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Abstract

The topology of turbulent premixed flames is analysed using data from Direct Numerical Sim-
ulation (DNS), with emphasis on the statistical geometry of flame—flame interaction. A general
method for obtaining the critical points of line, surface and volume fields is outlined, and the
method is applied to isosurfaces of reaction progress variable in a DNS configuration involving a
pair of freely—propagating hydrogen—air flames in a field of intense shear—generated turbulence. A
complete set of possible flame—interaction topologies is derived using the eigenvalues of the scalar
Hessian, and the topologies are parameterised using a pair of shape factors. The frequency of oc-
currence of each type of topology is evaluated from the DNS dataset for two different Damkohler
numbers. Different types of flame—interaction topology are found to be favoured in various regions

of the turbulent flame, and the physical significance of each interaction is discussed.
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1. Introduction

Direct Numerical Simulation (DNS) results for turbulent flames are becoming available for

increasing Reynolds numbers [1, 2, 3], thus making it possible to carry out a detailed analysis of
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the structural properties of the flame. The dissipative range of length scales is of particular interest
since combustion reactions take place at small length and time scales. This emphasises the need
for highly-resolved DNS data containing the greatest possible range of scales. The structure of
prime importance in combustion at high Damkdohler number is the flame front itself. It can be
located as an embedded surface defined as a chosen level surface of a suitable scalar field. In
premixed combustion the usual scalar of choice is the reaction progress variable. The geometry
and local topology of the flame surface is central to turbulent premixed combustion modelling
using the flamelet concept, and especially in modelling using the Flame Surface Density (FSD)
equation or the G-equation approach [4, 5]. Processes related to the local flame topology, such as
cusp formation or pocket burnout, can have a significant effect on the overall balance of flame area
production and destruction and hence affect the overall burning rate. Flame topology is also highly
relevant to the occurrence of intermittent events such as local extinction [6]. A good fundamental
understanding of these phenomena is essential if they are to be captured accurately in modelling.
The statistical geometry of turbulent premixed flames has been addressed in previous work
which has highlighted the importance of flame curvature in determining propagation behaviour
[7, 8]. The specific issue of pocket formation through flame pinchoff has been analysed in detail
using DNS data for the two-dimensional case [9, 10]. Topological aspects of scalar field struc-
ture have been analysed in non-reacting turbulent flows [11, 12], and aspects of flame structure
have been addressed [13]. Recently, DNS data has been used to elucidate the topology of flame
strucure in MILD combustion [14]. The present work is aimed at analysing the topology of freely—
propagating turbulent premixed flames using DNS data in three dimensions. The general principles
will be outlined, and the specific DNS datasets will be described. The set of possible topologies
for flame—flame interaction in three dimensions will be presented, the frequency of occurrence of
each type of interaction will be evaluated, and some observations will be made concerning the

local flame propagation behaviour.



2. Spatial/Eulerian structures

Spatial structures are defined as measurable subsets of the flow domain, fully specified by the
relevant physical and chemical properties, and specified in the spatial/Eulerian description [15].
The notion of measure is taken as a generalisation of properties such as length, area, volume etc.
[16]. The most important and elementary properties of the subsets are the measure denoted by
Vo and its dimension, the area of the boundary V; and its dimension, and the mean and Gaussian
curvature integrated over the bounding surface, denoted by V, and V3 respectively. The V; are
called the Minkowski functionals [17]. The usual definition of dimension as the number of basis
vectors (coordinates) required to specify any vector is not sufficient and a more general point of

view must be taken [18, 19].

2.1. Line type structures

Subsets of the flow field D c R* with Hausdorff dimension dy < 1 are called line type struc-
tures. The vector fields defined on D such as velocity and vorticity generate tangential vectorlines
according to

dx

—2 =y (x(5),0), =1,2,3 (1)
ds

with an arbitrary initial condition x(0) = x, € D where s denotes the arclength measured along
the vectorline. Time ¢ is constant in the spatial description, and hence the system of ordinary
differential equations is always autonomous with respect to arclength s. For a finite set of initial
conditions x',i = 1,--- , N, the vectorlines through the set can be analyzed with the aid of algebraic
topology including braids, knots and linking number [20] and entanglement [21]. Dynamical
systems theory [22, 23] provides the critical structures of the vectorlines which may include critical

points, limit cycles, invariant tori and invariant sets of dimension dy > 2.



2.2. Surface type structures

Subsets of the flow field D c R? with Hausdorff dimension 1 < dy < 2 are called surface
type structures. The vector fields relevant to combustion flows are velocity, vorticity and various
flux vector fields. Clearly, subsets corresponding to reaction zones are of particular importance in
combustion flows. These reaction zones can be approximated by propagating surfaces [24] if the
chemical reactions are sufficiently fast. Propagating surfaces in both reacting and non-reacting
turbulent flows may develop singularities in finite time [25] in contrast to materially invariant

surfaces. In particular, cusp singularities are an identifying characteristic of propagating surfaces

in the spatial description.

2.3. Volume type structures

Subsets of the flow field © c R3 with Hausdorff dimension 2 < dy < 3 are called volume
type structures. These structures may have dimension less than three and hence may not fill the
Euclidean space R?, thus reflecting the intermittent properties of the flow. The Minkowski func-
tional Vj is interpreted as the principal measure of the structure, and hence can be computed if the
volume type structure is measurable. The functionals Vy, - - - , V3 may not exist for structures with
a fractal dimension. However, if the dimension of the volume type structure is equal to three and

the boundary is sufficiently smooth, then the Minkowski functionals V; to V3 are computable and

the latter is then the Euler number of the surface.

3. DNS formulation and datasets

The analysis is applied to study topologies of flame—flame interactions in highly turbulent
premixed flames using the DNS data of Hawkes et al. [26]. The DNS corresponds to a temporally
evolving rectangular slot—jet premixed flame in intense shear turbulence. The three—dimensional
configuration (see Fig.1) comprises a lean hydrogen—air planar jet of equivalence ratio 0.7 and

preheated to 700 K issuing into a quiescent mixture of adiabatic fully burnt products at the same



equivalence ratio.

Three simulations with varying jet Damkohler number Da; = (H/U;)/(6./s.) were performed
while the jet Reynolds number Re; = U;H/v, is held constant at a value of 10000. The simulation
domain is rectangular Cartesian and has dimensions of 16 X 20H X 12H in the streamwise (X),
transverse (Y) and spanwise (Z) directions, respectively. The domain boundaries are treated as
periodic in the X and Z directions, while characteristic outflow boundary conditions are specified
at the Y boundaries.

The simulations were performed using the DNS code S3D [27] which solves the compressible
Navier-Stokes, continuity, species and energy conservation equations using high order explicit
finite difference schemes for spatial (8" order) and temporal (4" order) derivatives. Mixture—
averaged transport coefficients are specified by interfacing with the TRANSPORT library and finite
rate chemical kinetics are prescribed using the CHEMKIN library. For the present simulations a
9—species, 19-reaction chemical mechanism was employed [28]. The domain is discretised using
a fixed uniform mesh with spacing 18 um in the lowest Damkdhler number case (Da-) and 36 um
in the highest Damkohler number case (Da+) while the time step for advancing the simulation was

2.5 ns and 5 ns in the two cases, respectively.

4. Formulation of the analysis method

Assuming surface—type reaction zones, flame—flame interactions can be considered to occur
when two flame sheets collide. Here, a flame sheet is defined based upon the isosurface of a

reaction progress variable ¢, defined (for example) as a normalised species mass fraction Y,,:

Y,-Y
c= 04 aR (2)
YaP - YaR

where the subscripts R and P denote reactants and products, respectively. At the moment of

isosurface collision, there exists no flame normal vector i.e. there is a critical point where the



gradient of the progress variable is zero. It is not possible to specify an isosurface value and expect
to capture a collision on an instantaneous basis. However, by searching for the critical points
within the flow all the collisions or “flame-flame interactions” can be found and the corresponding
isosurface values deduced.

The location of each critical point and its associated properties are determined through New-
ton’s method [29] based on a tri—quintic interpolation stencil with global C? continuity. Various
other interpolants of higher and lower order were shown to give very high reproducibility indicat-
ing that the scalar field is well resolved and that the critical points are physical. Due to the large
size of the simulation domain, see section 3, various filtering steps were first used to isolate the
regions in which the interpolant was likely to contain a critical point. This was done first through
tri—linear interpolation of the eight surrounding nodes to ensure that the interpolant of every com-
ponent of the scalar field gradient contained a zero—valued isosurface. The approximate solution
for the critical point location was then calculated based upon a linearisation of the gradient field
around each of the eight nodes. If none of the eight solutions was within the feasible domain, as
defined by the eight nodes plus an additional safety halo region, then it was assumed the three
zero—valued gradient isosurfaces did not intersect within the cell and a critical point did not exist
within it. Otherwise the mean of all feasible solutions was taken as the best estimate of the critical
point location and provided as input to the Newton’s Method algorithm as the first estimate. Ex-
amples of the local isosurface topology around two critical points found in this manner are shown

in Fig.2.

4.1. Statistical Variables

Due to the zero gradient of progress variable at critical points, a Taylor expansion around a

critical point reduces to
T

c(a+x) = c(a) + %g(c(a))x +o 3)



such that the Hessian H(c) describes the local field to second order accuracy. The eigenvalues of
the Hessian are real, giving the curvature along each of the three orthogonal principal axes. Pro-
vided that the orientation is considered to be unimportant, these eigenvalues fully define the local
topology to second order. For instance, Fig. 2a shows two positive and one negative eigenvalue
and is quite different topologically to the situation shown in Fig.2b with two negative and one pos-
itive eigenvalue. Conversion to polar coordinates proves useful for a more effective description.
Equations 4, 5 and 6, where 4; > A, > A3, give latitude ¢ about pole vector [1, 1, 1][e,,, €a,, €1,1"
and longitude 6 about meridian vector [1,0, —1][e,,, €, eh]T with « providing the magnitude of
the eigenvalues, i.e. an overall measure of curvature. Hence 6 and ¢ become shaping parameters
and «x becomes a scaling parameter with dimensions of length=2. The shape factors ¢ and 6 are

normalised to +/- unity.

6= éarctan((/l1 —2 7 /13)1/42] 4
T (A — A3)/22
L+ +2 6232
¢:gmm[< LA+ 3)cosl(6)/ ] -
T (A — A3)/22
k=2 + 2+ 20 (6)

The shape factors define a continuous two—dimensional domain fully describing the range of
local topology of flame—flame interactions. Fig. 4 shows the canonical topology corresponding
to each pair of shape factors in a Mercator mapping at intervals across their normalised range.
Each drawing is coloured using a colourmap ranging from blue for cold (low progress variable) to
red for hot (high progress variable). Hence it is possible to infer the direction of propagation of
each flame element. On this basis, the topologies appearing on the left of the Figure correspond
to outward—propagating spherical flame pockets (“product pocket”), while those on the right are
propagating spherically inwards (“reactant pocket”). The more complex topologies appearing to-

wards the bottom right of centre correspond to cylindrical propagation towards a common axis



(“tunnel closure”, see Fig.2a), while those appearing towards the top left of centre are propagating
cylindrically away from a common axis (“tunnel formation”, see Fig.2b). The background colours
correspond to the signs of the original eigenvalues as shown in Fig 3 i.e. from left to right the
sections denote eigenvalue signs of (- - -), (- - +), (- + +) and (+ + +). The lines between each
colour indicate the locus of points at which an eigenvalue changes sign. This shape—factor do-
main combined with the other relevant variables including «, progress variable ¢ and reaction rate
provide an excellent starting point for gathering statistical data about the flame—flame interactions
found within the DNS database. It should be noted that critical points found within regions of the
domain with progress variable close to either zero or unity and with very low curvature k have

been filtered out.

5. Results and discussion

The DNS datasets described in section 3 were analysed using the methods described above.
It should be noted that the large size of the datasets resulted in a very large sample of critical
points. The spatial datasets for analysis were chosen at an instant in time when the turbulent
burning velocity is close to maximum. A suitable progress variable ¢ was defined using the mass
fraction of H,O. Critical points were identified and recorded together with their corresponding
shape factors, curvature value, and progress variable value. Histograms showing the frequency
of occurrence of all the critical points are shown in Fig. 5 for for the test—cases Da- (left, Da; =
0.13) and Da+ (right, Da; = 0.54). The critical points have been grouped broadly into four distinct
types based on the signs of their eigenvalues, and the type of each critical point is indicated by the
colour of the bar on the histogram. The interaction types are shown in Fig. 4, examples of the
“tunnel formation” and “tunnel closure” events are given in Fig. 2 and all types were explained
qualitatively in Section 4.1.

The plots are bimodal, indicating that critical points are most often found for either low or high
values of the mean progress variable. The relative lack of interactions in the mid-range of mean
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progress variable is clear, and indicates that flame—flame interactions are found most often close
to either the leading edge or trailing edge of the turbulent flame brush. This is to be expected due
to the comparatively large reaction rate in the intermediate range corresponding to a larger rate of
change of progress variable and thus a lower probability of observing an interaction in progress
from a snapshot of the field at a single instance in time. There are clear differences between the
two Damkohler number cases. More interactions are observed in the leading edge of the flame
brush (lower progress variable) in the Da- case, and there are more interactions in the middle of
the flame brush. By contrast, in the Da+ case, most of the interactions take place towards the
trailing edge of the flame brush. The local alignment between the progress variable isosurface
normals and the most compressive principal strain rate is observed to increase from the leading
to the trailing edge [30]. This, coupled with the less than unity Lewis number associated with
lean hydrogen/air mixtures, results in increasing normalized mean conditional scalar dissipation
rate and a corresponding decrease of the normalized mean flame thickness. The net effect is to
increase the the degree of interaction towards the trailing edge of the flame brush. This also reflects
the nature of the local flame structure in each case, with higher Damkdhler number indicating a
more coherent sheet—like structure, and vice versa.

The relative occurrence of each type of interaction is interesting, and is similar for both cases.
It is clear that “pocket” events are relatively rare by comparison with the other two types of be-
haviour, especially over the central portion of the flame brush. The very low occurrence of reactant
pockets at all progress variable locations is a consequence of the transient nature of such an event.
Surrounded on all sides by hot products, the reactants are rapidly consumed [9, 10], making such
events difficult to capture in any single snapshot. Product pockets are more frequent towards the
trailing edge in both Damkohler number cases. Such events also occur close to the leading edge
in the lower Da case, but these are infrequent in the higher Da case. Again this is consistent with
the more sheet—like flame structure at high Da.

A somewhat different perspective is provided by the scatter plot shown in Fig.6. Here, the
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log frequency of occurrence of each pair of shape factors is indicated by the density of dots.
The mean progress variable location is indicated by the colour, which is consistent with Fig.4.
Interaction events are strongly clustered along the lines within the space where the eigenvalues
change sign. These correspond to interactions which are predominantly two—dimensional such
as two ridges meeting or expansion/contraction of a cylindrical tunnel of products/reactants. It is
clear that certain topologies are favoured during flame—flame interaction, and these can be deduced
by comparing Fig.6 directly with Fig.4. In particular, tunnel formation and tunnel closure are
favoured, along with their respective limiting cases of planar interaction either head—on or back—
to—back. The colour shows that the topology is related to location within the flame brush. The
blue regions near the top right indicate that head—on interactions are favoured towards the reactant
side, while the redder regions to the lower left indicate that back—to—back interactions are favoured
towards the product side. The differences observed between the two Damkohler number cases are
consistent with those observed in Fig.5, i.e. there are more interactions at higher values of mean

progress variable in the higher Da case, and vice versa.

6. Conclusions

The topology of turbulent premixed flames has been analysed using a DNS dataset of interact-
ing turbulent hydrogen—air flames. Starting from a general approach to evaluating the topology of
line, surface and volume fields, a method based on the eigenvalues of the scalar Hessian has been
used to find the critical points of a field of reaction progress variable based on H,O mass fraction,
as obtained from the DNS dataset. The full set of possible flame—flame interaction topologies
has been identified, and these have been parameterised using two shape factors derived from the
eigenvalue analysis. The relative frequency of occurrence of all the types of interaction topology
has been extracted from the DNS data. It has been found that essentially cylindrical topologies
corresponding to either tunnel closure or tunnel formation are favoured over topologies that are
more spherical in nature. Differences are observed between the interaction behaviour at two dif-

11



ferent Damkohler numbers, reflecting the repective differences in the local flame structure. There
1s little interaction in the middle of the turbulent flame brush, and most interactions involve either
head—on or back—to—back configurations occurring respectively at the leading or trailing edge of

the flame brush.
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Figure 1: Reaction rate from DNS data of Hawkes et al. [26].
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Figure 2: Examples of flame-flame interactions taken from DNS data.
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Figure 3: Feasible domain of H(c) eigenvalues correlating to shape factors 6 and ¢ as defined in equations 4 and 5.

Quadric Surface Canonical Topology of Flame-Flame Interactions as determined by Shape Factors
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Figure 4: Quadric surface canonical topology of flame-flame interactions as determined by the shape factors. The
boundaries between background colour denote a change in the sign of an eigenvalue.
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Figure 5: 1D Histogram of progress variable at critical points with coloured stacks denoting sign of the eigenvalues.
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Figure 6: Log histogram on ¢-6 domain. Colour denotes mean progress variable c.
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Figure Captions

Fig.1 Reaction rate from DNS data of Hawkes et al. [26].

Fig.2 Examples of flame-flame interactions taken from DNS data.
Fig.2a Tunnel Closure

Fig.2b Tunnel Formation

Fig.3 Feasible domain of H(c) eigenvalues correlating to shape factors 6 and ¢ as defined in equa-

tions 4 and 5.

Fig.4 Quadric surface canonical topology of flame-flame interactions as determined by the shape

factors. The boundaries between background colour denote a change in the sign of an eigenvalue.

Fig.5 1D Histogram of progress variable at critical points with coloured stacks denoting sign of
the eigenvalues.
Fig.5a Lower Da number test-case

Fig.5b Higher Da number test-case

Fig.6 Log histogram on ¢-6 domain. Colour denotes mean progress variable c.

Fig.6a Lower Da number test-case

Fig.6b Higher Da number test-case
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