boots to a simple shell with a BusyBox environment and
supports a Plan 9 guest. It works well and is easy to use.

On newer systems, we can boot 1000 Lguest virtual machines
in under a minute. The load on the host, once these machines are
running, is not measurable when the machines are idle.

4.4 KVM

KVM is a newer hypervisor that functions only on processors
with virtualization hardware, such as Intel VT or AMD SVM.
KVM integrates a hypervisor into the kernel directly, avoiding the
hypervisor/kernel split of Xen. KVM supports VM guest IO using
QEMU, i.e. an external process.

KVM is a bit harder than Lguest to integrate into a lightweight
VM image, due to its dependency on QEMU, which is a rather
heavy program. QEMU depends on no less than 52 shared libraries,
requiring a total of 14 Mbytes of space. While this space is not
required in each guest, and the code is shared, the data is not. The
virtual address space of each QEMU is 60 Mbytes, with a resident
set size of at least 8 Mbytes.

We were able to measure KVM performance on newer systems.
On AMD Barcelona systems with 32 Gbytes of memory we could
boot 1000 virtual machines in under 2 minutes. Even on an X300
laptop we can boot 50 VMs with no trouble. The machine is
completely unusable until the guests are started, at which point the
overhead is very low so long as the machines are idle.

4.5 The VM we chose

Xen was never in the running, due to its complex runtime support
requirements. The choice came down to KVM or Lguest. We ex-
pected that on new systems with hardware virtualization support,
KVM would be the clear winner. Much to our surprise, the best
system for our uses is Lguest on 32-bit hardware with Paging Ad-
dress Extensions (PAE) enabled. PAE allows 32-bit mode kernels to
use 64 Gbytes of memory, which is more than we have on any clus-
ter node. The footprint of our Lguest guest was 20M virtual with a
12MB resident set size. The entire lguest guest and user mode sup-
port was barely larger than the KVM QEMU user mode support by
itself.

5. Experiences on real machines
We have been running for several years now on various machines,
although we did not do our largest runs until August 2009.

Lguest is now our VM of choice, running in 32-bit, even on 64-
bit machines with hardware VM support. It has a small memory
footprint and the kernel-based switching from the guest VM to the
user-mode support code seems more efficient than the heavyweight
context switch to KVM’s QEMU support process.

This result has implications for many-task computing. If com-
puting sites wish to run each task of a many-task run in its own
VM, with high efficiency, it is worth looking at whether each of the
apps can run in a 32-bit address space. If so, use of the VM support
hardware may not be worthwhile. We are also looking at creating
a lower-overhead support process for KVM guests than QEMU;
we don’t need most of what QEMU does, particularly the graphics
support.

Migrating has no use to us in for Megatux, and we have doubts
about its value in real HPC applications. We say this having run the
BProc system for ten years: BProc supported very fast migration
across the cluster, and we never found it useful in support of
resilience and fault-tolerance. It is easy enough to move a process
or a VM; what’s hard is dealing with all the related external state,
particularly network connection information in the switches, that
has to be recreated. Infiniband and RDMA would be particularly
problematic. Multiply the scale by 1000, as we are doing, and the
problem looks even harder. Better to have a programming model
which tolerates the disappearance of a VM and soldiers on than
halt all 9,999,999 VMs while the missing one is resuscitated and
all hosts and switches are updated.

6. Conclusions
We described Megatux, a set of tools which we use to rapidly de-
ploy virtual machines. We are using Megatux on a range of systems,
some six years old, others very new. Even on systems with hard-
ware virtualization, we have achieved the best performance with
Lguest in 32-bit mode with PAE enabled. KVM is in principle more
efficient, but in practice, due to its QEMU support process, is far
less efficient. Our tools are new and designed to be self-configuring,
given that even the smallest configuration files on 1000-node sys-
tems balloon to unmanageable size on ten million node systems.
We use a technique called computational configuration, in which
parameters are set by an algorithm, rather than a configuration file
entry. In the future system builders must structure their systems
with computational configuration in mind; many of them are not
doing so today.
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