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1 Executive Summary

The concept of role based access control (RBAC) within the IT environment has been studied by
researchers and was supported by NIST (circa 1992). This earlier work highlighted the benefits of
RBAC which include reduced administrative workload and policies which are easier to analyze and
apply. The goals of this research were to expand the application of RBAC in the following ways.

e Apply RBAC to the control systems environment: The typical RBAC model within the IT
environment is used to control a user’s access to files. Within the control system environment
files are replaced with measurement (e.g., temperature) and control (e.g. valve) points
organized as a hierarchy of control assets (e.g. a boiler, compressor, refinery unit). Control
points have parameters (e.g., high alarm limit, set point, etc.) associated with them. The RBAC
model is extended to support access to points and their parameters based upon roles while at
the same time allowing permissions for the points to be defined at the asset level or point level
directly. In addition, centralized policy administration with distributed access enforcement
mechanisms was developed to support the distributed architecture of distributed control
systems and SCADA.

e Extend the RBAC model to include access control for software and devices: The established
RBAC approach is to assign users to roles. This work extends that notion by first breaking the
control system down into three layers 1) users, 2) software and 3) devices. An RBAC model is
then created for each of these three layers. The result is that RBAC can be used to define
machine-to-machine policy enforced via the IP security (IPsec) protocol. This highlights the
potential to use RBAC for machine-to-machine connectivity within the internet of things.

e Enable dynamic policy based upon the operating mode of the system: The IT environment is
generally static with respect to policy. However, large cyber physical systems such as
industrial controls have various operating modes (start-up, normal operation, emergency, shut-
down and maintenance are typical). The policy enforcement architecture must be able to
support changes in access permissions as the mode of the control system changes. For
example an operator’s role may not allow the operator to shut down a pump during “normal
operation” but that same operator role may be given permission to shut down the pump if the
refinery transitions to “emergency” mode.

The effectiveness of the approach was validated by applying it to the Experion Process Knowledge
System. This is a large commercial industrial control system often used to control oil refineries and
other assets within the oil and gas sector. As a by-product, other industries using Experion
(Pharmaceuticals, Specialty Chemicals, etc.) also benefit from increased security. Policies
representative of those that would be used within an oil refinery were created and validated against the
RBAC model as implemented in the underlying SQL database. The administration of policy is
simplified which in turn makes it practical for security administrators to specify policies which
enforce least privilege. The result is a qualitative reduction in risk. The benefits of the enhanced
RBAC model are clear and as a result, Honeywell is incorporating portions of the RBAC research into
the 2014 release of Experion.

Copyright 2014 by Honeywell International Inc. All Rights Reserved Page 4 of 47
Restrictions applicable to use by or for the U.S. Government: Unlimited Rights



RBAC Driven Least Privilege Architecture for Control Systems

2 Introduction

2.1 Goals and Objectives

The objective of this project was to create and commercialize a role-based access control (RBAC) -
driven least privilege architecture for control systems. The supporting objectives for achievement
include:

e Define a least privilege DCS architecture. The distributed control systems (DCS) architecture
supporting the specification and enforcement of least privilege was defined and documented in the
architecture specification — Role Based Access Control Software Architecture Description,
Version 1.1, Dec 2011. The conceptual model is shown in Figure 1. The architecture applies
user/application layer proxies and IPsec VPNs as a part of the policy enforcement suite. The
system uses existing enterprise authentication server technology to authenticate users. The RBAC
policy model then determines the set of least privileges for the subject in context. The RBAC
function also drives automated key management on encryption devices/functions. The end state
architecture supports network layer encryption. Early in the project the use of application layer
encryption was discussed. However, analysis showed that this was not required if IPsec is used so

that aspect of the architecture was eliminated.

e Create the transition approach. The DCS infrastructure cannot be changed overnight. Once the
end state vision was established, Honeywell developed a transition plan that provides the path for
retrofitting security for legacy devices. The plan moves the RBAC policy enforcement point into
field devices as the components within the infrastructure are replaced. Legacy devices that support
only an all-or-nothing model will be augmented with an application layer proxy in a bump in the
wire (BITW) device during the long transition. The set of privileges specified via RBAC will be

automatically mapped to an application layer proxy/user rights configuration.

e Implement, test and demonstrate. The project implemented an instance of the architecture as a
proof of concept within the Honeywell Experion DCS product. The architecture, design, and
implementation have been subjected to security review by the cyber security team at INL. The
results have been demonstrated to DOE and shown at the Honeywell User Group (HUG)

conference.

e Commercialization. Honeywell and our teammates have made a significant cost share contribution
as part of a larger plan to integrate the results into existing products and services. The Honeywell
Experion® DCS product, developed by Honeywell Process Solutions, is sold to oil and gas
operations critical to our nation’s energy. Honeywell Process Solutions played a significant role in
the commercialization of the RBAC technology. This included support from marketing and
product management, demonstration of the technology at the Honeywell User Group conference

and the engineering team.
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Goals
The goals for organizations adopting the RBAC technology included:

e Improved password management: Provide an integrated set of tools that works with existing
enterprise authentication to allow organizations to use the RBAC solution as a front end to legacy
SCADA and DCS, allowing better password management and strengthening the first line of
defense. The Experion implementation is integrated with a lightweight directory access protocol
(LDAP) server which allows users to use their enterprise password to authenticate access to field
devices.

e Simplified security administration: Providing a control system-centric RBAC model simplifies
assignment of user rights. The asset hierarchy of the control system is integrated into the RBAC
policy model. This reduces administrative workload and associated errors. The administrative
tasks associated with key management are also simplified by relying on automated Public Key
Infrastructure (PKI) based IPsec key management.

e More rigorous privilege definition and enforcement: Providing the ability to rigorously define
roles and operating modes enables organizations to establish and adhere to operating procedures
that enforce safety constraints and reduce undocumented changes to process parameters. For
example, view-only operators assigned to a specific plant area can observe the state of that area of
the plant but not make unauthorized changes.

2.2 Project Summary

The hypothesis of this work was that by adapting the RBAC concepts to the unique characteristics of
the control system environment the result would be a cost effective approach for implementing least
privilege in SCADA and DCS. The security community has long known that the impact of a security
breach (e.g. hostile insider, subverted software) can be minimized by providing subjects (users,
software and devices) only the set of permissions necessary to do their job. The challenge is that
previous security policy mechanisms were very time consuming to configure and difficult to analyze.
Thus, even though security administrators knew the value of least privilege they found that the cost of
implementation was simply too high.

The overall approach for the effort was to combine several concepts within the context of control
systems. These concepts included:

e Layered policy and enforcement

e Permission inheritance via an asset hierarchy

e Permission assignment via parameter types

¢ Insertion of policy enforcement points as near as practical to the resource to be protected.

The conceptual model of the RBAC components which were overlaid upon Experion is shown below
in Figure 1. The components of the model are:
e Policy Decision Point (PDP A.K.A. policy server): This contains the policy database and
engine for converting the policy specification into access vectors.
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o Certificate Authority (CA): This serves as the certificate authority for a local system. It
provides signed certificates to support devices securely joining the network and for
establishing IPsec communications.

e Policy information point: This represents an auxiliary source of data which may be used within
the policy decision point to make access control decisions. Typical information which might be
provided is employee safety training records. If an employee’s safety training is not current,
the employee could be denied access to specific resources.

e Policy administration point: This represents the interface used by the administrator for adding
users and creating or modifying policy.

e Policy audit and analysis: This represents the interface and functions which an auditor would
use to perform analysis of policy (e.g. are there orphan devices?) and track changes to the
policy.

e Communications policy enforcement: This represents the IPsec/ Internet key exchange (IKE)
implementation which is actually distributed between pairs of securely communicating nodes.
The node to node access vector is interpreted on the device and used to drive the IKE
negotiation. IPsec is then used to secure the traffic between nodes.

e Data client: The client represents a node (e.g., an operator workstation) which exchanges
application layer data with a data server.

e Policy agent: This represents a function on a data client which assists in authenticating the
requestor (node, application or user) to the policy enforcement point.

e Data server: This represents an entity which serves data or control functions to a requestor. It
may be a control server which caches data from many control points. It could also be a field
controller (e.g. C300) which provides direct access to control points.

e Application policy enforcement point: This function receives an access vector from the policy
decision point, authenticates an incoming request and applies the access policy to the request.
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Figure 1 The conceptual model of the RBAC system components.

The concept of layered policy enforcement is that policy can be simplified and overall security
enhanced by leveraging the natural layers in the system and creating policy enforcement points
tailored to the characteristics of the layers. The approach used three layers as shown below in Figure

2.

The lowest layer is the node to node communications policy. The principle of least privilege implies
that not every node should be able to communicate with every other node. By limiting which nodes
are allowed to communicate, entire classes of threats can be mitigated. The number of nodes in a
control system is generally orders of magnitude smaller than the number of points and parameters.
Thus, creating policy is relatively simple. The use of IPsec as the enforcement mechanism (policy
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enforcement point) results in access enforcement which is robust and difficult for an attacker to
bypass.

The middle layer provides control over which software can access a remote service or application. The
software may be authenticated (weakly) by its pathname. However, the preferred method is to have
the software identified/authenticated by a commercially available white listing product and then use
RBAC policy enforcement to control the access the software is given.

Clientrole | yser or application executing R Server
User | 1N the context of a user. J Object
Object access
enforcement point
Application | Application (HMI or non-HMI) -=--------- Application Application
i Application access
Policy Agent - = -=--~- enforcement point
Node |IPSec sl=isissl=sisssisissslssisisisisis IPsec Node
Node Node

Figure 2 The RBAC layered enforcement model

The upper layer enforces the user role access to security objects which are typically points and
parameters within the control environment. Within control systems the number of user roles is
relatively small (typically much less than 100) while the number of security objects may be tens or
hundreds of thousands. This scale is addressed by applying an asset hierarchy and parameter types as
described below.

The asset hierarchy provides a logical grouping of the points within the control system and thus allows
the security administrator to assign permissions to the related points quickly and easily. The boiler
shown in Figure 3 represents a typical plant asset. The security administrator may assign the operator
role access to the boiler and the operator inherits permission to all of the points (pumps, valves,
temperature set points, etc.) assigned to the boiler asset. The administrator is able to modify
permission to a specific point through the use of Exception and Constraint mechanisms.
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Figure 3 The boiler represents an asset with many points under it

Points within a control system have parameters associated with them. Typical parameters types are

e Set point: The target value for the physical property being controlled. E.g. hold the temperature
at 220 degrees.

e Current value: The current value for the physical property (215 degrees)
e High alarm limit: Trigger an alarm if the value rises above this limit.
e Low alarm limit: Trigger an alarm if the value drops below this limit.

The example above illustrates that for a single point (boiler temperature) there may be multiple
parameters. The safe operation of a DCS implies that access to these parameters should be different
for the various roles. For the example above, the roles and their accesses could be as follows.

e View only operator: This role is able to view the operation of the plant but not change
anything. This role would be given view only (read) access to all 4 parameters associated with
the boiler temperature point.

e Operator: The operator is responsible for day to day operation of the boiler so the operator role
is given write access to the set point. The operator has read only access to the other parameters.

e Engineer: The engineer is responsible for safe operation of the plant but not day-to-day
production. The engineer is given the ability to set (write) the high alarm limit and low alarm
limit but the role is only given read access to other parameters.
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The discussion above highlights the fact that a role may have access to a point but the permission to
access the parameters is a function of the role. Thus, within the DCS environment the RBAC model is
modified to provide two sets of orthogonal access permissions which are then ANDed together. This
unique aspect of orthogonal access permissions shaped the planned tasks, and in particular the policy
model research described in Section 4 - Access Control Model.

2.3 Planned Tasks

The work was broken down into three major phases.

Research
This focused on defining the problem and outlining the theoretical work necessary to advance the
state of the art. The research phase goal was to produce documentation for secure remote access
control architecture for control systems using an RBAC model to identify and enforce least
privilege. A transition plan for a moving toward the secure architecture, recognizing the long
lifetimes of control system equipment, was also documented. The team developed requirements
and an architecture by exploring both uses cases and the threats to the system. The requirements
highlighted the need to extend existing access control models to address the control system
environment. The Information Trust Institute (ITI) at the University of Illinois led the research
regarding policy models.

Detailed Design and Development
This focused on taking the research results, requirements and architecture defined during the
research phase and translating them into running code in the context of the Experion system.
Honeywell Labs worked very closely with the Honeywell Process Solutions (HPS) business unit
to support insertion of a subset of the RBAC technology into the Experion RBAC prototype. This
implementation includes:
* User interface tools for specifying RBAC policy.

* Interface mechanisms to an LDAP enterprise authentication server to support RBAC.

* A Bump In the Wire (BITW) proxy function which applies user rights management to
remote access attempts to a legacy field device.

* A certification authority to support RBAC driven key management.
» Embedded cryptography, based upon IPsec, for secure communications between nodes.

The functions above were integrated to produce a prototype Experion based system capable of
demonstrating the application of RBAC to provide least privilege.

Test, Evaluation and Demonstration
This phase delivered the prototype system to Idaho National Labs (INL) for security testing by
their red team. Demonstrations of the system were performed for DOE as well as Honeywell
leadership in order to stimulate commercial adoption of the technology. Honeywell is
commercializing the technology.
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The specific tasks planned and executed for each phase of the program are introduced below.

Research

Task # Title Description

1.01 Project kick off | Project start-up tasks including setting up the collaboration
environment, configuration management repository, and updating the
literature search.

1.02 Least privilege | Developed and documented the RBAC-driven least privilege

architecture architecture. The output is the end-state vision.

1.03 Requirements The requirements for the system functions were developed in parallel
with the architecture. These requirements include those for the RBAC
enhanced authentication/authorization server, RBAC policy
specification, continuous validation key server (certification authority),
proxy server (BITW) and embedded cryptography (IPsec).

1.04 Network design | Developed and documented the network design and the migration plan

and migration for transitioning from the existing insecure control system environment
to one supporting the RBAC-driven least privilege architecture.

1.05 Phase 1 Provided support for all reviews internal to the project team as well as
Reviews those with the customer.

1.06 Phase 1 Program management provided for all management aspects of the
Program research phase including cost, schedule and performance tracking. The
management first subtask under the program management task was to update the

project plan based upon contract negotiations.

1.07 UIUC Phase 1 | Work done at UIUC. The initial subtasks included Real time RBAC
with continuous validation, RBAC learning, review of the architecture
and migration plan, participation in team meetings/reviews and program
management for the UIUC portion of the effort. These were adjusted as
the requirement and architecture matured.

1.08 INL Phase 1 Work to be done at INL. The subtasks included leading a cyber security
review of the architecture, review of the migration plan, and a review of
the continuous validation approach (IPsec). INL also participated in
program reviews.

Development

Task # Title Description
2.01 Authorization Detailed design and implementation of the RBAC authorization server
server (A.K.A. Policy Distribution Point (PDP)) integrated with an enterprise
authentication server.
2.02 RBAC key Detailed design and implementation for the RBAC key server (A.K.A.
server Certification Authority). This work was initially to extend the existing
Honeywell One Wireless key server. However, the certificate authority
based design was selected because it is more scalable.

Copyright 2014 by Honeywell International Inc. All Rights Reserved

Restrictions applicable to use by or for the U.S. Government: Unlimited Rights

Page 12 of 47



RBAC Driven Least Privilege Architecture for Control Systems

2.03 Proxy framework | Detailed design and implementation for the RBAC proxy that will be the
policy enforcement point for legacy control devices that cannot enforce
fine-grained user access rights. This proxy was implemented as the BITW
device which provides access control at the device, application and user

levels.
2.04 Embedded Cryptographic functions in a device or software function. The team
cryptography explored working with Topic Area 5 — Secure Communications team to

jointly implement their solution in a device or function. However, the
RBAC model required dynamic connection management to provide timely
enforcement of policy changes. Therefore, the team selected an IPsec/IKE

approach.
2.05 Network system | Integration of the technologies above as well as the UIUC development.
integration The result is a functional system that demonstrates the end-to-end RBAC
solution on a commercial product.
2.06 Phase 2 Reviews | Support for all reviews both internal to the project team and with the
customer.
2.07 Phase 2 Program | All management aspects of the research phase including cost, schedule and
management performance tracking.
2.08 UIUC Phase 2 Work to be done at UIUC. The Phase 2 subtasks included RBAC user

interface and engine, design and development support for the RBAC key
management, reviews of the Authorization Server, Proxy Framework, and
Application Layer Cryptography. (The application layer cryptography task
was dropped because IPsec met the requirements.) In addition, UIUC
participated in reviews and made design and implementation updates
driven by output of the INL security reviews.

2.09 INL Phase 2 Work to be done at INL. The subtasks included a security design review
and a complete system security review of the resulting design integrated
into a Honeywell control system. INL also participated in program reviews

Test, Evaluation and Demonstration

Task # Title Description
3.01 Demonstration plan This task provided for the development, analysis and implementation
and implementation of the demonstration plan.
3.02 Commercialization This task developed the commercialization plan for taking the RBAC
plan technology to market. The plan takes advantage of the existing

Honeywell Experion product which is already deployed in the electric,
oil and gas industries.

3.03 Phase 3 reviews This task provided support for all reviews internal to the project team
as well as those with the customer. The demonstration and final
project review were addressed within this task.

3.04 Phase 3 Program All management aspects of the research phase including cost,
management schedule, and performance tracking.
Copyright 2014 by Honeywell International Inc. All Rights Reserved Page 13 of 47
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3.05 UIUC Phase 3 Work to be done at UIUC. The Phase 3 effort focused on support of
the demonstration and commercialization tasks.
3.06 INL Phase 3 Work done at INL. The INL security team performed security testing
and provided a report of the results.
2.4 Problems and Challenges

The significant research challenges worthy of further consideration by DOE are:

Integration of safety and security: Safety frequently requires a fail open model. E.g.
If there is an emergency within a refinery, the security controls should open thus,
allowing the operator access to any controls necessary to save lives and minimize
damage to the plant. In contrast, security controls generally favor a fail closed policy.
i.e. If the subject cannot prove they are authorized access, then access is denied. The
short term solution to this will be to allow customers to configure their RBAC either
for a fail closed or fail open policy. However, research is required to create integrated
safety and security risk models as well as create mechanisms which reduce or eliminate
the either/or conflict between security and safety.

Usability of security systems: One of the barriers to the adoption of least privilege in
the real world is the added complexity, time and cost associated with creating,
analyzing and maintaining fine grained access control policies. This project made
significant progress on this front by integrating the asset hierarchy and the parameter
constraints with the policy model. However, as an industry, more needs to be done to
provide a unified and simplified means of specifying least privilege policies in
complex, safety critical environments.

IPsec interoperability: IPsec has been a standard for over a decade but interoperability
problems still exist. Defining a clear IPsec profile, which we did, using only a small
subset of all possible IPsec variations is critical to achieving interoperability. An
example of the interoperability challenges that remain is that we were not able to use
IKEV2 because to this date it is not supported by Microsoft in transport mode. This is
not so much a research issue but a problem which needs to be worked within the
standards community.

The significant deviations from the original plan and the impacts are:

Continuous validation: The UIUC team had originally planned to do work in the area of
continuous validation. Early thoughts were that some mechanisms would be in place to
continuously validate that a subject (e.g. user) was who they claimed to be and that they were
still authorized access. However, as the design emerged the team concluded that IPsec together
with TCP provided packet and stream integrity which provided continuous authentication
across the network. The access revocation mechanism, which could be triggered by a policy
change (e.g. removing a user from the LDAP directory or changing permissions), ensured that
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policy changes were quickly propagated. Therefore, continuous validation as a research task
was addressed without significant expenditure of resources.

e Policy learning: One of the original research goals was to simplify policy administration by
allowing the RBAC system to monitor network traffic and learn policy from existing
(functioning) control systems. However, the team quickly learned that many aspects of the
policy, though very important, are exercised infrequently. For example, an operator may only
access controls for some valves and pumps during an emergency situation. Since emergencies
are rare, it is not practical for the RBAC system to learn which policy should be enforced
during an emergency. Therefore the team was forced to move toward an approach in which the
administrator manually specifies the access rights of various roles. The team was able to
reduce the administrative burden by leveraging existing roles, the Experion asset hierarchy and
other structure within the control systems.

e Lemnos: The team originally hoped to use the Lemnos device (Schweitzer SEL-3620) as the
mechanism for providing secure communications. However, discussions with SEL revealed
that the device did not have an application programming interface (API) which supported
dynamic policy management. i.e., there was no way for the RBAC Policy Distribution Point
(A.K.A. policy server) to push new IPsec policy to the SEL-3620 without direct human
intervention. Thus, the team was forced to use IPsec and use the RBAC access vector
distribution mechanism to distribute IPsec polices to nodes in near real time. The team was still
able to leverage a vast amount of work done by the security community to develop and deploy
IPsec. One noteworthy feature of Lemnos is that it provides local user authentication while the
RBAC BITW device uses the LDAP server. The Lemnos model is appropriate for SCADA
environments in which communications to the LDAP server may not be available.
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3 Products and Technology Transition

The transition of the technology involves multiple aspects.
e Listening to the customer and incorporating their requirements and feedback into the
technology development
e Implementing technology within a commercial product
e Communicating technology to the research and user community
e Protection of Intellectual Property

Customer Focus
Honeywell has obtained Experion specific customer requirements, reviews and feedback throughout
the program to guide the implementation of the RBAC functions within the Experion product. The
benefits to the customer can be found in the section titled “Security Benefits”. The list of customer
interactions includes:
e One-on-one interviews with major energy sector customers and Honeywell Specialty Materials
for voice of the customer requirements gathering
¢ One-on-one briefing to a major energy sector customer followed by a design review
Presented RBAC at the Honeywell User Meeting in Brussels which included major energy sector
customers resulting in excellent feedback for the product.
e Briefings to customers at the Honeywell User Group (HUG) meeting in June 2013.

Security Benefits

The incorporation of RBAC into a DCS results in the potential to reduce risks for the oil and gas
sectors. Honeywell has communicated these benefits to the research community as well as to Experion
customers. Qualitative risk reduction is achieved as products incorporating this technology are
incorporated into our energy infrastructure. Figure 4shows classes of high level attacks and the RBAC
mechanism which provides effective countermeasures to those attacks.

The list of technologies and techniques which contribute to security and usability includes:

» Policy model and user interface make fine grained access control policy easy to specify
- The policy specification makes use of structure and tools already present within the

control system. For example, the existing asset hierarchy allows logical grouping of
security permissions. The integration of RBAC with the enterprise authentication
system (e.g. Windows Active Directory) allows the administrator to define lists of users
in one place. The users may use the same authentication mechanisms including multi-
factor authentication for access to the control system and enterprise functions. Thus,
administrators are more likely to set a least privilege policy because the workload is
manageable.

» Control is provided at the device, application and user level
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Device level control is coarse grained and therefore less burdensome to administer than
other fine grained mechanisms. The cryptography used within IPsec (Advanced
Encryption Standard) is strong and the IPsec protocols are mature. Application level
access control prevents authorized users from using unauthorized applications to access
remote resources. Finally the user level access control makes it possible to control
access to specific functions or points in field devices as opposed to the all or nothing
model of many legacy devices. The result of integrating these technologies is a defense
in depth approach which requires many attacks to penetrate multiple layers of security
controls.

* Policy changes are propagated in less than 15 seconds

The policy distribution mechanism actively pushes new access vectors to the policy
enforcement points when a policy change occurs. If a device is offline, the change is
propagated when the device comes back online. The result is that permission changes
are rapidly propagated and the window of vulnerability is reduced.

« Policy enforcement is pushed to end devices such as the BITW/Modbus and C300 vs. just
in the server

Many traditional control systems enforce access permissions at a server near the head
end. However, legacy devices in the field lack local policy enforcement mechanisms.
As a result, an attacker who is able to bypass the server at the head end is often granted
unrestricted access to field devices. The RBAC architecture and implementation places
policy enforcement points very close to or within the field devices so that attacks from
downstream of the server are reduced.

e |IPsec, Whitelists and LDAP are integrated

Historically many security vulnerabilities occur at the seams within systems. E.g. the
set of mechanism results in gaps in the security coverage or the interface to a security
mechanism makes invalid assumptions. The integration of IPsec, application
whitelisting and LDAP within the RBAC system provides a more (but not completely)
seamless security approach. Two secondary benefits of integrating LDAP are:
» User accounts are not duplicated. i.e., Once within the enterprise and second
within the control system.
e Advanced authentication techniques, such as two factor authentication, which
may be supported in LDAP are inherited by the control system.
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Potential Attack Application | Device | Secure
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Unauthorized node joining the network
Eavesdropping on traffic
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Figure 4 Potential cyber attacks thwarted by RBAC mechanisms.

The Experion control system environment was used as a base for prototyping the RBAC technology
and serves as a vehicle for moving the technology into the marketplace. Experion is an established
product already being used in oil, gas and electric power generation. Thus, users do not need to rip out
existing products and processes to upgrade to higher security and simplified administration.

The Honeywell C300 controller is a state of the art process controller that can also operate as a
programmable logic controller (PLC). The outputs of the C300 controller control the actuators in a
process environment. The process sensors interface to the C300 for providing data from measurements
such as temperature and flow. The C300 was enhanced to provide RBAC policy enforcement (node,
application and user) in the prototype system.

The RBAC technology is being rolled out in the Experion product in stages It is expected that

competitive pressure in the market will encourage other control system vendors to match Experion’s
new security features.

Commercialization
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Honeywell has implemented some of the RBAC technology within the Experion product. Honeywell
is actively engaging customers to assist in defining future product features. Please see the RBAC
Driven Least Privilege Architecture for Control Systems Commercialization Plan for more
information.

Outreach
Honeywell has communicated information regarding the research to the community through the
following channels.

e The team wrote about the need for cyber security in control systems in the article “Staying in
Control” published in the Jan/Feb 2012 edition of the IEEE Power & Energy magazine. The
team wrote several papers regarding the technology (e.g., Role-Based Access Control for
Distributed Control Systems submitted to IEEE Transactions on Dependable and Secure
Computing) which were not accepted. The team has submitted an abstract entitled “Next
generation access control for distributed control systems”, to the IEEE Security and Privacy
special issue on Energy Sector Control Systems. The team is waiting for feedback on this
submission.

e The team provided a briefing on the RBAC technology to the National Electric Sector
Cybersecurity Organization (NESCO) in April 2011.

e The team presented a poster at the Honeywell technology symposium in May 2011.

e The team presented an RBAC poster at the Trustworthy Cyber Infrastructure for the Power
Grid (TCIPG) workshop in Oct 2012.

e The team presented a briefing and poster at the Cybersecurity for Energy Delivery Systems
Peer Review in July 2012.

e UIUC presented a paper titled “A Framework Integrating Attribute-based Policies into Role-
Based Access Control” at the ACM Symposium on Access Control Models and Technologies
(SACMAT ’12).

Patent Applications
The research resulted in two inventions:
e The application of role based access control within the control system environment, and in
particular the late binding aspect is the subject of US patent application 13/682428, “Role-
Based Access Control Permissions”, filed on November 20, 2012.
e The use of RBAC concepts to provide automated key management is addressed in the
invention disclosure “Policy Based Secure Communication with Automatic Key Management”
which was disclosed to DOE in Jan 2013. Honeywell is in the process of preparing a U.S.
patent application to be filed within the next few months.
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4 Access Control Model

Before discussing the RBAC model developed in this project we provide an overview of a Distributed
Control System (DCS, hereafter) that motivated this model and capture its important characteristics
and requirements for an access control model. We then describe a concrete RBAC model and policy
enforcement framework, tailored for DCS and discuss its performance evaluation. We then describe a
formal and more generalized RBAC model that goes beyond meeting DCS requirements and
integrates attributes into RBAC.

4.1 Requirements

A DCS is typically organized into multiple hierarchical levels from the highest (Enterprise) level to
the lowest (Control module) level, as described in the ISA-88 and ISA-95 standards. An abstracted
view of a hierarchical DCS system with four levels is shown in Figure 5. The lower levels are further
organized into groups based on the geographic or logical organization of an industrial plant. In the
given example, the plant is divided into two “controller zones”, Zone A and Zone B, at the supervisory
level. A controller zone groups logical and physical assets that share common controller objectives and
requirements. Although not shown in Figure 5, these zones could be further divided based on
processes at the lower levels. At the lowest level, Level 1, are controllers that interface with, monitor,
and control the physical processes. Each controller runs many control algorithms, also referred to as
control blocks or points. There are different types of points or control blocks; PID (Proportional-
Integral-Derivate) is one such type. Each point, based on its type, has a set of parameters associated
with it that are used by the control algorithm. Examples of parameters include process variables, set
point limits, output limits, alarm limits, and alarm-enabled state. At the next level, Level 2, are
supervisory devices that allow plant operators, engineers, and managers to monitor and control the
physical processes by accessing the controllers. The devices include operator consoles that act as the
human machine interfaces (HMI) and data caches that cache sensor data to provide faster access to
field device data. The use of the data caches also minimizes the number of data reads/writes performed
directly on the controllers, reducing their workload. Level 3 represents operations management and
includes dispatching, production scheduling, reliability assurance, plant-wide control, and
optimization. At the topmost level, Level 4, is the enterprise system that is used for business planning
and logistics.

The RBAC requirements are driven by the following characteristics of the DCS environment.

Large number of security objects and permissions: A typical DCS might have tens of
controllers, with each controller having thousands of points, and each point having tens of
parameters. Each point and its parameters have multiple available operations (e.g., read,
write, and configure). That creates an explosion of security objects and permissions, making
their management and assignment tedious and error-prone. Further, access to and allowable
operations on a point parameter are limited by an entity’s access to the point itself.
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Requirement 1. An RBAC solution must provide compatible and easy means to migrate and
capture existing point and parameter objects, and leverage the access relationships between

them. Further, it should ease the specification and management of security objects and their
permissions.

Enterprise system
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Figure 5 DCS overview with RBAC components

Well-defined job functions and access patterns: DCS and process control systems in
general have well defined and relatively stable basic job functions, with well-defined access
rights or access right patterns within a system context. For example, operator and engineer
are well-understood job functions in the DCS community and are well-defined within a given
process control context. An operator is typically only allowed to modify operational
parameters, whereas an engineer is typically also allowed to configure control algorithms.
Users performing those job-functions are often limited in scope of responsibility to logical
control entities (e.g., a cracker) of the plant corresponding to sub-processes.

Further, in a DCS system, access patterns on the parameters are the same for a given job

function regardless of the individual points they are associated with. For instance, suppose an
operator is given responsibility for monitoring control points A, B, and C, each of which uses
a parameter “set point limit (SP)”; then the operator would have the same access rights to the
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set point limits on all three points, i.e., A.SP, B.SP, and C.SP. The second requirement insists
that an RBAC solution exploit the access patterns mentioned above:

Requirement 2. An RBAC solution should leverage the presence of well-defined job functions
and associated access right patterns to ease the specification and management of roles and
objects.

Hierarchical organization of security objects: DCS systems are typically organized
hierarchically, with both logical and physical groupings based on controller objectives,
geographic location, or plant organization among other things. A logical grouping of control
objects, such as points that correspond to a part of the control system entity, is typically
referred to as a control asset. For example, in an oil refinery setting, a “cracker” or a “boiler”
can be a large control entity (itself represented as an asset) controlled by several “control
loops,” each with some number of points. Relationships like that lead one to organize control
assets within a tree hierarchy (see Figure 7). A system asset, on the other hand, represents the
physical grouping of the actual field devices and server machines, including operator
consoles, HMIs, and controllers. These are also organized in a hierarchy, reflecting their
positions within the network. An operator monitoring a part or a control entity in the plant
typically has access, at a predefined level, to all the control and system assets associated with
the control entity, with a few exceptions.

Requirement 3. An RBAC solution should support a hierarchy of object groups and
permission inheritance in the hierarchy. Further, it should support multiple exceptions to
permission inheritance in the object hierarchy.

Station-based or application-based access: Station based security is a commonly used
access model in DCS. Under station-based access control, console stations are preconfigured
to have a certain level of access to some assets within the plant, each connected to specific
parts of the control system. An operator with access to a particular console station gets all the
access rights the console station has. Typically, the zone in which the station is located
determines what assets it can access. While station-based access control does not enforce
least-privilege, it does capture important access constraints that should be considered when
determining the effective access level of an operator. This notion of contextual access control
also applies to DCS applications (e.g., an HMI application) that operators use to make
requests. An application could have a more restricted level of access to some assets, affecting
the effective access level of an operator while requests are being made through it.

Requirement 4. An RBAC solution should support station-based and/or application-based
access constraints.

Real-time and safety-critical system: Many DCS systems have real-time and safety
requirements. Correspondingly, access control mechanisms should add as little latency as
possible to system operations. For example, cross level interactions should be minimized.
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4.2

Further, a failure in the access control system components should have minimal interference
with the way operators perform their daily operations.

Requirement 5. With all of the RBAC mechanisms in place, the additional operation time to
complete a control or administrative request, or the additional response time for an operation
failure, shall be less than a few hundred milliseconds.

Requirement 6. DCS downtime resulting from a failure in the RBAC solution should be
minimized and have minimal interference with the daily operations of the safety critical
functions.

DCS-RBAC Policy Model

To address the various features of DCS, we designed DCS-RBAC model. At a high level,
DCS-RBAC

e uses proto-permissions and proto-permission groups instead of traditional permissions
that associate an operation with an object;

e uses proto-objects, object groups, and an object group hierarchy; and

e supports exceptions to permission inheritance in the object group hierarchy, among
other things.

Different from roles in the standard model, a role in DCS-RBAC associates a group of proto-
permissions with a group of objects; a role also associates a Scope of Responsibility, together
with proto-permissions to determine the instances of permissions. In addition, standard roles
are expanded to application roles and device roles, allowing applications and devices to be
assigned to their own roles and have permissions. A high level view of DCS-RBAC policy
model is illustrated in Figure 6.
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Figure 6 DCS-RBAC. Blue boxes show our additions/changes to the basic RBAC model.

Key Concepts
Some key concepts are given as follows.

Proto-permissions. A proto-permission pp (id; type; op; objType) associates an operation
(op) with an object type (objType); by contrast, traditional models associate an operation with
a specific object instance. Through type, we classify whether a proto-permission is of type
“point,” “parameter,” or “administrative.” Below is an example set of proto-permissions for
DCS:

pp(1, point, view information, point)

pp(2, parameter, write, PI1D.SP)
pp(3, administrative, configure settings, system flex station).

In the example above, pp 1 is a “point permission” that allows the “view information”
operation to be

performed on objects of type “point”; pp 2 is a “parameter permission” that allows the
“write” operation to be performed on objects of type “PID.SP,” where PID is a point type and
SP is a parameter. A proto-permission can be applied to any object with the proper object
type. The advantage is that the number of proto-permissions to manage is much smaller than
the number of classical permissions that would have been needed. That is intended to satisfy
Requirement 1. We note that this style of notation is used throughout the paper to represent
records in the relational database, and should not be confused with functions.
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Proto-permission groups. A proto-permission group (ppg) gathers proto-permissions,
capturing typical access patterns associated with DCS job functions such as “operator,”
“supervisor,” “engineer,” and “manager.” By grouping proto-permissions, a proto-permission
group serves as a base template for a role.

Subjects. In our view, a “subject” exercises permissions, and so might be a human user, a
particular device, or a software application. Subjects are assigned to roles, with different
types of roles being defined for the different types of subjects.

User/application/device roles. Arole r in DCS-RBAC is created with reference to a proto-
permission group: r(id; name; type; ppg:id). r:type designates a user, application, or device
role. The specific objects for which a role has permissions are discovered through use of
scopes. A scope, denoted by sc, associates roles with object groups; scopes are explained
further later in this section. Conceptually, a role has a set of proto-permissions, and an
associated super-set of objects that contains all objects to which those permissions can be
applied. A match between a proto-permission’s object type and the type of a specific object
gives the role access to that particular object, in accordance with the operation specified in
the proto-permission. Together these features reduce the burden of managing a large number
of permissions and allow us to leverage the common job functions and access patterns present
in the DCS, satisfying Requirements 1 and 2. Furthermore, with proto-permission groups,
role instantiation and management become easier and stay consistent with respect to the given
job function: if a proto-permission is added (or removed) from the proto-permission group,

all roles that derive from this group will automatically be updated. An example set of roles for
a “Controller Zone A” follows:

r(1, Zone A Distillation Column Operator, user, operator ppg.id)
r(2, Zone A HMI, view only, app, hmi ppg.id)
r(3, Zone A Level 3 Control Station, device, Ivl 3 control station ppg.id).

Role 1, for example, is the “Zone A Distillation Column Operator” user role that inherits all
proto-permissions from the “operator” group (operator ppg). Likewise, Role 3 is a “Level 3
Control Station” device role that inherits proto-permissions from Ivl_3_control_station_ppg.
Application/device roles (roles 2 and 3) provide an intuitive, efficient, and fine-grained
means to constrain the permissions that a user obtains when using a certain device or
application. Without it, the role engineer would have to specify permissions for every
possible combination of devices and applications for a given user role.

Assets and asset hierarchies. We borrow the term asset from DCS and use it synonymously
with an object or object group. An asset has a type associated with it, indicating whether it is
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a “control” asset or a “system” asset: a(id; name; type; treeld). For system assets, type may
indicate more specific system assets like “console station,” “flex station,” “controller,” and so
on. Systems of interest to us may have large number of assets, which are best handled
through a well-structured hierarchy. Significant efficiencies in expressing permissions may be
obtained by taking as the default assumption that permission granted to a role for an asset
extends to all assets that are lower in the hierarchy. We express asset hierarchies using the
treeld that shows where the asset is positioned in the asset hierarchy; this allows one to easily
work out the hierarchical (parent-child) relationship between assets, and satisfies
Requirement 3. Some example assets and asset hierarchies are shown below:

a(1, Control Assets, control, 1)

a(2, Zone A, control, 1.1)

a(3, Zone B, control, 1.2)

a(4, Cracker, control, 1.1.1)

a(5, Distillation, control, 1.1.2)

a(6, Control Loop 3, control, 1.1.2.1)

a(7, System Assets, system, 2)

a(8, Zone A, system, 2.1)

a(9, Stations, system, 2.1.2)

a(10, Zone A Console Station, system console station, 2.1.2.1)
a(11, Zone A Flex Station, system flex station, 2.1.2.2)
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Figure 7 Control asset hierarchy example

Assets 1 to 6 are control assets, and assets 7 to 11 are system assets, where assets 1 and 7
represent the root assets in the two asset hierarchies. In the control asset hierarchy, “Zone A”
(1.1) consists of “Cracker” (1.1.1) and “Distillation Column” (1.1.2), where Distillation
Column is controlled by “Control Loop 3” (1.1.2.1). Figure 3 illustrates that control asset
hierarchy. Similarly, in the system asset hierarchy, “Zone A” consists of “Consoles,” and
“Stations.” Notice how the a:type for some system assets are more specific and indicate what
the actual object types are (e.g., system console station). The reason is that the administrative
proto-permissions are defined in terms of those system assets, which do not have any finer-
grained objects (like points) associated with them. In comparison, a control asset, which is a
logical grouping of control objects, never represents an accessible object or object type in
itself; it may have (control) points assigned to it, though, and these points represent the
objects on which the proto-permissions can be used.

Objects and proto-objects. In DCS, RBAC protects control points and their parameters. We
use pt to denote a point: pt(id; a:id; name; ptt:id). Each point references a type through ptt:id,
and each type is associated with a set of parameters par. Each ptt-par combination, denoted
by pttPar, represents a separate object; the reason is that a parameter, when associated with
two different point (control algorithm) types, technically becomes two different parameter
objects. pttPar is not a full object, however, since it is always bound to a point; such ptt-par
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4.2.2

combinations are referred to as “proto-objects’ in DCS-RBAC, and can be grouped together
with point type. That is possible in DCS because a job function typically has the same access
patterns for parameters regardless of the points to which they get assigned (see Requirement
2). For instance, an operator typically has a write access to the Set Point (SP) of a point type
Proportional Integral Derivative (PID). That implies that for any point with point type PID,
the operator can access its SP parameters. Grouping of proto-objects eases the object creation
and management processes, requiring one to assign a small number of group identifiers
(ptt:id) to the parent object (pt) to model a large number of associated attributes (pt:pttPar).

Exceptions. We support modifications to the default inheritance of proto-permissions by
adding an exception e to the scope: e(sc:id; a:treeld; ppg:id). A new proto-permission group
is specified through ppg:id. One understands the complete proto-permission assignment as
starting with the default, modified by changes expressed in the exceptions. This meets
Requirement 3.

RBAC policy relational database schema

A relational database schema for DCS-RBAC is shown in Figure 8.
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Figure 8 Relational database schema for DCS-RBAC
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e Record RPPA links a role (with identity code r:id) directly with a proto-permission (with ID
pp:id), capturing the additional proto-permissions (ones that are not part of the base proto-
permission group) that the role can have. The R and PP records to which these IDs refer have
the corresponding index values in their id fields, as is suggested by the links between records.

e Record S (subject) codes a user (a human, a device, or an application), giving it an identity
(id), describes the type (human, device, or application), and an external identifier.

e Record SRA assigns a subject to a role, using s:id to index the subject record and r:id to index
the role description.

e Record R (role) has an id that identifies it to the RPPA relation and the S (scope) relation. It
has a unique textual name field, and references its base proto-permission group through the
index ppg:id. It also has a type indicating whether it is a user, device, or application role.

e Record PP describes a proto-permission, giving it a unique index in field id, a type of proto-
permission in field type, the operation allowed (described in field op), and the type of object
that this proto-permission addresses.

e Record PPG gives a name and an id to a proto-permission group. Various assignments of
proto-permissions to this group reference it through this id field.

e Record PPGPPA describes the assignment of the proto-permission (whose ID is pp:id) to a
proto-permissions group, whose ID is ppg:id. This arrangement supports many-to-many
linkages between proto-permissions and proto-permission groups.

e Record SC (scope) has a unique identifier id, identifies the role whose scope is through the
role index r:id, and refers to a parent node in the asset hierarchy through code a:treeld.

e Record C (constraint) places restrictions on the use of proto-permissions. It points to a
particular scope through field sc:id, and to the subtree of assets affected by the constraint
through field a:treeld. The proto-permission is identified by index field pp:id; field type
describes the constraint with labels such as “temporal” or “mode,” and field constraint gives a
specific textual description (e.g., 7:00-18:00).

e Record E (exception) is used to allow modifications to a role’s base proto-permissions group.
The scope being modified is identified through field sc:id; the asset subtree to which the
exception is applied is identified through field a:treeld; and the group of proto-permissions
used to replace all those formerly applied to that subtree is identified through field ppg:id.
Multiple exception records may exist that point to the same scope record through sc:id.

e Record A (asset) has a unique identifier id, a textual name describing use (e.g., “Zone A”), a
code treeld pointing to the asset’s position in the asset hierarchy, and a type.

e Record PT (point) has a unique identifier id, a position a:treeld pointing to its location in the
asset hierarchy, a textual name, and an index to a point type. Although we do not discuss
composite points (points with multiple point types) in this report, they can be modeled easily
through a data structure that supports many-to-many relationships between point types and

points.
e Record PTT describes a type for a point, with unique identifier id, and name of the point type
in field name.
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e Record PTTPAR is used to support many parameters a point type may have, and represents
the proto-objects. It points to a specific parameter through index field par:id, and to a point
type through index field ptt:id. A point, by referencing a point type, is also linked to the
parameters.

A role’s scope identifies a set of objects against which its proto-permission object types are matched
to discover the objects (and operations on them) it can access. We explain later how this discovering
process is managed by the policy decision point (PDP). The structure of the asset hierarchy means that
it is simple to describe the scopes compactly. An asset and all of its descendents are described by the
hierarchy coding of that asset; e.g., in our earlier examples, 1.1.1 is code for the control entity Cracker
in Zone A. A role’s scope may include a number of asset subtrees, and so is coded in the database as a
list of scope records, one for each subtree.

The database schema supports discovery of all of a role’s effective permissions to access assets,
points, and parameters, and generation of “access vectors” used by the policy enforcement points
(PEPs). The generation algorithm visits every control asset in the role’s control scope, and, for each
asset, fetches the associated points. For each point, it fetches the pttPar records (proto-objects) that
have the matching point type. It also fetches every system asset in the role’s administrative scope. All
of these objects represent the accessible objects in the access vector. On top of those, the algorithm
gets the role’s scope records and the base proto-permission set (PP records) as well as the exceptions
and new proto-permission sets associated with each exception. To grant access, the PEP searches the
list of accessible objects and looks for a match of the object type with those given in the role’s proto-
permission sets. For a given proto-permission pp:

e if the PEP is examining a system asset a, and asset type a:type matches pp:objType, then the role
may apply operator pp:op to a;

e if the PEP is examining point pt, and pp:objType is identically “point,” then the role may apply
operator pp:op to pt;

e if the PEP is examining pttPar, and pttPar matches pp:objType, then the role may apply operator
pp:op to pttPar bound to the PT record that references the PTT record.

4.2.3 RBAC Policy Enforcement Framework

Figure 5 shows the placement of typical authorization framework components: the centralized RBAC
Server is the policy decision point (PDP) that is responsible for managing the RBAC policy database
and making policy decisions; each controller zone has its own policy enforcement point (PEP) that
enforces the policies. In our architecture, the PEP mediates all user accesses to the data cache that
caches field device (sensor) data. In typical policy-based authorization architectures, the PDP
adjudicates access requests, based on policy, and the PEP enforces the decision. We eschew this
approach in a DCS, as per-access network delays may threaten our response time requirements (see
Requirement 5). In addition, the PDP would become a single point of failure, threatening safety (see
Requirement 6).
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Instead, our approach is to centrally, within the PDP, pre-compute access vectors that capture the
RBAC policy, and push them out to each PEP. A per-role access vector contains (i) an encoding of the
role’s scope, (ii) all of the role’s proto-permissions, and (iii) exceptions and constraints. Access vectors
provide enough information for the PEP to correctly grant or deny a request. This pre-computation
allows for efficient access enforcement within many different embedded devices that collectively
constitute a distributed control system. The following steps describe how access control is enforced in
our architecture:

(1) Offline, for every user role, application role, and device role, the PDP pre-computes per-role access
vectors.

(2) Per-role access vectors, along with the list of subject-role assignments (SRA), are digitally signed
and sent to the PEPs.

(3) On receiving an access request, a PEP uses the identity credentials of the user, application, and
device and the SRA list to work out the three roles implied by the request. The PEP finds the
appropriate access vector for each and for each role determines whether the request should be granted.
Access is granted if and only if all three roles permit it.

(4) Whenever there is a policy change at the RBAC Server, the PDP computes the access vectors that
are affected by the change, and pushes them out to the PEPs.

That approach is robust against PDP failures and network failures, as decisions are decentralized and
made closer to the security objects. Note that while we place PEPs at the supervisory level (Level 2) in
Figure 5, our framework allows us to push the PEPs down to actual controllers if needed to further
decentralize access policy enforcement. However, controllers are embedded devices, and PEPs are
required to store access vectors, so both memory and computing requirements might be a potential
concern. As we will see, the list of proto-permissions in an access vector dominates the memory
requirements. In this work, we focus on the case in which the PEPs are placed at a Data Cache at
Level 2. Subsetting techniques are applied during the access vector generation process to reduce the
size of access vectors in embedded controllers.

Access vector structure

We provide an example per-role access vector to show how it is structured and used to make
authorization decisions. All the components of an example access vector are given below, represented
using the same notations we used above for denoting database records.

role = r(1, ‘Zone A Distillation Operator’, user, operator ppg.id)

sc_ set(role) = {sc(1, role.id, 1.1.2), sc(2, role.id, 2.1.2)}
pp_ set(role) = {pp(1, point, view information, point), pp(2,parameter, write, PID.SP),

pp(3, parameter, view, PID.SP), pp(4, administrative, configure settings, system flex
station)}
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e_set(sc(, role.id, 1.1.2)) = {e(1, 1.1.2.1, view only.id)}
pp_ set(e(1, 1.1.2.1, view only.id)) ={pp(1, point, view information, point),
pp(2, parameter, view, PID.SP)}

object _set(role) = {pt(1, 1.1.2.1, ‘Point-A’, PID), pt(2,1.1.2, ‘Point-B’, PID), pttPar(PID, SP),
a(1, ‘Zone A Flex Station’, system flex station, 2.1.2.2)}

That vector was constructed for the “Zone A Distillation Operator” user role, consisting of a control
scope sc(1, role.id, 1.1.2) and an administrative scope sc(2, role.id, 2.1.2). The role has the proto-
permission set of the operator group denoted by pp set(role). The control scope has an exception e(1,
1.1.2.1, view_only.id), indicating that the new proto-permission set that can be used on all points and
parameters that belong to asset 1.1.2.1 and its descendants is listed in pp_ set(e(1;1.1.2.1;
view_only:id)).The set of objects that are accessible to the role are captured by object_ set(role).

Now consider a user making a request to read parameter “Point-A.PID.SP.” The PEP first checks that
both “Point-A” and “PID.SP” are in object_set(role). It then uses the a:treeld 1.1.2.1 of Point-A to
figure out which set of proto-permissions can be used. Since e(1, 1.1.2.1, view_only.id) is the closest
scope/exception to 1.1.2.1 in terms of the asset hierarchy, the PEP checks pp_set(e(1, 1.1.2.1;
view_only:id)) and grants the request, since this proto-permission set contains pp(2, parameter, view,
PID.SP). The object type checked here is PID.SP. However, a request to write to Point-A.PID.SP will
be denied. A request to write to Point- B.PID.SP, on the other hand, will be granted, since here the
proto-permission set that can be used is defined by pp_set(role), which contains pp(2, parameter,
write, PID.SP). Similarly, a request to configure settings of “Zone A Flex Station” will be granted
since pp_set(role) contains pp(4, administrative, configure settings, system flex station). The object
type checked here is system_flex_station (a:type).

Note that this user role vector is just one vector being used in the policy enforcement process. The
effective (final) access will be determined based on what the device and application roles allow.

Effective access vectors

Management and use of per-role access vectors is straightforward, but comes with its own costs: every
run-time policy enforcement requires analysis of three different access vectors. Run-time
responsiveness might be threatened, depending on the time cost of each analysis. It is possible to limit
run-time analysis to one access vector, provided that more offline processing is done first. The idea is
to visit every combination of user, device, and application role, and work out the intersection of their
scopes, exceptions, and constraints. The access vector for the role-triple will hold a description of the
intersecting scopes, and a list of the proto-permissions, exceptions, and constraints that are applicable
to objects in that intersection. Loaded with such effective access vectors, a PEP handles a request by
looking up the one vector created for the user/device/application triple making the request. The
processing of the request is the same as for a per-role access vector.

An effective access vector is no larger (and is usually smaller) than a per-role access vector, owing to a
smaller set of objects and proto-permissions in the intersection. On the other hand, there are
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potentially many more effective access vectors than there are per-role vectors. Which of the
aforementioned two approaches is more efficient will depend very much on the number of possible
role-triple combinations as well as the intersecting sets of scopes/exceptions and proto-permissions of
effective access vectors. This represents a typical time vs. memory tradeoff.

The system implementation also used several access vector compression techniques:

e Object wild cards (e.g. read access to all objects)

e Permission wild cards (e.g. all access to specific object)
These techniques significantly compress access vector size in systems where read access is always
granted for example and only write access is granted explicitly, which is typical in process control
industry.

424 Performance Evaluation

To evaluate the performance of the proposed RBAC system against our processing time requirements,
we constructed a prototype implementation for the RBAC Server, RBAC Proxy, and HMI using
Microsoft SQL Server 2008 and C# (.NET) on Windows Server 2008. The RBAC Server, RBAC
Proxy, and HMI were each deployed on a separate “Dell T310” server machine that is equipped with
two quad-core Intel Xeon 3440 processors (2.53GHz) and 8GB memory. To model as closely as
possible a real DCS architecture (see Figure 5 DCS overview with RBAC components), we used a Netgear
router/firewall to connect the RBAC Proxy and HMI, and an unmanaged gigabit switch to connect the
RBAC server to the router/- firewall. The router had OpenWrt installed and used default firewall
settings. The RBAC Server prototype consists of a fully implemented RBAC policy database (see
Figure 8) as well as a PDP engine for generating both the per-role and effective access vectors. The
RBAC Proxy consists of a dummy data cache (containing point and parameter data) and a PEP engine
that uses the access vectors to make authorization decisions. The HMI simply makes read and write
requests to the Proxy.

Data size
According to DCS domain experts, a typical DCS has (approximately)
e 32 controllers;
e 2000 points per controller;
e 200 point types; 50 parameters per point type;
e at least four zones;
e at least 1000 assets.

We created an asset hierarchy in which the system has ten zones; each zone has ten large control
entities (e.g., cracker); and each entity is controlled by nine control loops, for a total of 1010 assets in
the hierarchy. The 32 x 2000 points in the system are distributed evenly among the assets, yielding
about 64 points per asset. 200 x50 proto-objects (PTTPAR records) were also created. There are
20,000 parameter proto-permissions on the proto-objects (200 point types x 50 parameters x 2
reads/writes). In addition, we created 12 point proto-permissions (e.g., view or configure algorithm
information) and 20 administrative proto-permissions (e.g., view or configure settings).
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To appreciate the expressive power of proto-objects (e.g., PID.SP) versus full objects (e.g., Point-
A.PID.SP, Point-B.PID.SP), compare the 10,000 proto-objects with the 3,200,000 full objects the
system would otherwise have to manage. Likewise, the expressive power of proto-permissions versus
per-object permissions can be witnessed by comparing the 12 point proto-permissions with the 64,000
distinct point objects represented.

We grouped proto-permissions into six proto-permission groups, commonly used for creating six user
roles, six device roles, and six application roles per zone.

Operation completion time and memory usage

To measure the operation completion time, we experimented with 20 different role combinations in
each of four zones, and performed 100 read and 100 write requests on each access vector. These
requests were generated randomly to test both “access-granted” and “access-denied” scenarios. The
operation completion time for each request measured the time it took to submit the request through the
HMI, authorize the request using the access vector, read the requested data from the data cache or
write to the data cache entry, and send the response message back to the HMI. Table 1 shows the
average operation completion time in milliseconds and the standard deviations for granted accesses,
which involve reading from or writing to the data cache. It also shows the average time for denied
accesses, which is shorter because there was no interaction with the cache. The statistics were
collected using 2,000 read and 2,000 write requests per zone.

Significantly, all operation times were well under 50 milliseconds, which easily satisfies our response
time requirement of less than a few hundred milliseconds. As anticipated, operational latencies for per-
role access vectors were greater than those for the effective access vectors, but not significant enough
to violate our response time requirement.

We also measured the time required to compute all 18 per-role vectors and 216 effective vectors for
each of four zones. Statistics are shown in Table 2. Here we see a clear advantage to the per-role
approach. While the performance difference is not prohibitive, especially given that computation is
offline and infrequent, it does impact the responsiveness to a change in the RBAC policy.

Further, we measured the amount of memory needed by four of the zone PEPs to store access vectors,
shown in Table 3. We see that the average size of effective vectors is much smaller than that of per-
role vectors, but because there are more of them, in each zone the overall memory load on the PEP is
smaller (by varying degrees) using the per-role vectors. While performance specifics will of course
depend on the particular system (e.g., the number of needed roles), our study of a significantly large
system shows that the proposed RBAC model and policy enforcement framework may likely meet the
timing and memory requirements when the policies are enforced through centralized PEPs.

Comparing against full permissions

Finally, to demonstrate the size efficiency of our access vectors obtained through the use of proto-
permissions, proto-objects, and object hierarchy, we expanded the per-role vectors into a format that
contains full permissions — as opposed to proto-permissions and proto-objects — and measured their
size. A full permission is a permission that one would normally see in a typical access control system,
pairing an operation with an object instance. Without the proposed proto-permissions, proto-objects,
and object hierarchy, an access vector would be generated with those full permissions and be larger in
size.
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As expected, the amount of total memory needed by the expanded per-role access vectors (compared
with the original vectors) is much larger: at least 43% larger as shown in Tables 3 and 4. For Zone A,
the difference is 12.8 MB, which is an increase of more than 80%; for the other three zones, the
differences are about 5-6 MB which is an increase of more than 43%. A similar trend is seen for
average access vector size. The difference is greater in Zone A because its roles have relatively large
scopes and access to more objects. Likewise, as more roles are created with large scopes, the size
difference between the two types of vectors will also become greater.

Table 5 shows that the operation times are slightly faster with the expanded vectors, owing to the
simple (single) lookups on the full permissions for access decisions. We optimized the lookup times of
the expanded vectors by modeling permissions with a hashtable. In comparison, the original vectors
require a few extra steps (see Subsection 4.2.3) to figure out whether a user has access. Interestingly,
the operation times for the expanded per-role vectors (which still require three access checks on user,
device and application roles) are still slightly slower than those for the effective access vectors (see
Table 1).

TABLE 1
Average operation completion time measured in milliseconds
Per-roachle Effective
Read (ms) | Stdev | Write (ms) | Stdev | Read (ms) | Stdev | Write (ins) | Stdev
Avg. time to grant 12.24 1.39 40.17 0.87 10.94 0.35 39.44 0.29
Avg. time to deny 2.98 0.64 3 0.57 2.06 0.17 1.98 0.12
TABLE 2
Total access vector creation time in each of four zones
Per-role Effective
Total Average/vector (sec) | Stdev Total Average/vector (sec) | Stdev
Zone A 7m 3s 24 18 14m 49s 4 7
Zone B | 4m 23s 15 ] 18m 49s 5 6
Zone C | 6m 27s 22 15 31m 22s 9 10
Zone D | 4m 33s 15 8 19m 7s 5 6
TABLE 3
Total access vector memory usage in each of four zones
Per-role Effective
Total (MB) | Average/vector (KB) | Stdev | Total (MB) | Average/vector (KB) | Stdev
Zone A 15.4 854 756 16.2 75 205
Zone B 10.2 568 499 17 79 175
Zone C 13.9 772 680 20.2 94 280
Zone D 10.4 576 490 15.7 73 169
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TABLE 4

Total access vector memory usage in each of four zones

Per-role with full permissions
Total (MB) | Average/vector (KB) | Stdev
Zone A 28.2 1,569 2255
Zone B 15.4 855 1077
Zone C 19.9 1,108 1234
Zone D 15.5 862 1074
TABLE 5

Average operation completion time

Per-role with full permissions
Read (ms) | Stdev | Write (ms) | Stdev

Avg. time to grant 11.31 1.17 40.11 1.08
Avg. time to deny 213 0.07 2.06 0.32

4.3 Formal Model

The previous subsection discussed a concrete DCS-RBAC model within a framework that meets the
requirements outlined in section 4.1. That approach meets access control needs in DCS context,
especially with respect to transitioning from current access control practices around Honeywell
technologies. This section presents a formal model of RBAC that is informed by both the existing
literature on RBAC models, and the unique requirements of RBAC in the process control space in
general, and Honeywell's approach to that, in particular.

While subsection 4.2 describes elements of a potentially concrete implementation, what we develop
here is at once more abstract, but also at times, more detailed. It explicitly captures the notion of
scope of responsibility (and its various sublets) that is so important in the Honeywell context, but does
not specify the mechanisms that determine the permissions allowed for a role to perform except in
mathematical terms of relationships between sets. It brings to the foreground constraints on
permissions related to context (e.g., system mode, time-of-day) through a novel dependency on
““environment state"”, whereas constraints and constraint checking in 4.2 are more part of the
implementation than part of the RBAC world-view.

The formal model has role-engineering firmly in its sights. It thoroughly works through means by
which a role can be efficiently engineered through different inheritance mechanisms that suggest
themselves by base role intent from the organization structure, from the relationship of objects within
their asset hierarchies.
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The formal model presents a unique approach to assigning permissions to roles, and users to roles
through development of attribute-based policies. This formulation allows a role engineer to formally
describe rules that guide and constrain the assignments, and then allow automation to create those
assignments, at least as a starting point.

431 A Two-layered Framework of RBAC

The concept of role-based access control (RBAC) is simple, effectively models an organization's
structure, and at a high level is easy to understand. However, the problem of defining roles and
assigning permissions to roles is widely recognized as difficult, as is maintenance of RBAC as the
organization changes both in structure, and with turnover in employment. In developing a formal
RBAC model we have taken a two-pronged approach. First we describe RBAC at a level closely
related to existing RBAC systems, at what we call the ““aboveground” layer. This description allows
those already familiar with RBAC formalisms to readily understand the extensions we've made to
support application in a process control context. As with other RBAC models, we describe this with
mathematical notions involving sets and logical expressions based on set membership. A second layer,
what we call the ““underground layer”, describes how the abstractions of the upstairs layer might be
realized in a way that captures the key distinctions in Honeywell's view of access control. The
upstairs model aims to be descriptive of the structure of a broad set of RBAC systems; the downstairs
model gives more details tailored towards specification of systems like Honeywell's. Taken together
the aboveground and underground models completely describe an RBAC model suitable for process
control systems; the relationship between the two is illustrated in Figure 9. It should be remembered
though that the model is more general in several ways than is needed for Honeywell's implementation.
It should also be remembered that the model concepts are more precise than needed for exposure to
the user. We believe that the precision will be useful both for validating that a given RBAC
implementation meets some higher level access control objectives, and will help guide our thinking as
we consider problems related to role engineering. These two layers of the model give a sort of
assembly language view of a program, while a user is accustomed to presentation at a higher and more
concrete level.
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Figure 9 A two-layered framework integrating Attribute-based policies into RBAC

4.3.2 The Aboveground Level

In this section, we mainly use first order logic to make formal descriptions, and follow the convention
that all unbound variables are universally quantified in the largest scope. The aboveground level is a
simple and standard RBAC model, but extended with constraints on attributes of the “environment”.
We use the notion of environment to represent the context of a user’s access, such as the time of
access, the access device, the system’s operational mode, and so forth.

The model is formally described as a tuple,

M = (U, R, P, O, OP, EP, URAE, RPA®),

where U is a set of users. A user could be either a human being or an autonomous software agent; R
is a set of roles. Arole reflects a job function, and is associated with a set of permissions; O is a set of
objects. Objects are the resources protected by access control; OP is a set of operator. An operator
represents a specific type of operations; P is a set of permissions. A permission is defined by a
legitimate operation, which comprises an operator and an object; EP is a set of predefined environment
state patterns. We use environment state to model the context of a user’s access. Each environment

state pattern (environment pattern, hereafter) defines a set of environment states; URA® is the
extended user-role assignment relation, which is basically a mapping from users to roles, associated
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with certain environment patterns; RPAE is the extended role-permission assignment relation, which
is basically a mapping from roles to permissions, also associated with certain environment patterns.
All sets are finite. In the following, we give some further formal description of environment.

Environment

We represent the context of access as environment, and model an environment as a vector of
environment attributes, each of which is represented by an environment variable (called an attribute
name) associated with an attribute value in a domain. An environment is defined by n attributes, let vi
eDi,i =1, ..., n, be the ith environment variable, where Di is the domain of that environment
variable; then a vector (v1, ..., vn), in which all variables are instantiated is called an environment
state (also denoted as s.) The set of all possible environment states is denoted by E. Choice of
environment attributes (and hence environment state) is do- main dependent. Environment attributes,
particularly the dynamic attributes, are gathered by an access control engine at runtime.

Example (environment state): Assume that the environment is defined by three attributes: mode,
access location and access time; then mode = “normal” and access location = “station 1” and access
time = “8:00AM Monday” is an environment state.
An environment pattern, denoted as e, is treated as an individual in domain EP, but is semantically
defined by a first-order logical expression of assertions involving environmental attributes. An
environment pattern defines a set of environment states, in which every environment state satisfies the
environment pattern, i.e.

{(v1,..,vn)le(vi, .., vn)}

Hereafter, sometime we directly use e to denote the set of environment states defined by the
environment pattern.

Examples (environment pattern): Access_ tocation = station_1 and access_ time &€[8: 00, 22 : 00] is
an environment pattern, which defines the set of all the environment states, having any mode,
access_location at station_ 1, and access_ time between 8:00AM and 10:00PM.

We say that an environment state s matches environment pattern e, iff: e(s) is true. An environment
pattern can be empty, denoted by ¢, which is most general; every state matches ¢. We say that el is
subsumed by e2 , iff: the set of all environment states that match el is a subset of the set that match
e2 . That is, subsume(e2, el), iff: {s|el (s)} €{s|e2 (s)}. The relation is reflexive, transitive, and anti-
symmetric.

User-role assignments
A particular user-role assignment associates a user, a role, and an environment pattern:
URA® cU xR x EP, (1)
where EP is the set of all environment patterns that have been defined for the system of interest.

The semantics of a user-role assignment, (u, r, €) € URAE, is defined as:
~match(s, ) — has _role(u, r), (@)
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which states that if the real environment state s matches the given environment pattern e, then user u
is assigned to role r. We assume that the RBAC engine could understand the semantics of each
environment pattern as defined.

Basic RBAC models define user-role assignments simply as a mapping from users to roles,

URA® cU xR. (3)

We have extended this notion with a dependency on the environment, as a means to integrate certain
extended RBAC features of context and constraints. The environment pattern associated with a user-
role assignment is the environment- dependent condition which is sufficient for the assignment. This
feature can be regarded as constrained user-role assignment. If there are no constraints on user-role
assignments, the associated environment patterns are simply empty, so the model becomes the
common one.

In this model, the relation between URA€ and URA is:

(U, r) EURA < (Fe, (u, 1, €) EURAE). (4)

User-Role assignments may be expressed in tabular form. Table 1 shows an example, with an
environment extension.

Table 1: Extended User-Role Assignment Table

User Id Role Id Environment Pattern
com:ab:znl:amy | Manager.Zonel | Device = “Station_1.2"7 & Time = “Weekday”
com:ab:znl:ben | Engineer.Zonel | Device = “Station_1.2" & Time = “Weekday” & Mode = “normal”
com:ab:znl:jim | Engineer.Zonel | Mode = “emergency”
com:ab:znl:bob | Operator.Zonel | Device = “Station_1.2" & Time = “Weekday” & Mode = “normal”

Role-permission assignments

A role-permission assignment associates a role, a permission, and an environment pattern. Thus the set
of all such assignments is a subset

RPA€ cR x P x EP. (5)
The semantics of a role-permission assignment, (1, p, e) €RPAE | is defined as:

match(s, ) — has_ permission(r, p), 6) _

which states that if the real environment state s matches the pattern e, then permission p is assigned to
roler.

Similar to user-role assignments, we’ve extended the common role-permission assignment with
environment patterns.

The relation between RPA€ and RPA is:
(r, p) ERPA < (Fe, (r, p, €) ERPA®). (7)

Copyright 2014 by Honeywell International Inc. All Rights Reserved Page 40 of 47
Restrictions applicable to use by or for the U.S. Government: Unlimited Rights



RBAC Driven Least Privilege Architecture for Control Systems

As with user-role assignments, the role-permission assignment may also be organized in tabular
fashion.

4.3.3 The Underground Level

The underground level of RBAC model focuses on the security policies used to construct the
aboveground level of RBAC model. Those security policies are a formalism of a role engineers’ tacit
knowledge about access control based on the attributes of users, roles, objects, and the environment,
and the relation among them.

In the following, all users, roles, permissions, operators, and the security objects are treated as “objects
” (in the sense of the object-oriented design) and each of which has certain attributes. obj.attr, or
equivalently attr (obj), denotes the attribute attr of object obj.

The attributes needed in RBAC are typically domain dependent, and need to be customized for each
specific target system. Some examples of attributes are as follows. The attributes of users may

include “id”, “department”, “security clearance”, “knowledge domain”, “academic degree” or
“professional certificate”. A role may have attributes such as “name”; “type” reflecting job function

types such as “manger”, “engineer”, and “operator”; “security level”; “professional requirements”;
“direct superior roles” and “direct subordinate roles” (if role hierarchy is modeled). Objects may have

attributes such as “id”, “type”, “security level”, “state”. Operators may have attributes like “name”,
and “type”. The environment attributes may include “access time”, “access location”, “access
application”, “system mode”, “target value”, and so forth.

Role-Permission Assignment Policy
The role-permission assignment policy is a set of rules. Each rule has the following structure:
roleld{
target {
- role_pattern;
- permission_ pattern {
- operator_pattern;
- object _pattern;
b
environment_pattern;
}
condition;
decision.
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where, all of the patterns and the condition are FOL (First Order Logic) expressions; an environment
pattern, as presented in 4.3.2, defines a set of environment states; similarly, a role pattern defines a
set of roles by specifying their common attributes; a permission pattern, consisting of an operator
pattern and one object pattern, defines a set of permissions by specifying their common features w.r.t.
the attributes of the operator and the object in a permission; an operator pattern defines a set of
operators (or operation types); each object pattern defines a set of objects; the target, which is,
formally, the Cartesian product of the above sets of roles, permissions, and environment patterns,
defines the range of (role, permission, environment pattern) triples to which this rule applies ; the
condition is a logical expression defining a relation among the attributes of both the roles, the
permissions (operators and objects), and the environment. This expression is the condition under
which a role-permission assignment can be made; the decision is the role-permission assignment.
This form of rules states that when the condition is true, a role covered by the role pattern can be
assigned with a permission covered by the permission pattern in the specified environment pattern.

Let pattern” (r) denote a role pattern, referring the role as r, e.g. r.type="engineer”; pattern” (op , 0)
denote the general form of a permission pattern, referring to permissions of form p(op , 0). A
permission pattern actually consists of zero or one operator pattern and zero or one object pattern;
pattern® (¢) represents a predefined environment pattern &; condition (r, p(op, 0), ¢) denotes a logical
expression, describing a relation among the attributes of role r, object o, and environment .

The semantics of a role-permission assignment rule is defined as follows.

(v, op , o)(pattern® (r) /4 pattern” (p(op, 0)) 4 pattern  (¢)4 condition (r, p(op, 0), ¢)
- (r,p(op, 0), &) ERPA®) (8)

which states that for any role r, satisfying the given role pat tern pattern ® (r), for any permission p(op,
0), satisfying per- mission pattern pattern © (p(op, 0)), if condition(r,p(0p,0),¢) is true, then role r is
assigned with permission p(op,0) in environment pattern .

A pattern can be empty, . An empty pattern defines the most general pattern, which every element in
a domain matches. For example, if role pattern is empty, then the defined role-permission assignment
rule is applied to all of the roles in R. Therefore, if the target of a rule is empty, then the rule is most
general and applicable to all combinations of role, permission, and environment; on the other hand, a
rule is most specific, (i.e. only applicable to a single specific combination,) if the target of the rule is
defined most specifically, i.e. the role pattern is exactly defined as a specific role instance, the
permission pattern is exactly defined as a specific permission/operation, and the environment pattern
is also most specific. Generally, the target of a rule defines a specified range of (role, permission,
environment) triples to which the rule applies.

In this framework, a role could be defined based on a role template. Different from the concept of
“role” in RBAC, a role template is associated with a set of permission patterns rather than
permissions. The idea is developed to address scaling issues that arise in the DCS domain.

For simplicity, we only use positive rules. If (r, p, e) is in RPA®, then role r is assigned with
permission p in environment e; if not, by the close world assumption, we conclude that role r does not
have permission p in environment e.
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In role engineering, the defined role-permission assignment policy (rule set) is applied to all possible
combinations of (role instance, permission, environment pattern), and if a combination can be inferred
by any rule, then it is included in the RPA® on the aboveground level of RBAC model.

User-Role Assignment Policy

User-role assignment is highly dependent on business rules and constraints. In our view, the task of
assigning users to roles can be approached like the role-permission assignment problem, in terms of
policies that enforce those rules and constraints. Such policies would be formulated in terms of user
and role attributes, and would be crafted to enforce things like Separation of Duty. However, unlike
role- permission assignment, user assignment may have to balance competing or conflicting policy
rules against each other. Correspondingly a complete policy oriented formulation will need to specify
how to combine rules and arrive at a final assignment decision. In what we present below, an attribute
based user-role assignment policy is used only to identify potential assignments. A rule-combining
algorithm is used for making the final assignments.
Similar to the role-permission assignment rule, the user-role assignment rule consists of:
- ruleid {
target {
- user_pattern;

- role_pattern;
environment_pattern;

}

condition:
decision.

;

where, similarly, an user/role/environment pattern defines a set of users/roles/environment states by
specifying the common attributes; all of the patterns and the condition are expressions in first order
logic; differently, the decision of a rule is to mark an (user, role, environemt_pattern) triple as a
potential assignment. -

Let pattern” (u) denote a user pattern, referring to user u; pattern® (r) denote a role pattern, referring
to role r; pattern® () denote the specification of an environment pattern; condition (u, 7; £) denote a
logical expression, describing a relation among the attributes of user u, role r, and environment pattern
€.

The semantics of a user-role assignment rule is defined as follows.
(vu, r)(pattern U (u)-4 pattern R (r) 4 pattern E (&) condition(, 7, €)
— (u, , €) €Etemp URAe), 9)

which states that for any user u satisfying pattern” (u), any role r satisfying pattern® (r), if the
condition that states a relation among the attributes of u, r, and ¢ is true, then (i, 7, ) Etemp_ URA®,
which means that according to this rule, u can be assigned to r in environment ¢.

Example:
rule:{
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target:{
role_pattern(r): r.type = "chemical engineer";
environment_pattern (e):{
Device = "Station_1.2"
and Time = "Weekday"
and Mode = "Normal" }

}

condition:{
knowledge_match(u,r);
security_req_match (u,r);
u.base_plant = "Houston™;

}

decision: add (u,r,e) in URA®.
}

In this rule, knowledge match(u, r) is a function which returns true if the professional knowledge of
user u matches the knowledge requirements of role r; security _req_match(u, r) is a function which
returns true if the user meets the security requirements of role r. A necessary condition for considering
assigning a user u to role r is that the user work at the Houston plant (where presumably one finds
Station 1.2.)

The rule has no filter on the users it considers. The rule applies to roles with job type attribute
“chemical engineer”. Now suppose thatthere is a role “Engineer.Zone.1.2” designed to work in Zone
1, on Station 1.2, on weekdays; this role has job type attribute chemical engineer, requires
professional knowledge in Chemical Engineering, and at least a Bachelor’s degree in that field. Going
through employees one finds John, who works at the Houston plant; John has a Bachelor degree on
Chemical Engineering; and suppose that John meets the security requirements for role
“Engineer.Zone.1.2”. The patterns for user and role cover these instances, the condition of the rule is
true, and so the assignment of John to that role will be marked as possible. Of course, there may be
other roles that John is suitable for, and there may be other employees suitable for role
“Engineer.Zone.1.2”, so a later step is needed to select among all assignments marked as possible, by
considering some constraints such as separation of duty.

The following is the pseudo-code of rule combining algorithm.
rule_combining(temp_URA®) {
for (i= 0; i < constraints.length(); i++){
if (! satisfy(temp_URA®, constraints[i])){
add iin conflictList;

Copyright 2014 by Honeywell International Inc. All Rights Reserved Page 44 of 47
Restrictions applicable to use by or for the U.S. Government: Unlimited Rights



RBAC Driven Least Privilege Architecture for Control Systems

if ( conflictList.length() == 0) { URA® = temp_URA?®;

} else {
if (constraintConflictResolution(temp_URA?®, conflictList, temp2_URA®)

URA® = temp2_URA®%
else
notify(temp_URAe, conflictList);

Note that the constraint conflict resolution algorithm is dependent on constraints, which in turn are
domain-dependent, so it is difficult to give a general algorithm for constraint conflict resolution. If
conflict cannot be resolved by algorithm, the algorithm will inform RBAC administrator, and the
conflict resolution needs to be performed manually (or with tools we have not identified) by the role-
engineer.

4.4 Summary

Starting from today’s practice of DCS in Honeywell, particular the practice of Experion system, we
developed a highly usable RBAC model for DCS (DCS-RBAC) that facilitates smooth migration from
Experion systems to RBAC and ease the management of roles, permissions, and security objects. This
approach meets the requirements of RBAC in the control system context.

We also developed a rigorous formal RBAC model for DCS, which has two layers - the aboveground
and underground levels. This formalism keeps the simplicity of RBAC in the aboveground level, and
hides the complexity of the knowledge used to create RBAC model in the underground level. The
underground level uses attribute-based policies to manage URAS (user to role assignments) and RPAs
(role to permission assignments).
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5 Appendix A - Terms, Acronyms and Abbreviations

Below are the terms, acronyms, and abbreviations used within this document.

AES - Advanced Encryption Standard

API — Application programming interface
BITW — Bump In The Wire

CA — Certificate Authority

Certificate - X.509 v3 public key certificate used to authenticate a device or function.
CRL - Certificate Revocation List

CSR - Certificate Signing Request

DCS - Distributed Control System

ESP - Encapsulating Security Payload

GMAC - Galois Message Authentication Code
HMAC - hash-based message authentication code
HMI - Human Machine Interfaces

HPS - Honeywell Process Solutions

HUG - Honeywell user group

IKE - Internet key exchange

INL - Idaho National Labs

IPsec - Internet Protocol Security

IT — Information Technology

ITI - Information Trust Institute

LDAP - Lightweight Directory Access Protocol
MITM - man in the middle

PA — Policy Agent

PAA - Policy audit and analysis

PBKDF2 - Password-Based Key Derivation Function 2
PDP - policy decision point

PEP - policy enforcement point

PID - Proportional-Integral-Derivate

PKI - public-key infrastructure

PLC - programmable logic controller

NFR - Non Functional Requirement

RFC - Request for comment

SA — Security Association

SCADA - Supervisory Control and Data Acquisition
SCEP - Simple Certificate Enrollment Protocol
SP — Set Point

SPI - Security Parameters Index

SRS - Software Requirements Specification
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TLS - Transport Layer Security
UIUC - University of Illinois at Urbana Champaign
VPN - virtual private network
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