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Abstract

The topology of turbulent premixed flames is analysed using data from Direct Numerical Sim-

ulation (DNS), with emphasis on the statistical geometry of flame–flame interaction. A general

method for obtaining the critical points of line, surface and volume fields is outlined, and the

method is applied to isosurfaces of reaction progress variable in a DNS configuration involving a

pair of freely–propagating hydrogen–air flames in a field of intense shear–generated turbulence. A

complete set of possible flame–interaction topologies is derived using the eigenvalues of the scalar

Hessian, and the topologies are parameterised using a pair of shape factors. The frequency of oc-

currence of each type of topology is evaluated from the DNS dataset for two different Damköhler

numbers. Different types of flame–interaction topology are found to be favoured in various regions

of the turbulent flame, and the physical significance of each interaction is discussed.
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1. Introduction

Direct Numerical Simulation (DNS) results for turbulent flames are becoming available for

increasing Reynolds numbers [1, 2, 3], thus making it possible to carry out a detailed analysis of
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the structural properties of the flame. The dissipative range of length scales is of particular interest

since combustion reactions take place at small length and time scales. This emphasises the need

for highly–resolved DNS data containing the greatest possible range of scales. The structure of

prime importance in combustion at high Damköhler number is the flame front itself. It can be

located as an embedded surface defined as a chosen level surface of a suitable scalar field. In

premixed combustion the usual scalar of choice is the reaction progress variable. The geometry

and local topology of the flame surface is central to turbulent premixed combustion modelling

using the flamelet concept, and especially in modelling using the Flame Surface Density (FSD)

equation or the G-equation approach [4, 5]. Processes related to the local flame topology, such as

cusp formation or pocket burnout, can have a significant effect on the overall balance of flame area

production and destruction and hence affect the overall burning rate. Flame topology is also highly

relevant to the occurrence of intermittent events such as local extinction [6]. A good fundamental

understanding of these phenomena is essential if they are to be captured accurately in modelling.

The statistical geometry of turbulent premixed flames has been addressed in previous work

which has highlighted the importance of flame curvature in determining propagation behaviour

[7, 8]. The specific issue of pocket formation through flame pinchoff has been analysed in detail

using DNS data for the two-dimensional case [9, 10]. Topological aspects of scalar field struc-

ture have been analysed in non–reacting turbulent flows [11, 12], and aspects of flame structure

have been addressed [13]. Recently, DNS data has been used to elucidate the topology of flame

strucure in MILD combustion [14]. The present work is aimed at analysing the topology of freely–

propagating turbulent premixed flames using DNS data in three dimensions. The general principles

will be outlined, and the specific DNS datasets will be described. The set of possible topologies

for flame–flame interaction in three dimensions will be presented, the frequency of occurrence of

each type of interaction will be evaluated, and some observations will be made concerning the

local flame propagation behaviour.
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2. Spatial/Eulerian structures

Spatial structures are defined as measurable subsets of the flow domain, fully specified by the

relevant physical and chemical properties, and specified in the spatial/Eulerian description [15].

The notion of measure is taken as a generalisation of properties such as length, area, volume etc.

[16]. The most important and elementary properties of the subsets are the measure denoted by

V0 and its dimension, the area of the boundary V1 and its dimension, and the mean and Gaussian

curvature integrated over the bounding surface, denoted by V2 and V3 respectively. The Vi are

called the Minkowski functionals [17]. The usual definition of dimension as the number of basis

vectors (coordinates) required to specify any vector is not sufficient and a more general point of

view must be taken [18, 19].

2.1. Line type structures

Subsets of the flow field D ⊂ R3 with Hausdorff dimension dH ≤ 1 are called line type struc-

tures. The vector fields defined onD such as velocity and vorticity generate tangential vectorlines

according to
dxα
ds
= vα(x(s), t), α = 1, 2, 3 (1)

with an arbitrary initial condition x(0) = x0 ∈ D where s denotes the arclength measured along

the vectorline. Time t is constant in the spatial description, and hence the system of ordinary

differential equations is always autonomous with respect to arclength s. For a finite set of initial

conditions xi, i = 1, · · · ,N, the vectorlines through the set can be analyzed with the aid of algebraic

topology including braids, knots and linking number [20] and entanglement [21]. Dynamical

systems theory [22, 23] provides the critical structures of the vectorlines which may include critical

points, limit cycles, invariant tori and invariant sets of dimension dH > 2.
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2.2. Surface type structures

Subsets of the flow field D ⊂ R3 with Hausdorff dimension 1 < dH ≤ 2 are called surface

type structures. The vector fields relevant to combustion flows are velocity, vorticity and various

flux vector fields. Clearly, subsets corresponding to reaction zones are of particular importance in

combustion flows. These reaction zones can be approximated by propagating surfaces [24] if the

chemical reactions are sufficiently fast. Propagating surfaces in both reacting and non–reacting

turbulent flows may develop singularities in finite time [25] in contrast to materially invariant

surfaces. In particular, cusp singularities are an identifying characteristic of propagating surfaces

in the spatial description.

2.3. Volume type structures

Subsets of the flow field D ⊂ R3 with Hausdorff dimension 2 < dH ≤ 3 are called volume

type structures. These structures may have dimension less than three and hence may not fill the

Euclidean space R3, thus reflecting the intermittent properties of the flow. The Minkowski func-

tional V0 is interpreted as the principal measure of the structure, and hence can be computed if the

volume type structure is measurable. The functionals V1, · · · ,V3 may not exist for structures with

a fractal dimension. However, if the dimension of the volume type structure is equal to three and

the boundary is sufficiently smooth, then the Minkowski functionals V1 to V3 are computable and

the latter is then the Euler number of the surface.

3. DNS formulation and datasets

The analysis is applied to study topologies of flame–flame interactions in highly turbulent

premixed flames using the DNS data of Hawkes et al. [26]. The DNS corresponds to a temporally

evolving rectangular slot–jet premixed flame in intense shear turbulence. The three–dimensional

configuration (see Fig.1) comprises a lean hydrogen–air planar jet of equivalence ratio 0.7 and

preheated to 700 K issuing into a quiescent mixture of adiabatic fully burnt products at the same
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equivalence ratio.

Three simulations with varying jet Damköhler number Da j ≡ (H/U j)/(δL/sL) were performed

while the jet Reynolds number Re j ≡ U jH/νu is held constant at a value of 10000. The simulation

domain is rectangular Cartesian and has dimensions of 16H × 20H × 12H in the streamwise (X),

transverse (Y) and spanwise (Z) directions, respectively. The domain boundaries are treated as

periodic in the X and Z directions, while characteristic outflow boundary conditions are specified

at the Y boundaries.

The simulations were performed using the DNS code S3D [27] which solves the compressible

Navier-Stokes, continuity, species and energy conservation equations using high order explicit

finite difference schemes for spatial (8th order) and temporal (4th order) derivatives. Mixture–

averaged transport coefficients are specified by interfacing with the TRANSPORT library and finite

rate chemical kinetics are prescribed using the CHEMKIN library. For the present simulations a

9–species, 19–reaction chemical mechanism was employed [28]. The domain is discretised using

a fixed uniform mesh with spacing 18 µm in the lowest Damköhler number case (Da-) and 36 µm

in the highest Damköhler number case (Da+) while the time step for advancing the simulation was

2.5 ns and 5 ns in the two cases, respectively.

4. Formulation of the analysis method

Assuming surface–type reaction zones, flame–flame interactions can be considered to occur

when two flame sheets collide. Here, a flame sheet is defined based upon the isosurface of a

reaction progress variable c, defined (for example) as a normalised species mass fraction Yα:

c =
Yα − YαR

YαP − YαR
(2)

where the subscripts R and P denote reactants and products, respectively. At the moment of

isosurface collision, there exists no flame normal vector i.e. there is a critical point where the
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gradient of the progress variable is zero. It is not possible to specify an isosurface value and expect

to capture a collision on an instantaneous basis. However, by searching for the critical points

within the flow all the collisions or “flame-flame interactions” can be found and the corresponding

isosurface values deduced.

The location of each critical point and its associated properties are determined through New-

ton’s method [29] based on a tri–quintic interpolation stencil with global C2 continuity. Various

other interpolants of higher and lower order were shown to give very high reproducibility indicat-

ing that the scalar field is well resolved and that the critical points are physical. Due to the large

size of the simulation domain, see section 3, various filtering steps were first used to isolate the

regions in which the interpolant was likely to contain a critical point. This was done first through

tri–linear interpolation of the eight surrounding nodes to ensure that the interpolant of every com-

ponent of the scalar field gradient contained a zero–valued isosurface. The approximate solution

for the critical point location was then calculated based upon a linearisation of the gradient field

around each of the eight nodes. If none of the eight solutions was within the feasible domain, as

defined by the eight nodes plus an additional safety halo region, then it was assumed the three

zero–valued gradient isosurfaces did not intersect within the cell and a critical point did not exist

within it. Otherwise the mean of all feasible solutions was taken as the best estimate of the critical

point location and provided as input to the Newton’s Method algorithm as the first estimate. Ex-

amples of the local isosurface topology around two critical points found in this manner are shown

in Fig.2.

4.1. Statistical Variables

Due to the zero gradient of progress variable at critical points, a Taylor expansion around a

critical point reduces to

c(a + x) = c(a) +
xT

2
H(c(a))x + ... (3)
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such that the Hessian H(c) describes the local field to second order accuracy. The eigenvalues of

the Hessian are real, giving the curvature along each of the three orthogonal principal axes. Pro-

vided that the orientation is considered to be unimportant, these eigenvalues fully define the local

topology to second order. For instance, Fig. 2a shows two positive and one negative eigenvalue

and is quite different topologically to the situation shown in Fig.2b with two negative and one pos-

itive eigenvalue. Conversion to polar coordinates proves useful for a more effective description.

Equations 4, 5 and 6, where λ1 > λ2 > λ3, give latitude ϕ about pole vector [1, 1, 1][eλ1 , eλ2 , eλ3]
T

and longitude θ about meridian vector [1, 0,−1][eλ1 , eλ2 , eλ3]
T with κ providing the magnitude of

the eigenvalues, i.e. an overall measure of curvature. Hence θ and ϕ become shaping parameters

and κ becomes a scaling parameter with dimensions of length−2. The shape factors ϕ and θ are

normalised to +/- unity.

θ =
6
π

arctan
 (λ1 − 2λ2 + λ3)/4

1
2

(λ1 − λ3)/2
1
2

 (4)

ϕ =
2
π

arctan

 (λ1 + λ2 + λ3) cos
(
θπ
6

)
/3

1
2

(λ1 − λ3)/2 1
2

 (5)

κ = (λ2
1 + λ

2
2 + λ

2
3)

1
2 (6)

The shape factors define a continuous two–dimensional domain fully describing the range of

local topology of flame–flame interactions. Fig. 4 shows the canonical topology corresponding

to each pair of shape factors in a Mercator mapping at intervals across their normalised range.

Each drawing is coloured using a colourmap ranging from blue for cold (low progress variable) to

red for hot (high progress variable). Hence it is possible to infer the direction of propagation of

each flame element. On this basis, the topologies appearing on the left of the Figure correspond

to outward–propagating spherical flame pockets (“product pocket”), while those on the right are

propagating spherically inwards (“reactant pocket”). The more complex topologies appearing to-

wards the bottom right of centre correspond to cylindrical propagation towards a common axis
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(“tunnel closure”, see Fig.2a), while those appearing towards the top left of centre are propagating

cylindrically away from a common axis (“tunnel formation”, see Fig.2b). The background colours

correspond to the signs of the original eigenvalues as shown in Fig 3 i.e. from left to right the

sections denote eigenvalue signs of (- - -), (- - +), (- + +) and (+ + +). The lines between each

colour indicate the locus of points at which an eigenvalue changes sign. This shape–factor do-

main combined with the other relevant variables including κ, progress variable c and reaction rate

provide an excellent starting point for gathering statistical data about the flame–flame interactions

found within the DNS database. It should be noted that critical points found within regions of the

domain with progress variable close to either zero or unity and with very low curvature κ have

been filtered out.

5. Results and discussion

The DNS datasets described in section 3 were analysed using the methods described above.

It should be noted that the large size of the datasets resulted in a very large sample of critical

points. The spatial datasets for analysis were chosen at an instant in time when the turbulent

burning velocity is close to maximum. A suitable progress variable c was defined using the mass

fraction of H2O. Critical points were identified and recorded together with their corresponding

shape factors, curvature value, and progress variable value. Histograms showing the frequency

of occurrence of all the critical points are shown in Fig. 5 for for the test–cases Da- (left, Da j =

0.13) and Da+ (right, Da j = 0.54). The critical points have been grouped broadly into four distinct

types based on the signs of their eigenvalues, and the type of each critical point is indicated by the

colour of the bar on the histogram. The interaction types are shown in Fig. 4, examples of the

“tunnel formation” and “tunnel closure” events are given in Fig. 2 and all types were explained

qualitatively in Section 4.1.

The plots are bimodal, indicating that critical points are most often found for either low or high

values of the mean progress variable. The relative lack of interactions in the mid–range of mean
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progress variable is clear, and indicates that flame–flame interactions are found most often close

to either the leading edge or trailing edge of the turbulent flame brush. This is to be expected due

to the comparatively large reaction rate in the intermediate range corresponding to a larger rate of

change of progress variable and thus a lower probability of observing an interaction in progress

from a snapshot of the field at a single instance in time. There are clear differences between the

two Damköhler number cases. More interactions are observed in the leading edge of the flame

brush (lower progress variable) in the Da- case, and there are more interactions in the middle of

the flame brush. By contrast, in the Da+ case, most of the interactions take place towards the

trailing edge of the flame brush. The local alignment between the progress variable isosurface

normals and the most compressive principal strain rate is observed to increase from the leading

to the trailing edge [30]. This, coupled with the less than unity Lewis number associated with

lean hydrogen/air mixtures, results in increasing normalized mean conditional scalar dissipation

rate and a corresponding decrease of the normalized mean flame thickness. The net effect is to

increase the the degree of interaction towards the trailing edge of the flame brush. This also reflects

the nature of the local flame structure in each case, with higher Damköhler number indicating a

more coherent sheet–like structure, and vice versa.

The relative occurrence of each type of interaction is interesting, and is similar for both cases.

It is clear that “pocket” events are relatively rare by comparison with the other two types of be-

haviour, especially over the central portion of the flame brush. The very low occurrence of reactant

pockets at all progress variable locations is a consequence of the transient nature of such an event.

Surrounded on all sides by hot products, the reactants are rapidly consumed [9, 10], making such

events difficult to capture in any single snapshot. Product pockets are more frequent towards the

trailing edge in both Damköhler number cases. Such events also occur close to the leading edge

in the lower Da case, but these are infrequent in the higher Da case. Again this is consistent with

the more sheet–like flame structure at high Da.

A somewhat different perspective is provided by the scatter plot shown in Fig.6. Here, the
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log frequency of occurrence of each pair of shape factors is indicated by the density of dots.

The mean progress variable location is indicated by the colour, which is consistent with Fig.4.

Interaction events are strongly clustered along the lines within the space where the eigenvalues

change sign. These correspond to interactions which are predominantly two–dimensional such

as two ridges meeting or expansion/contraction of a cylindrical tunnel of products/reactants. It is

clear that certain topologies are favoured during flame–flame interaction, and these can be deduced

by comparing Fig.6 directly with Fig.4. In particular, tunnel formation and tunnel closure are

favoured, along with their respective limiting cases of planar interaction either head–on or back–

to–back. The colour shows that the topology is related to location within the flame brush. The

blue regions near the top right indicate that head–on interactions are favoured towards the reactant

side, while the redder regions to the lower left indicate that back–to–back interactions are favoured

towards the product side. The differences observed between the two Damköhler number cases are

consistent with those observed in Fig.5, i.e. there are more interactions at higher values of mean

progress variable in the higher Da case, and vice versa.

6. Conclusions

The topology of turbulent premixed flames has been analysed using a DNS dataset of interact-

ing turbulent hydrogen–air flames. Starting from a general approach to evaluating the topology of

line, surface and volume fields, a method based on the eigenvalues of the scalar Hessian has been

used to find the critical points of a field of reaction progress variable based on H2O mass fraction,

as obtained from the DNS dataset. The full set of possible flame–flame interaction topologies

has been identified, and these have been parameterised using two shape factors derived from the

eigenvalue analysis. The relative frequency of occurrence of all the types of interaction topology

has been extracted from the DNS data. It has been found that essentially cylindrical topologies

corresponding to either tunnel closure or tunnel formation are favoured over topologies that are

more spherical in nature. Differences are observed between the interaction behaviour at two dif-
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ferent Damköhler numbers, reflecting the repective differences in the local flame structure. There

is little interaction in the middle of the turbulent flame brush, and most interactions involve either

head–on or back–to–back configurations occurring respectively at the leading or trailing edge of

the flame brush.
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Figure 1: Reaction rate from DNS data of Hawkes et al. [26].

(a) Tunnel Closure (b) Tunnel Formation

Figure 2: Examples of flame-flame interactions taken from DNS data.
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Figure 3: Feasible domain of H(c) eigenvalues correlating to shape factors θ and ϕ as defined in equations 4 and 5.

Figure 4: Quadric surface canonical topology of flame-flame interactions as determined by the shape factors. The
boundaries between background colour denote a change in the sign of an eigenvalue.
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Figure 5: 1D Histogram of progress variable at critical points with coloured stacks denoting sign of the eigenvalues.

(a) Lower Da number test-case (b) Higher Da number test-case

Figure 6: Log histogram on ϕ-θ domain. Colour denotes mean progress variable c.
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Figure Captions

Fig.1 Reaction rate from DNS data of Hawkes et al. [26].

Fig.2 Examples of flame-flame interactions taken from DNS data.

Fig.2a Tunnel Closure

Fig.2b Tunnel Formation

Fig.3 Feasible domain of H(c) eigenvalues correlating to shape factors θ and ϕ as defined in equa-

tions 4 and 5.

Fig.4 Quadric surface canonical topology of flame-flame interactions as determined by the shape

factors. The boundaries between background colour denote a change in the sign of an eigenvalue.

Fig.5 1D Histogram of progress variable at critical points with coloured stacks denoting sign of

the eigenvalues.

Fig.5a Lower Da number test-case

Fig.5b Higher Da number test-case

Fig.6 Log histogram on ϕ-θ domain. Colour denotes mean progress variable c.

Fig.6a Lower Da number test-case

Fig.6b Higher Da number test-case
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