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1 Executive Summary  
The concept of role based access control (RBAC) within the IT environment has been studied by 
researchers and was supported by NIST (circa 1992). This earlier work highlighted the benefits of 
RBAC which include reduced administrative workload and policies which are easier to analyze and 
apply. The goals of this research were to expand the application of RBAC in the following ways.  

• Apply RBAC to the control systems environment: The typical RBAC model within the IT 
environment is used to control a user’s access to files. Within the control system environment 
files are replaced with measurement (e.g., temperature) and control (e.g. valve) points 
organized as a hierarchy of control assets (e.g. a boiler, compressor, refinery unit). Control 
points have parameters (e.g., high alarm limit, set point, etc.) associated with them. The RBAC 
model is extended to support access to points and their parameters based upon roles while at 
the same time allowing permissions for the points to be defined at the asset level or point level 
directly. In addition, centralized policy administration with distributed access enforcement 
mechanisms was developed to support the distributed architecture of distributed control 
systems and SCADA.  

• Extend the RBAC model to include access control for software and devices: The established 
RBAC approach is to assign users to roles. This work extends that notion by first breaking the 
control system down into three layers 1) users, 2) software and 3) devices. An RBAC model is 
then created for each of these three layers. The result is that RBAC can be used to define 
machine-to-machine policy enforced via the IP security (IPsec) protocol. This highlights the 
potential to use RBAC for machine-to-machine connectivity within the internet of things.   

• Enable dynamic policy based upon the operating mode of the system: The IT environment is 
generally static with respect to policy. However, large cyber physical systems such as 
industrial controls have various operating modes (start-up, normal operation, emergency, shut-
down and maintenance are typical). The policy enforcement architecture must be able to 
support changes in access permissions as the mode of the control system changes.  For 
example an operator’s role may not allow the operator to shut down a pump during “normal 
operation” but that same operator role may be given permission to shut down the pump if the 
refinery transitions to “emergency” mode.  

The effectiveness of the approach was validated by applying it to the Experion Process Knowledge 
System. This is a large commercial industrial control system often used to control oil refineries and 
other assets within the oil and gas sector. As a by-product, other industries using Experion 
(Pharmaceuticals, Specialty Chemicals, etc.) also benefit from increased security. Policies 
representative of those that would be used within an oil refinery were created and validated against the 
RBAC model as implemented in the underlying SQL database. The administration of policy is 
simplified which in turn makes it practical for security administrators to specify policies which 
enforce least privilege. The result is a qualitative reduction in risk. The benefits of the enhanced 
RBAC model are clear and as a result, Honeywell is incorporating portions of the RBAC research into 
the 2014 release of Experion.  
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2 Introduction  

2.1 Goals and Objectives 
 
The objective of this project was to create and commercialize a role-based access control (RBAC) - 
driven least privilege architecture for control systems. The supporting objectives for achievement 
include: 
• Define a least privilege DCS architecture. The distributed control systems (DCS) architecture 

supporting the specification and enforcement of least privilege was defined and documented in the 
architecture specification – Role Based Access Control Software Architecture Description, 
Version 1.1, Dec 2011. The conceptual model is shown in Figure 1. The architecture applies 
user/application layer proxies and IPsec VPNs as a part of the policy enforcement suite. The 
system uses existing enterprise authentication server technology to authenticate users. The RBAC 
policy model then determines the set of least privileges for the subject in context. The RBAC 
function also drives automated key management on encryption devices/functions. The end state 
architecture supports network layer encryption. Early in the project the use of application layer 
encryption was discussed. However, analysis showed that this was not required if IPsec is used so 
that aspect of the architecture was eliminated.  

• Create the transition approach. The DCS infrastructure cannot be changed overnight. Once the 
end state vision was established, Honeywell developed a transition plan that provides the path for 
retrofitting security for legacy devices. The plan moves the RBAC policy enforcement point into 
field devices as the components within the infrastructure are replaced. Legacy devices that support 
only an all-or-nothing model will be augmented with an application layer proxy in a bump in the 
wire (BITW) device during the long transition. The set of privileges specified via RBAC will be 
automatically mapped to an application layer proxy/user rights configuration. 

• Implement, test and demonstrate. The project implemented an instance of the architecture as a 
proof of concept within the Honeywell Experion DCS product. The architecture, design, and 
implementation have been subjected to security review by the cyber security team at INL. The 
results have been demonstrated to DOE and shown at the Honeywell User Group (HUG) 
conference.   

• Commercialization. Honeywell and our teammates have made a significant cost share contribution 
as part of a larger plan to integrate the results into existing products and services. The Honeywell 
Experion® DCS product, developed by Honeywell Process Solutions, is sold to oil and gas 
operations critical to our nation’s energy. Honeywell Process Solutions played a significant role in 
the commercialization of the RBAC technology. This included support from marketing and 
product management, demonstration of the technology at the Honeywell User Group conference 
and the engineering team.  
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Goals 
The goals for organizations adopting the RBAC technology included: 
• Improved password management: Provide an integrated set of tools that works with existing 

enterprise authentication to allow organizations to use the RBAC solution as a front end to legacy 
SCADA and DCS, allowing better password management and strengthening the first line of 
defense. The Experion implementation is integrated with a lightweight directory access protocol 
(LDAP) server which allows users to use their enterprise password to authenticate access to field 
devices.   

• Simplified security administration: Providing a control system-centric RBAC model simplifies 
assignment of user rights. The asset hierarchy of the control system is integrated into the RBAC 
policy model. This reduces administrative workload and associated errors. The administrative 
tasks associated with key management are also simplified by relying on automated Public Key 
Infrastructure (PKI) based IPsec key management.  

• More rigorous privilege definition and enforcement: Providing the ability to rigorously define 
roles and operating modes enables organizations to establish and adhere to operating procedures 
that enforce safety constraints and reduce undocumented changes to process parameters. For 
example, view-only operators assigned to a specific plant area can observe the state of that area of 
the plant but not make unauthorized changes.  

2.2 Project Summary  
 
The hypothesis of this work was that by adapting the RBAC concepts to the unique characteristics of 
the control system environment the result would be a cost effective approach for implementing least 
privilege in SCADA and DCS. The security community has long known that the impact of a security 
breach (e.g. hostile insider, subverted software) can be minimized by providing subjects (users, 
software and devices) only the set of permissions necessary to do their job. The challenge is that 
previous security policy mechanisms were very time consuming to configure and difficult to analyze. 
Thus, even though security administrators knew the value of least privilege they found that the cost of 
implementation was simply too high.  
 
The overall approach for the effort was to combine several concepts within the context of control 
systems. These concepts included:  

• Layered policy and enforcement 
• Permission inheritance via an asset hierarchy 
• Permission assignment via parameter types 
• Insertion of policy enforcement points as near as practical to the resource to be protected. 

 
The conceptual model of the RBAC components which were overlaid upon Experion is shown below 
in Figure 1. The components of the model are:  

• Policy Decision Point (PDP A.K.A. policy server): This contains the policy database and 
engine for converting the policy specification into access vectors.  
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• Certificate Authority (CA): This serves as the certificate authority for a local system. It 
provides signed certificates to support devices securely joining the network and for 
establishing IPsec communications.  

• Policy information point: This represents an auxiliary source of data which may be used within 
the policy decision point to make access control decisions. Typical information which might be 
provided is employee safety training records. If an employee’s safety training is not current, 
the employee could be denied access to specific resources.   

• Policy administration point: This represents the interface used by the administrator for adding 
users and creating or modifying policy.  

• Policy audit and analysis: This represents the interface and functions which an auditor would 
use to perform analysis of policy (e.g. are there orphan devices?) and track changes to the 
policy.  

• Communications policy enforcement: This represents the IPsec/ Internet key exchange (IKE) 
implementation which is actually distributed between pairs of securely communicating nodes. 
The node to node access vector is interpreted on the device and used to drive the IKE 
negotiation. IPsec is then used to secure the traffic between nodes.  

• Data client: The client represents a node (e.g., an operator workstation) which exchanges 
application layer data with a data server.  

• Policy agent: This represents a function on a data client which assists in authenticating the 
requestor (node, application or user) to the policy enforcement point.  

• Data server: This represents an entity which serves data or control functions to a requestor. It 
may be a control server which caches data from many control points. It could also be a field 
controller (e.g. C300) which provides direct access to control points.  

• Application policy enforcement point: This function receives an access vector from the policy 
decision point, authenticates an incoming request and applies the access policy to the request.     
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Figure 1 The conceptual model of the RBAC system components. 

 
The concept of layered policy enforcement is that policy can be simplified and overall security 
enhanced by leveraging the natural layers in the system and creating policy enforcement points 
tailored to the characteristics of the layers. The approach used three layers as shown below in Figure 
2.  
  
The lowest layer is the node to node communications policy. The principle of least privilege implies 
that not every node should be able to communicate with every other node. By limiting which nodes 
are allowed to communicate, entire classes of threats can be mitigated. The number of nodes in a 
control system is generally orders of magnitude smaller than the number of points and parameters. 
Thus, creating policy is relatively simple. The use of IPsec as the enforcement mechanism (policy 
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enforcement point) results in access enforcement which is robust and difficult for an attacker to 
bypass.  
 
The middle layer provides control over which software can access a remote service or application. The 
software may be authenticated (weakly) by its pathname. However, the preferred method is to have 
the software identified/authenticated by a commercially available white listing product and then use 
RBAC policy enforcement to control the access the software is given.  
 

 
Figure 2 The RBAC layered enforcement model 

 
The upper layer enforces the user role access to security objects which are typically points and 
parameters within the control environment. Within control systems the number of user roles is 
relatively small (typically much less than 100) while the number of security objects may be tens or 
hundreds of thousands. This scale is addressed by applying an asset hierarchy and parameter types as 
described below.  
 
The asset hierarchy provides a logical grouping of the points within the control system and thus allows 
the security administrator to assign permissions to the related points quickly and easily.  The boiler 
shown in Figure 3 represents a typical plant asset. The security administrator may assign the operator 
role access to the boiler and the operator inherits permission to all of the points (pumps, valves, 
temperature set points, etc.) assigned to the boiler asset. The administrator is able to modify 
permission to a specific point through the use of Exception and Constraint mechanisms.    
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Figure 3 The boiler represents an asset with many points under it 

 
Points within a control system have parameters associated with them. Typical parameters types are  

• Set point: The target value for the physical property being controlled. E.g. hold the temperature 
at 220 degrees.  

• Current value: The current value for the physical property (215 degrees)  
• High alarm limit: Trigger an alarm if the value rises above this limit. 
• Low alarm limit: Trigger an alarm if the value drops below this limit.  

   
The example above illustrates that for a single point (boiler temperature) there may be multiple 
parameters. The safe operation of a DCS implies that access to these parameters should be different 
for the various roles. For the example above, the roles and their accesses could be as follows.  

• View only operator: This role is able to view the operation of the plant but not change 
anything. This role would be given view only (read) access to all 4 parameters associated with 
the boiler temperature point.   

• Operator: The operator is responsible for day to day operation of the boiler so the operator role 
is given write access to the set point. The operator has read only access to the other parameters.  

• Engineer: The engineer is responsible for safe operation of the plant but not day-to-day 
production. The engineer is given the ability to set (write) the high alarm limit and low alarm 
limit but the role is only given read access to other parameters.  
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The discussion above highlights the fact that a role may have access to a point but the permission to 
access the parameters is a function of the role. Thus, within the DCS environment the RBAC model is 
modified to provide two sets of orthogonal access permissions which are then ANDed together.  This 
unique aspect of orthogonal access permissions shaped the planned tasks, and in particular the policy 
model research described in Section 4 - Access Control Model.  
 

2.3 Planned Tasks  
The work was broken down into three major phases.  
Research  

This focused on defining the problem and outlining the theoretical work necessary to advance the 
state of the art. The research phase goal was to produce documentation for secure remote access 
control architecture for control systems using an RBAC model to identify and enforce least 
privilege. A transition plan for a moving toward the secure architecture, recognizing the long 
lifetimes of control system equipment, was also documented. The team developed requirements 
and an architecture by exploring both uses cases and the threats to the system. The requirements 
highlighted the need to extend existing access control models to address the control system 
environment. The Information Trust Institute (ITI) at the University of Illinois led the research 
regarding policy models.  
 

Detailed Design and Development 
This focused on taking the research results, requirements and architecture defined during the 
research phase and translating them into running code in the context of the Experion system. 
Honeywell Labs worked very closely with the Honeywell Process Solutions (HPS) business unit 
to support insertion of a subset of the RBAC technology into the Experion RBAC prototype. This 
implementation includes:  

• User interface tools for specifying RBAC policy.  
• Interface mechanisms to an LDAP enterprise authentication server to support RBAC.  
• A Bump In the Wire (BITW) proxy function which applies user rights management to 

remote access attempts to a legacy field device.  
• A certification authority to support RBAC driven key management.  
• Embedded cryptography, based upon IPsec, for secure communications between nodes.  

 
The functions above were integrated to produce a prototype Experion based system capable of 
demonstrating the application of RBAC to provide least privilege.  

 
Test, Evaluation and Demonstration  

This phase delivered the prototype system to Idaho National Labs (INL) for security testing by 
their red team. Demonstrations of the system were performed for DOE as well as Honeywell 
leadership in order to stimulate commercial adoption of the technology. Honeywell is 
commercializing the technology.  
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The specific tasks planned and executed for each phase of the program are introduced below.  
 
Research  

Task #  Title  Description  
1.01  Project kick off  Project start-up tasks including setting up the collaboration 

environment, configuration management repository, and updating the 
literature search.  

1.02  Least privilege 
architecture  

Developed and documented the RBAC-driven least privilege 
architecture. The output is the end-state vision.  

1.03  Requirements  The requirements for the system functions were developed in parallel 
with the architecture. These requirements include those for the RBAC 
enhanced authentication/authorization server, RBAC policy 
specification, continuous validation key server (certification authority), 
proxy server (BITW) and embedded cryptography (IPsec).  

1.04  Network design 
and migration  

Developed and documented the network design and the migration plan 
for transitioning from the existing insecure control system environment 
to one supporting the RBAC-driven least privilege architecture.  

1.05  Phase 1 
Reviews  

Provided support for all reviews internal to the project team as well as 
those with the customer.  

1.06  Phase 1 
Program 
management  

Program management provided for all management aspects of the 
research phase including cost, schedule and performance tracking. The 
first subtask under the program management task was to update the 
project plan based upon contract negotiations.  

1.07  UIUC Phase 1  Work done at UIUC. The initial subtasks included Real time RBAC 
with continuous validation, RBAC learning, review of the architecture 
and migration plan, participation in team meetings/reviews and program 
management for the UIUC portion of the effort. These were adjusted as 
the requirement and architecture matured.  

1.08  INL Phase 1  Work to be done at INL. The subtasks included leading a cyber security 
review of the architecture, review of the migration plan, and a review of 
the continuous validation approach (IPsec). INL also participated in 
program reviews.  

 
 
Development  

Task #  Title  Description  
2.01  Authorization 

server  
Detailed design and implementation of the RBAC authorization server 
(A.K.A. Policy Distribution Point (PDP)) integrated with an enterprise 
authentication server.  

2.02  RBAC key 
server  

Detailed design and implementation for the RBAC key server (A.K.A. 
Certification Authority). This work was initially to extend the existing 
Honeywell One Wireless key server. However, the certificate authority 
based design was selected because it is more scalable. 
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2.03  Proxy framework  Detailed design and implementation for the RBAC proxy that will be the 
policy enforcement point for legacy control devices that cannot enforce 
fine-grained user access rights. This proxy was implemented as the BITW 
device which provides access control at the device, application and user 
levels.  

2.04  Embedded 
cryptography 

Cryptographic functions in a device or software function. The team 
explored working with Topic Area 5 – Secure Communications team to 
jointly implement their solution in a device or function. However, the 
RBAC model required dynamic connection management to provide timely 
enforcement of policy changes. Therefore, the team selected an IPsec/IKE 
approach.  

2.05  Network system 
integration  

Integration of the technologies above as well as the UIUC development. 
The result is a functional system that demonstrates the end-to-end RBAC 
solution on a commercial product.  

2.06  Phase 2 Reviews  Support for all reviews both internal to the project team and with the 
customer.  

2.07  Phase 2 Program 
management  

All management aspects of the research phase including cost, schedule and 
performance tracking.  

2.08  UIUC Phase 2  Work to be done at UIUC. The Phase 2 subtasks included RBAC user 
interface and engine, design and development support for the RBAC key 
management, reviews of the Authorization Server, Proxy Framework, and 
Application Layer Cryptography. (The application layer cryptography task 
was dropped because IPsec met the requirements.) In addition, UIUC 
participated in reviews and made design and implementation updates 
driven by output of the INL security reviews.  

2.09  INL Phase 2  Work to be done at INL. The subtasks included a security design review 
and a complete system security review of the resulting design integrated 
into a Honeywell control system. INL also participated in program reviews  

 
 
Test, Evaluation and Demonstration  

Task #  Title  Description  
3.01  Demonstration plan 

and implementation  
This task provided for the development, analysis and implementation 
of the demonstration plan.  

3.02  Commercialization 
plan  

This task developed the commercialization plan for taking the RBAC 
technology to market. The plan takes advantage of the existing 
Honeywell Experion product which is already deployed in the electric, 
oil and gas industries.  

3.03  Phase 3 reviews  This task provided support for all reviews internal to the project team 
as well as those with the customer. The demonstration and final 
project review were addressed within this task.  

3.04  Phase 3 Program 
management  

All management aspects of the research phase including cost, 
schedule, and performance tracking.  
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3.05  UIUC Phase 3  Work to be done at UIUC. The Phase 3 effort focused on support of 
the demonstration and commercialization tasks.  

3.06  INL Phase 3  Work done at INL. The INL security team performed security testing 
and provided a report of the results.  

 

2.4 Problems and Challenges 
The significant research challenges worthy of further consideration by DOE are: 

Integration of safety and security: Safety frequently requires a fail open model. E.g. 
If there is an emergency within a refinery, the security controls should open thus, 
allowing the operator access to any controls necessary to save lives and minimize 
damage to the plant. In contrast, security controls generally favor a fail closed policy. 
i.e. If the subject cannot prove they are authorized access, then access is denied. The 
short term solution to this will be to allow customers to configure their RBAC either 
for a fail closed or fail open policy. However, research is required to create integrated 
safety and security risk models as well as create mechanisms which reduce or eliminate 
the either/or conflict between security and safety.   
Usability of security systems: One of the barriers to the adoption of least privilege in 
the real world is the added complexity, time and cost associated with creating, 
analyzing and maintaining fine grained access control policies. This project made 
significant progress on this front by integrating the asset hierarchy and the parameter 
constraints with the policy model. However, as an industry, more needs to be done to 
provide a unified and simplified means of specifying least privilege policies in 
complex, safety critical environments. 
IPsec interoperability: IPsec has been a standard for over a decade but interoperability 
problems still exist.  Defining a clear IPsec profile, which we did, using only a small 
subset of all possible IPsec variations is critical to achieving interoperability. An 
example of the interoperability challenges that remain is that we were not able to use 
IKEv2 because to this date it is not supported by Microsoft in transport mode. This is 
not so much a research issue but a problem which needs to be worked within the 
standards community.  

 
The significant deviations from the original plan and the impacts are:  

• Continuous validation: The UIUC team had originally planned to do work in the area of 
continuous validation. Early thoughts were that some mechanisms would be in place to 
continuously validate that a subject (e.g. user) was who they claimed to be and that they were 
still authorized access. However, as the design emerged the team concluded that IPsec together 
with TCP provided packet and stream integrity which provided continuous authentication 
across the network. The access revocation mechanism, which could be triggered by a policy 
change (e.g. removing a user from the LDAP directory or changing permissions), ensured that 
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policy changes were quickly propagated. Therefore, continuous validation as a research task 
was addressed without significant expenditure of resources.   

• Policy learning: One of the original research goals was to simplify policy administration by 
allowing the RBAC system to monitor network traffic and learn policy from existing 
(functioning) control systems. However, the team quickly learned that many aspects of the 
policy, though very important, are exercised infrequently. For example, an operator may only 
access controls for some valves and pumps during an emergency situation. Since emergencies 
are rare, it is not practical for the RBAC system to learn which policy should be enforced 
during an emergency. Therefore the team was forced to move toward an approach in which the 
administrator manually specifies the access rights of various roles. The team was able to 
reduce the administrative burden by leveraging existing roles, the Experion asset hierarchy and 
other structure within the control systems.   

• Lemnos: The team originally hoped to use the Lemnos device (Schweitzer SEL-3620) as the 
mechanism for providing secure communications. However, discussions with SEL revealed 
that the device did not have an application programming interface (API) which supported 
dynamic policy management. i.e., there was no way for the RBAC Policy Distribution Point 
(A.K.A. policy server) to push new IPsec policy to the SEL-3620 without direct human 
intervention. Thus, the team was forced to use IPsec and use the RBAC access vector 
distribution mechanism to distribute IPsec polices to nodes in near real time. The team was still 
able to leverage a vast amount of work done by the security community to develop and deploy 
IPsec.  One noteworthy feature of Lemnos is that it provides local user authentication while the 
RBAC BITW device uses the LDAP server. The Lemnos model is appropriate for SCADA 
environments in which communications to the LDAP server may not be available.    
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3 Products and Technology Transition  
 
The transition of the technology involves multiple aspects.  

• Listening to the customer and incorporating their requirements and feedback into the 
technology development 

• Implementing technology within a commercial product  
• Communicating technology to the research and user community 
• Protection of Intellectual Property 

 
Customer Focus 
Honeywell has obtained Experion specific customer requirements, reviews and feedback throughout 
the program to guide the implementation of the RBAC functions within the Experion product. The 
benefits to the customer can be found in the section titled “Security Benefits”.  The list of customer 
interactions includes:  

• One-on-one interviews with major energy sector customers and Honeywell Specialty Materials 
for voice of the customer requirements gathering 

• One-on-one briefing to a major energy sector customer followed by a design review 
• Presented RBAC at the Honeywell User Meeting in Brussels which included major energy sector 

customers resulting in excellent feedback for the product. 
• Briefings to customers at the Honeywell User Group (HUG) meeting in June 2013.  

 
Security Benefits  
The incorporation of RBAC into a DCS results in the potential to reduce risks for the oil and gas 
sectors. Honeywell has communicated these benefits to the research community as well as to Experion 
customers. Qualitative risk reduction is achieved as products incorporating this technology are 
incorporated into our energy infrastructure. Figure 4shows classes of high level attacks and the RBAC 
mechanism which provides effective countermeasures to those attacks.   
 
The list of technologies and techniques which contribute to security and usability includes:  
 

• Policy model and user interface make fine grained access control policy easy to specify 
- The policy specification makes use of structure and tools already present within the 

control system. For example, the existing asset hierarchy allows logical grouping of 
security permissions. The integration of RBAC with the enterprise authentication 
system (e.g. Windows Active Directory) allows the administrator to define lists of users 
in one place. The users may use the same authentication mechanisms including multi-
factor authentication for access to the control system and enterprise functions. Thus, 
administrators are more likely to set a least privilege policy because the workload is 
manageable.  

• Control is provided at the device, application and user level 
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- Device level control is coarse grained and therefore less burdensome to administer than 
other fine grained mechanisms. The cryptography used within IPsec (Advanced 
Encryption Standard) is strong and the IPsec protocols are mature. Application level 
access control prevents authorized users from using unauthorized applications to access 
remote resources. Finally the user level access control makes it possible to control 
access to specific functions or points in field devices as opposed to the all or nothing 
model of many legacy devices. The result of integrating these technologies is a defense 
in depth approach which requires many attacks to penetrate multiple layers of security 
controls.   

• Policy changes are propagated in less than 15 seconds 
- The policy distribution mechanism actively pushes new access vectors to the policy 

enforcement points when a policy change occurs. If a device is offline, the change is 
propagated when the device comes back online. The result is that permission changes 
are rapidly propagated and the window of vulnerability is reduced. 

• Policy enforcement is pushed to end devices such as the BITW/Modbus and C300 vs. just 
in the server 

- Many traditional control systems enforce access permissions at a server near the head 
end. However, legacy devices in the field lack local policy enforcement mechanisms. 
As a result, an attacker who is able to bypass the server at the head end is often granted 
unrestricted access to field devices. The RBAC architecture and implementation places 
policy enforcement points very close to or within the field devices so that attacks from 
downstream of the server are reduced. 

• IPsec, Whitelists and LDAP are integrated 
- Historically many security vulnerabilities occur at the seams within systems. E.g. the 

set of mechanism results in gaps in the security coverage or the interface to a security 
mechanism makes invalid assumptions. The integration of IPsec, application 
whitelisting and LDAP within the RBAC system provides a more (but not completely) 
seamless security approach. Two secondary benefits of integrating LDAP are: 

• User accounts are not duplicated. i.e., Once within the enterprise and second 
within the control system.  

• Advanced authentication techniques, such as two factor authentication, which 
may be supported in LDAP are inherited by the control system.   
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Figure 4 Potential cyber attacks thwarted by RBAC mechanisms. 

 
The Experion control system environment was used as a base for prototyping the RBAC technology 
and serves as a vehicle for moving the technology into the marketplace. Experion is an established 
product already being used in oil, gas and electric power generation. Thus, users do not need to rip out 
existing products and processes to upgrade to higher security and simplified administration.  
 
The Honeywell C300 controller is a state of the art process controller that can also operate as a 
programmable logic controller (PLC). The outputs of the C300 controller control the actuators in a 
process environment. The process sensors interface to the C300 for providing data from measurements 
such as temperature and flow. The C300 was enhanced to provide RBAC policy enforcement (node, 
application and user) in the prototype system. 
 
The RBAC technology is being rolled out in the Experion product in stages It is expected that 
competitive pressure in the market will encourage other control system vendors to match Experion’s 
new security features.   
 
 
Commercialization 
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Honeywell has implemented some of the RBAC technology within the Experion product. Honeywell 
is actively engaging customers to assist in defining future product features. Please see the RBAC 
Driven Least Privilege Architecture for Control Systems Commercialization Plan for more 
information.  
 
Outreach 
Honeywell has communicated information regarding the research to the community through the 
following channels.   

• The team wrote about the need for cyber security in control systems in the article “Staying in 
Control” published in the Jan/Feb 2012 edition of the IEEE Power & Energy magazine. The 
team wrote several papers regarding the technology (e.g., Role-Based Access Control for 
Distributed Control Systems submitted to IEEE Transactions on Dependable and Secure 
Computing) which were not accepted. The team has submitted an abstract entitled “Next 
generation access control for distributed control systems”, to the IEEE Security and Privacy 
special issue on Energy Sector Control Systems. The team is waiting for feedback on this 
submission. 

• The team provided a briefing on the RBAC technology to the National Electric Sector 
Cybersecurity Organization (NESCO) in April 2011.   

• The team presented a poster at the Honeywell technology symposium in May 2011. 
• The team presented an RBAC poster at the Trustworthy Cyber Infrastructure for the Power 

Grid (TCIPG) workshop in Oct 2012. 
• The team presented a briefing and poster at the Cybersecurity for Energy Delivery Systems 

Peer Review in July 2012.     
• UIUC presented a paper titled “A Framework Integrating Attribute-based Policies into Role-

Based Access Control” at the ACM Symposium on Access Control Models and Technologies 
(SACMAT ’12).  

 
Patent Applications  
The research resulted in two inventions:  

• The application of role based access control within the control system environment, and in 
particular the late binding aspect is the subject of US patent application 13/682428, “Role-
Based Access Control Permissions”, filed on November 20, 2012.  

• The use of RBAC concepts to provide automated key management is addressed in the 
invention disclosure “Policy Based Secure Communication with Automatic Key Management” 
which was disclosed to DOE in Jan 2013.  Honeywell is in the process of preparing a U.S. 
patent application to be filed within the next few months. 
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4 Access Control Model 
 
Before discussing the RBAC model developed in this project we provide an overview of a Distributed 
Control System (DCS, hereafter) that motivated this model and capture its important characteristics 
and requirements for an access control model.  We then describe a concrete RBAC model and policy 
enforcement framework, tailored for DCS and discuss its performance evaluation. We then describe a 
formal and more generalized RBAC model that goes beyond meeting DCS requirements and 
integrates attributes into RBAC.  

4.1 Requirements 
A DCS is typically organized into multiple hierarchical levels from the highest (Enterprise) level to 
the lowest (Control module) level, as described in the ISA-88 and ISA-95 standards. An abstracted 
view of a hierarchical DCS system with four levels is shown in Figure 5. The lower levels are further 
organized into groups based on the geographic or logical organization of an industrial plant. In the 
given example, the plant is divided into two “controller zones”, Zone A and Zone B, at the supervisory 
level. A controller zone groups logical and physical assets that share common controller objectives and 
requirements. Although not shown in Figure 5, these zones could be further divided based on 
processes at the lower levels. At the lowest level, Level 1, are controllers that interface with, monitor, 
and control the physical processes. Each controller runs many control algorithms, also referred to as 
control blocks or points. There are different types of points or control blocks; PID (Proportional-
Integral-Derivate) is one such type. Each point, based on its type, has a set of parameters associated 
with it that are used by the control algorithm. Examples of parameters include process variables, set 
point limits, output limits, alarm limits, and alarm-enabled state. At the next level, Level 2, are 
supervisory devices that allow plant operators, engineers, and managers to monitor and control the 
physical processes by accessing the controllers. The devices include operator consoles that act as the 
human machine interfaces (HMI) and data caches that cache sensor data to provide faster access to 
field device data. The use of the data caches also minimizes the number of data reads/writes performed 
directly on the controllers, reducing their workload. Level 3 represents operations management and 
includes dispatching, production scheduling, reliability assurance, plant-wide control, and 
optimization. At the topmost level, Level 4, is the enterprise system that is used for business planning 
and logistics.  
The RBAC requirements are driven by the following characteristics of the DCS environment.  

Large number of security objects and permissions: A typical DCS might have tens of 
controllers, with each controller having thousands of points, and each point having tens of 
parameters. Each point and its parameters have multiple available operations (e.g., read, 
write, and configure). That creates an explosion of security objects and permissions, making 
their management and assignment tedious and error-prone. Further, access to and allowable 
operations on a point parameter are limited by an entity’s access to the point itself. 
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Requirement 1.  An RBAC solution must provide compatible and easy means to migrate and 
capture existing point and parameter objects, and leverage the access relationships between 
them. Further, it should ease the specification and management of security objects and their 
permissions. 

 
Figure 5 DCS overview with RBAC components 

 
Well-defined job functions and access patterns: DCS and process control systems in 
general have well defined and relatively stable basic job functions, with well-defined access 
rights or access right patterns within a system context. For example, operator and engineer 
are well-understood job functions in the DCS community and are well-defined within a given 
process control context. An operator is typically only allowed to modify operational 
parameters, whereas an engineer is typically also allowed to configure control algorithms. 
Users performing those job-functions are often limited in scope of responsibility to logical 
control entities (e.g., a cracker) of the plant corresponding to sub-processes. 
Further, in a DCS system, access patterns on the parameters are the same for a given job 
function regardless of the individual points they are associated with. For instance, suppose an 
operator is given responsibility for monitoring control points A, B, and C, each of which uses 
a parameter “set point limit (SP)”; then the operator would have the same access rights to the 
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set point limits on all three points, i.e., A.SP, B.SP, and C.SP. The second requirement insists 
that an RBAC solution exploit the access patterns mentioned above: 
Requirement 2. An RBAC solution should leverage the presence of well-defined job functions 
and associated access right patterns to ease the specification and management of roles and 
objects. 
 
Hierarchical organization of security objects: DCS systems are typically organized 
hierarchically, with both logical and physical groupings based on controller objectives, 
geographic location, or plant organization among other things. A logical grouping of control 
objects, such as points that correspond to a part of the control system entity, is typically 
referred to as a control asset. For example, in an oil refinery setting, a “cracker” or a “boiler” 
can be a large control entity (itself represented as an asset) controlled by several “control 
loops,” each with some number of points. Relationships like that lead one to organize control 
assets within a tree hierarchy (see Figure 7). A system asset, on the other hand, represents the 
physical grouping of the actual field devices and server machines, including operator 
consoles, HMIs, and controllers. These are also organized in a hierarchy, reflecting their 
positions within the network. An operator monitoring a part or a control entity in the plant 
typically has access, at a predefined level, to all the control and system assets associated with 
the control entity, with a few exceptions. 
Requirement 3. An RBAC solution should support a hierarchy of object groups and 
permission inheritance in the hierarchy. Further, it should support multiple exceptions to 
permission inheritance in the object hierarchy. 
 
Station-based or application-based access: Station based security is a commonly used 
access model in DCS. Under station-based access control, console stations are preconfigured 
to have a certain level of access to some assets within the plant, each connected to specific 
parts of the control system. An operator with access to a particular console station gets all the 
access rights the console station has. Typically, the zone in which the station is located 
determines what assets it can access. While station-based access control does not enforce 
least-privilege, it does capture important access constraints that should be considered when 
determining the effective access level of an operator. This notion of contextual access control 
also applies to DCS applications (e.g., an HMI application) that operators use to make 
requests. An application could have a more restricted level of access to some assets, affecting 
the effective access level of an operator while requests are being made through it. 
Requirement 4. An RBAC solution should support station-based and/or application-based 
access constraints. 
 
Real-time and safety-critical system: Many DCS systems have real-time and safety 
requirements. Correspondingly, access control mechanisms should add as little latency as 
possible to system operations. For example, cross level interactions should be minimized. 
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Further, a failure in the access control system components should have minimal interference 
with the way operators perform their daily operations. 
Requirement 5. With all of the RBAC mechanisms in place, the additional operation time to 
complete a control or administrative request, or the additional response time for an operation 
failure, shall be less than a few hundred milliseconds. 
Requirement 6. DCS downtime resulting from a failure in the RBAC solution should be 
minimized and have minimal interference with the daily operations of the safety critical 
functions. 
 

4.2 DCS-RBAC Policy Model 
To address the various features of DCS, we designed DCS-RBAC model. At a high level, 
DCS-RBAC 

• uses proto-permissions and proto-permission groups instead of traditional permissions 
that associate an operation with an object;  

• uses proto-objects, object groups, and an object group hierarchy; and 
• supports exceptions to permission inheritance in the object group hierarchy, among 

other things. 
 
Different from roles in the standard model, a role in DCS-RBAC associates a group of proto-
permissions with a group of objects; a role also associates a Scope of Responsibility, together 
with proto-permissions to determine the instances of permissions. In addition, standard roles 
are expanded to application roles and device roles, allowing applications and devices to be 
assigned to their own roles and have permissions. A high level view of DCS-RBAC policy 
model is illustrated in Figure 6. 
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Figure 6 DCS-RBAC. Blue boxes show our additions/changes to the basic RBAC model. 

4.2.1 Key Concepts 
Some key concepts are given as follows. 
Proto-permissions. A proto-permission pp (id; type; op; objType) associates an operation 
(op) with an object type (objType); by contrast, traditional models associate an operation with 
a specific object instance. Through type, we classify whether a proto-permission is of type 
“point,” “parameter,” or “administrative.” Below is an example set of proto-permissions for 
DCS: 
pp(1, point, view information, point) 
pp(2, parameter, write, PID.SP) 
pp(3, administrative, configure settings, system flex station). 
In the example above, pp 1 is a “point permission” that allows the “view information” 
operation to be 
performed on objects of type “point”; pp 2 is a “parameter permission” that allows the 
“write” operation to be performed on objects of type “PID.SP,” where PID is a point type and 
SP is a parameter. A proto-permission can be applied to any object with the proper object 
type. The advantage is that the number of proto-permissions to manage is much smaller than 
the number of classical permissions that would have been needed. That is intended to satisfy 
Requirement 1. We note that this style of notation is used throughout the paper to represent 
records in the relational database, and should not be confused with functions. 
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Proto-permission groups. A proto-permission group (ppg) gathers proto-permissions, 
capturing typical access patterns associated with DCS job functions such as “operator,” 
“supervisor,” “engineer,” and “manager.” By grouping proto-permissions, a proto-permission 
group serves as a base template for a role. 
  
Subjects. In our view, a “subject” exercises permissions, and so might be a human user, a 
particular device, or a software application. Subjects are assigned to roles, with different 
types of roles being defined for the different types of subjects. 
 
User/application/device roles. A role r in DCS-RBAC is created with reference to a proto-
permission group: r(id; name; type; ppg:id). r:type designates a user, application, or device 
role. The specific objects for which a role has permissions are discovered through use of 
scopes. A scope, denoted by sc, associates roles with object groups; scopes are explained 
further later in this section. Conceptually, a role has a set of proto-permissions, and an 
associated super-set of objects that contains all objects to which those permissions can be 
applied. A match between a proto-permission’s object type and the type of a specific object 
gives the role access to that particular object, in accordance with the operation specified in 
the proto-permission. Together these features reduce the burden of managing a large number 
of permissions and allow us to leverage the common job functions and access patterns present 
in the DCS, satisfying Requirements 1 and 2. Furthermore, with proto-permission groups, 
role instantiation and management become easier and stay consistent with respect to the given 
job function: if a proto-permission is added (or removed) from the proto-permission group, 
all roles that derive from this group will automatically be updated. An example set of roles for 
a “Controller Zone A” follows: 
 
r(1, Zone A Distillation Column Operator, user, operator ppg.id) 
r(2, Zone A HMI, view only, app, hmi ppg.id) 
r(3, Zone A Level 3 Control Station, device, lvl 3 control station ppg.id). 
 
Role 1, for example, is the “Zone A Distillation Column Operator” user role that inherits all 
proto-permissions from the “operator” group (operator ppg). Likewise, Role 3 is a “Level 3 
Control Station” device role that inherits proto-permissions from lvl_3_control_station_ppg. 
Application/device roles (roles 2 and 3) provide an intuitive, efficient, and fine-grained 
means to constrain the permissions that a user obtains when using a certain device or 
application. Without it, the role engineer would have to specify permissions for every 
possible combination of devices and applications for a given user role. 
 
Assets and asset hierarchies. We borrow the term asset from DCS and use it synonymously 
with an object or object group. An asset has a type associated with it, indicating whether it is 
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a “control” asset or a “system” asset: a(id; name; type; treeId). For system assets, type may 
indicate more specific system assets like “console station,” “flex station,” “controller,” and so 
on. Systems of interest to us may have large number of assets, which are best handled 
through a well-structured hierarchy. Significant efficiencies in expressing permissions may be 
obtained by taking as the default assumption that permission granted to a role for an asset 
extends to all assets that are lower in the hierarchy. We express asset hierarchies using the 
treeId that shows where the asset is positioned in the asset hierarchy; this allows one to easily 
work out the hierarchical (parent-child) relationship between assets, and satisfies 
Requirement 3. Some example assets and asset hierarchies are shown below: 
 
a(1, Control Assets, control, 1) 
a(2, Zone A, control, 1.1) 
a(3, Zone B, control, 1.2) 
a(4, Cracker, control, 1.1.1) 
a(5, Distillation, control, 1.1.2) 
a(6, Control Loop 3, control, 1.1.2.1) 
a(7, System Assets, system, 2) 
a(8, Zone A, system, 2.1) 
a(9, Stations, system, 2.1.2) 
a(10, Zone A Console Station, system console station, 2.1.2.1) 
a(11, Zone A Flex Station, system flex station, 2.1.2.2) 
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Figure 7 Control asset hierarchy example 

 
Assets 1 to 6 are control assets, and assets 7 to 11 are system assets, where assets 1 and 7 
represent the root assets in the two asset hierarchies. In the control asset hierarchy, “Zone A” 
(1.1) consists of “Cracker” (1.1.1) and “Distillation Column” (1.1.2), where Distillation 
Column is controlled by “Control Loop 3” (1.1.2.1). Figure 3 illustrates that control asset 
hierarchy. Similarly, in the system asset hierarchy, “Zone A” consists of “Consoles,” and 
“Stations.” Notice how the a:type for some system assets are more specific and indicate what 
the actual object types are (e.g., system console station). The reason is that the administrative 
proto-permissions are defined in terms of those system assets, which do not have any finer-
grained objects (like points) associated with them. In comparison, a control asset, which is a 
logical grouping of control objects, never represents an accessible object or object type in 
itself; it may have (control) points assigned to it, though, and these points represent the 
objects on which the proto-permissions can be used. 
 
Objects and proto-objects. In DCS, RBAC protects control points and their parameters. We 
use pt to denote a point: pt(id; a:id; name; ptt:id). Each point references a type through ptt:id, 
and each type is associated with a set of parameters par. Each ptt-par combination, denoted 
by pttPar, represents a separate object; the reason is that a parameter, when associated with 
two different point (control algorithm) types, technically becomes two different parameter 
objects. pttPar is not a full object, however, since it is always bound to a point; such ptt-par 
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combinations are referred to as ‘proto-objects’ in DCS-RBAC, and can be grouped together 
with point type. That is possible in DCS because a job function typically has the same access 
patterns for parameters regardless of the points to which they get assigned (see Requirement 
2). For instance, an operator typically has a write access to the Set Point (SP) of a point type 
Proportional Integral Derivative (PID). That implies that for any point with point type PID, 
the operator can access its SP parameters. Grouping of proto-objects eases the object creation 
and management processes, requiring one to assign a small number of group identifiers 
(ptt:id) to the parent object (pt) to model a large number of associated attributes (pt:pttPar). 
 
Exceptions. We support modifications to the default inheritance of proto-permissions by 
adding an exception e to the scope: e(sc:id; a:treeId; ppg:id). A new proto-permission group 
is specified through ppg:id. One understands the complete proto-permission assignment as 
starting with the default, modified by changes expressed in the exceptions. This meets 
Requirement 3. 

 

4.2.2 RBAC policy relational database schema 
A relational database schema for DCS-RBAC is shown in Figure 8.  
 

 
Figure 8 Relational database schema for DCS-RBAC 
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• Record RPPA links a role (with identity code r:id) directly with a proto-permission (with ID 
pp:id), capturing the additional proto-permissions (ones that are not part of the base proto-
permission group) that the role can have. The R and PP records to which these IDs refer have 
the corresponding index values in their id fields, as is suggested by the links between records. 

• Record S (subject) codes a user (a human, a device, or an application), giving it an identity 
(id), describes the type (human, device, or application), and an external identifier. 

•  Record SRA assigns a subject to a role, using s:id to index the subject record and r:id to index 
the role description.  

• Record R (role) has an id that identifies it to the RPPA relation and the S (scope) relation. It 
has a unique textual name field, and references its base proto-permission group through the 
index ppg:id. It also has a type indicating whether it is a user, device, or application role.  

• Record PP describes a proto-permission, giving it a unique index in field id, a type of proto-
permission in field type, the operation allowed (described in field op), and the type of object 
that this proto-permission addresses.   

• Record PPG gives a name and an id to a proto-permission group. Various assignments of 
proto-permissions to this group reference it through this id field.  

• Record PPGPPA describes the assignment of the proto-permission (whose ID is pp:id) to a 
proto-permissions group, whose ID is ppg:id. This arrangement supports many-to-many 
linkages between proto-permissions and proto-permission groups.  

• Record SC (scope) has a unique identifier id, identifies the role whose scope is through the 
role index r:id, and refers to a parent node in the asset hierarchy through code a:treeId.  

• Record C (constraint) places restrictions on the use of proto-permissions. It points to a 
particular scope through field sc:id, and to the subtree of assets affected by the constraint 
through field a:treeId. The proto-permission is identified by index field pp:id; field type 
describes the constraint with labels such as “temporal” or “mode,” and field constraint gives a 
specific textual description (e.g., 7:00–18:00).  

• Record E (exception) is used to allow modifications to a role’s base proto-permissions group. 
The scope being modified is identified through field sc:id; the asset subtree to which the 
exception is applied is identified through field a:treeId; and the group of proto-permissions 
used to replace all those formerly applied to that subtree is identified through field ppg:id. 
Multiple exception records may exist that point to the same scope record through sc:id. 

• Record A (asset) has a unique identifier id, a textual name describing use (e.g., “Zone A”), a 
code treeId pointing to the asset’s position in the asset hierarchy, and a type. 

• Record PT (point) has a unique identifier id, a position a:treeId pointing to its location in the 
asset hierarchy, a textual name, and an index to a point type. Although we do not discuss 
composite points (points with multiple point types) in this report, they can be modeled easily 
through a data structure that supports many-to-many relationships between point types and 
points. 

• Record PTT describes a type for a point, with unique identifier id, and name of the point type 
in field name. 
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• Record PTTPAR is used to support many parameters a point type may have, and represents 
the proto-objects. It points to a specific parameter through index field par:id, and to a point 
type through index field ptt:id. A point, by referencing a point type, is also linked to the 
parameters.  

 
A role’s scope identifies a set of objects against which its proto-permission object types are matched 
to discover the objects (and operations on them) it can access. We explain later how this discovering 
process is managed by the policy decision point (PDP). The structure of the asset hierarchy means that 
it is simple to describe the scopes compactly. An asset and all of its descendents are described by the 
hierarchy coding of that asset; e.g., in our earlier examples, 1.1.1 is code for the control entity Cracker 
in Zone A. A role’s scope may include a number of asset subtrees, and so is coded in the database as a 
list of scope records, one for each subtree. 
 
The database schema supports discovery of all of a role’s effective permissions to access assets, 
points, and parameters, and generation of “access vectors” used by the policy enforcement points 
(PEPs). The generation algorithm visits every control asset in the role’s control scope, and, for each 
asset, fetches the associated points. For each point, it fetches the pttPar records (proto-objects) that 
have the matching point type. It also fetches every system asset in the role’s administrative scope. All 
of these objects represent the accessible objects in the access vector. On top of those, the algorithm 
gets the role’s scope records and the base proto-permission set (PP records) as well as the exceptions 
and new proto-permission sets associated with each exception. To grant access, the PEP searches the 
list of accessible objects and looks for a match of the object type with those given in the role’s proto-
permission sets. For a given proto-permission pp: 

 
• if the PEP is examining a system asset a, and asset type a:type matches pp:objType, then the role 

may apply operator pp:op to a; 
• if the PEP is examining point pt, and pp:objType is identically “point,” then the role may apply 

operator pp:op to pt; 
• if the PEP is examining pttPar, and pttPar matches pp:objType, then the role may apply operator 

pp:op to pttPar bound to the PT record that references the PTT record. 
 

4.2.3 RBAC Policy Enforcement Framework 
Figure 5 shows the placement of typical authorization framework components: the centralized RBAC 
Server is the policy decision point (PDP) that is responsible for managing the RBAC policy database 
and making policy decisions; each controller zone has its own policy enforcement point (PEP) that 
enforces the policies. In our architecture, the PEP mediates all user accesses to the data cache that 
caches field device (sensor) data. In typical policy-based authorization architectures, the PDP 
adjudicates access requests, based on policy, and the PEP enforces the decision. We eschew this 
approach in a DCS, as per-access network delays may threaten our response time requirements (see 
Requirement 5). In addition, the PDP would become a single point of failure, threatening safety (see 
Requirement 6).  
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Instead, our approach is to centrally, within the PDP, pre-compute access vectors that capture the 
RBAC policy, and push them out to each PEP. A per-role access vector contains (i) an encoding of the 
role’s scope, (ii) all of the role’s proto-permissions, and (iii) exceptions and constraints. Access vectors 
provide enough information for the PEP to correctly grant or deny a request.  This pre-computation 
allows for efficient access enforcement within many different embedded devices that collectively 
constitute a distributed control system. The following steps describe how access control is enforced in 
our architecture:  
(1) Offline, for every user role, application role, and device role, the PDP pre-computes per-role access 
vectors.  
(2) Per-role access vectors, along with the list of subject-role assignments (SRA), are digitally signed 
and sent to the PEPs.  
(3) On receiving an access request, a PEP uses the identity credentials of the user, application, and 
device and the SRA list to work out the three roles implied by the request. The PEP finds the 
appropriate access vector for each and for each role determines whether the request should be granted. 
Access is granted if and only if all three roles permit it.  
(4) Whenever there is a policy change at the RBAC Server, the PDP computes the access vectors that 
are affected by the change, and pushes them out to the PEPs.  
That approach is robust against PDP failures and network failures, as decisions are decentralized and 
made closer to the security objects. Note that while we place PEPs at the supervisory level (Level 2) in 
Figure 5, our framework allows us to push the PEPs down to actual controllers if needed to further 
decentralize access policy enforcement. However, controllers are embedded devices, and PEPs are 
required to store access vectors, so both memory and computing requirements might be a potential 
concern. As we will see, the list of proto-permissions in an access vector dominates the memory 
requirements. In this work, we focus on the case in which the PEPs are placed at a Data Cache at 
Level 2. Subsetting techniques are applied during the access vector generation process to reduce the 
size of access vectors in embedded controllers.  

 
Access vector structure 
We provide an example per-role access vector to show how it is structured and used to make 
authorization decisions. All the components of an example access vector are given below, represented 
using the same notations we used above for denoting database records. 

 
role = r(1, ‘Zone A Distillation Operator’, user, operator ppg.id) 
 
sc_ set(role) = {sc(1, role.id, 1.1.2), sc(2, role.id, 2.1.2)} 
pp_ set(role) = {pp(1, point, view information, point), pp(2,parameter, write, PID.SP), 
       pp(3, parameter, view, PID.SP), pp(4, administrative, configure settings, system flex 
station)} 
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e_ set(sc(1, role.id, 1.1.2)) = {e(1, 1.1.2.1, view only.id)} 
pp_ set(e(1, 1.1.2.1, view only.id)) ={pp(1, point, view information, point),  

pp(2, parameter, view, PID.SP)} 
 

object _set(role) = {pt(1, 1.1.2.1, ‘Point-A’, PID), pt(2,1.1.2, ‘Point-B’, PID), pttPar(PID, SP),  
a(1, ‘Zone A Flex Station’, system flex station, 2.1.2.2)} 

 
That vector was constructed for the “Zone A Distillation Operator” user role, consisting of a control 
scope sc(1, role.id, 1.1.2) and an administrative scope sc(2, role.id, 2.1.2). The role has the proto-
permission set of the operator group denoted by pp set(role). The control scope has an exception e(1, 
1.1.2.1, view_only.id), indicating that the new proto-permission set that can be used on all points and 
parameters that belong to asset 1.1.2.1 and its descendants is listed in pp_ set(e(1;1.1.2.1; 
view_only:id)).The set of objects that are accessible to the role are captured by object_ set(role).  

 
Now consider a user making a request to read parameter “Point-A.PID.SP.” The PEP first checks that 
both “Point-A” and “PID.SP” are in object_set(role). It then uses the a:treeId 1.1.2.1 of Point-A to 
figure out which set of proto-permissions can be used. Since e(1, 1.1.2.1, view_only.id) is the closest 
scope/exception to 1.1.2.1 in terms of the asset hierarchy, the PEP checks pp_set(e(1, 1.1.2.1; 
view_only:id)) and grants the request, since this proto-permission set contains pp(2, parameter, view, 
PID.SP). The object type checked here is PID.SP. However, a request to write to Point-A.PID.SP will 
be denied. A request to write to Point- B.PID.SP, on the other hand, will be granted, since here the 
proto-permission set that can be used is defined by pp_set(role), which contains pp(2, parameter, 
write, PID.SP). Similarly, a request to configure settings of “Zone A Flex Station” will be granted 
since pp_set(role) contains pp(4, administrative, configure settings, system flex station). The object 
type checked here is system_flex_station (a:type). 
Note that this user role vector is just one vector being used in the policy enforcement process. The 
effective (final) access will be determined based on what the device and application roles allow. 
Effective access vectors 
Management and use of per-role access vectors is straightforward, but comes with its own costs: every 
run-time policy enforcement requires analysis of three different access vectors. Run-time 
responsiveness might be threatened, depending on the time cost of each analysis. It is possible to limit 
run-time analysis to one access vector, provided that more offline processing is done first. The idea is 
to visit every combination of user, device, and application role, and work out the intersection of their 
scopes, exceptions, and constraints. The access vector for the role-triple will hold a description of the 
intersecting scopes, and a list of the proto-permissions, exceptions, and constraints that are applicable 
to objects in that intersection. Loaded with such effective access vectors, a PEP handles a request by 
looking up the one vector created for the user/device/application triple making the request. The 
processing of the request is the same as for a per-role access vector. 
An effective access vector is no larger (and is usually smaller) than a per-role access vector, owing to a 
smaller set of objects and proto-permissions in the intersection. On the other hand, there are 
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potentially many more effective access vectors than there are per-role vectors. Which of the 
aforementioned two approaches is more efficient will depend very much on the number of possible 
role-triple combinations as well as the intersecting sets of scopes/exceptions and proto-permissions of 
effective access vectors. This represents a typical time vs. memory tradeoff.  
The system implementation also used several access vector compression techniques: 

• Object wild cards (e.g. read access to all objects) 
• Permission wild cards (e.g. all access to specific object) 

These techniques significantly compress access vector size in systems where read access is always 
granted for example and only write access is granted explicitly, which is typical in process control 
industry. 
 

4.2.4 Performance Evaluation 
To evaluate the performance of the proposed RBAC system against our processing time requirements, 
we constructed a prototype implementation for the RBAC Server, RBAC Proxy, and HMI using 
Microsoft SQL Server 2008 and C# (.NET) on Windows Server 2008. The RBAC Server, RBAC 
Proxy, and HMI were each deployed on a separate “Dell T310” server machine that is equipped with 
two quad-core Intel Xeon 3440 processors (2.53GHz) and 8GB memory. To model as closely as 
possible a real DCS architecture (see Figure 5 DCS overview with RBAC components), we used a Netgear 
router/firewall to connect the RBAC Proxy and HMI, and an unmanaged gigabit switch to connect the 
RBAC server to the router/- firewall. The router had OpenWrt installed and used default firewall 
settings. The RBAC Server prototype consists of a fully implemented RBAC policy database (see 
Figure 8) as well as a PDP engine for generating both the per-role and effective access vectors. The 
RBAC Proxy consists of a dummy data cache (containing point and parameter data) and a PEP engine 
that uses the access vectors to make authorization decisions. The HMI simply makes read and write 
requests to the Proxy. 
Data size 
According to DCS domain experts, a typical DCS has (approximately) 

• 32 controllers; 
• 2000 points per controller; 
• 200 point types; 50 parameters per point type; 
• at least four zones; 
• at least 1000 assets. 

We created an asset hierarchy in which the system has ten zones; each zone has ten large control 
entities (e.g., cracker); and each entity is controlled by nine control loops, for a total of 1010 assets in 
the hierarchy. The 32 × 2000 points in the system are distributed evenly among the assets, yielding 
about 64 points per asset. 200 ×50 proto-objects (PTTPAR records) were also created. There are 
20,000 parameter proto-permissions on the proto-objects (200 point types × 50 parameters × 2 
reads/writes). In addition, we created 12 point proto-permissions (e.g., view or configure algorithm 
information) and 20 administrative proto-permissions (e.g., view or configure settings). 

 

Copyright 2014 by Honeywell International Inc. All Rights Reserved 
Restrictions applicable to use by or for the U.S. Government:  Unlimited Rights 

Page 33 of 47 

 



RBAC Driven Least Privilege Architecture for Control Systems 

To appreciate the expressive power of proto-objects (e.g., PID.SP) versus full objects (e.g., Point-
A.PID.SP, Point-B.PID.SP), compare the 10,000 proto-objects with the 3,200,000 full objects the 
system would otherwise have to manage. Likewise, the expressive power of proto-permissions versus 
per-object permissions can be witnessed by comparing the 12 point proto-permissions with the 64,000 
distinct point objects represented.  
We grouped proto-permissions into six proto-permission groups, commonly used for creating six user 
roles, six device roles, and six application roles per zone. 
Operation completion time and memory usage 
To measure the operation completion time, we experimented with 20 different role combinations in 
each of four zones, and performed 100 read and 100 write requests on each access vector. These 
requests were generated randomly to test both “access-granted” and “access-denied” scenarios. The 
operation completion time for each request measured the time it took to submit the request through the 
HMI, authorize the request using the access vector, read the requested data from the data cache or 
write to the data cache entry, and send the response message back to the HMI. Table 1 shows the 
average operation completion time in milliseconds and the standard deviations for granted accesses, 
which involve reading from or writing to the data cache. It also shows the average time for denied 
accesses, which is shorter because there was no interaction with the cache. The statistics were 
collected using 2,000 read and 2,000 write requests per zone. 
Significantly, all operation times were well under 50 milliseconds, which easily satisfies our response 
time requirement of less than a few hundred milliseconds. As anticipated, operational latencies for per-
role access vectors were greater than those for the effective access vectors, but not significant enough 
to violate our response time requirement.  
We also measured the time required to compute all 18 per-role vectors and 216 effective vectors for 
each of four zones. Statistics are shown in Table 2. Here we see a clear advantage to the per-role 
approach. While the performance difference is not prohibitive, especially given that computation is 
offline and infrequent, it does impact the responsiveness to a change in the RBAC policy.  
Further, we measured the amount of memory needed by four of the zone PEPs to store access vectors, 
shown in Table 3. We see that the average size of effective vectors is much smaller than that of per-
role vectors, but because there are more of them, in each zone the overall memory load on the PEP is 
smaller (by varying degrees) using the per-role vectors. While performance specifics will of course 
depend on the particular system (e.g., the number of needed roles), our study of a significantly large 
system shows that the proposed RBAC model and policy enforcement framework may likely meet the 
timing and memory requirements when the policies are enforced through centralized PEPs. 
Comparing against full permissions 
Finally, to demonstrate the size efficiency of our access vectors obtained through the use of proto-
permissions, proto-objects, and object hierarchy, we expanded the per-role vectors into a format that 
contains full permissions – as opposed to proto-permissions and proto-objects – and measured their 
size. A full permission is a permission that one would normally see in a typical access control system, 
pairing an operation with an object instance. Without the proposed proto-permissions, proto-objects, 
and object hierarchy, an access vector would be generated with those full permissions and be larger in 
size. 
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As expected, the amount of total memory needed by the expanded per-role access vectors (compared 
with the original vectors) is much larger: at least 43% larger as shown in Tables 3 and 4. For Zone A, 
the difference is 12.8 MB, which is an increase of more than 80%; for the other three zones, the 
differences are about 5–6 MB which is an increase of more than 43%. A similar trend is seen for 
average access vector size. The difference is greater in Zone A because its roles have relatively large 
scopes and access to more objects. Likewise, as more roles are created with large scopes, the size 
difference between the two types of vectors will also become greater. 
Table 5 shows that the operation times are slightly faster with the expanded vectors, owing to the 
simple (single) lookups on the full permissions for access decisions. We optimized the lookup times of 
the expanded vectors by modeling permissions with a hashtable. In comparison, the original vectors 
require a few extra steps (see Subsection 4.2.3) to figure out whether a user has access. Interestingly, 
the operation times for the expanded per-role vectors (which still require three access checks on user, 
device and application roles) are still slightly slower than those for the effective access vectors (see 
Table 1). 
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4.3 Formal Model 
The previous subsection discussed a concrete DCS-RBAC model within a framework that meets the 
requirements outlined in section 4.1.  That approach meets access control needs in DCS context, 
especially with respect to transitioning from current access control practices around Honeywell 
technologies.  This section presents a formal model of RBAC that is informed by both the existing 
literature on RBAC models, and the unique requirements of RBAC in the process control space in 
general, and Honeywell's approach to that, in particular. 
While subsection 4.2 describes elements of a potentially concrete implementation, what we develop 
here is at once more abstract, but also at times, more detailed.  It explicitly captures the notion of 
scope of responsibility (and its various sublets) that is so important in the Honeywell context, but does 
not specify the mechanisms that determine the permissions allowed for a role to perform except in 
mathematical terms of relationships between sets.  It brings to the foreground constraints on 
permissions related to context (e.g., system mode, time-of-day) through a novel dependency on 
``environment state'', whereas constraints and constraint checking in 4.2 are more part of the 
implementation than part of the RBAC world-view. 
The formal model has role-engineering firmly in its sights. It thoroughly works through means by 
which a role can be efficiently engineered through different inheritance mechanisms that suggest 
themselves by base role intent from the organization structure, from the relationship of objects within 
their asset hierarchies. 
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The formal model presents a unique approach to assigning permissions to roles, and users to roles 
through development of attribute-based policies.  This formulation allows a role engineer to formally 
describe rules that guide and constrain the assignments, and then allow automation to create those 
assignments, at least as a starting point. 

4.3.1 A Two-layered Framework of RBAC 
The concept of role-based access control (RBAC) is simple, effectively models an organization's 
structure, and at a high level is easy to understand.  However, the problem of defining roles and 
assigning permissions to roles is widely recognized as difficult, as is maintenance of RBAC as the 
organization changes both in structure, and with turnover in employment. In developing a formal 
RBAC model we have taken a two-pronged approach.  First we describe RBAC at a level closely 
related to existing RBAC systems, at what we call the ``aboveground'' layer.  This description allows 
those already familiar with RBAC formalisms to readily understand the extensions we've made to 
support application in a process control context.  As with other RBAC models, we describe this with 
mathematical notions involving sets and logical expressions based on set membership.  A second layer, 
what we call the ``underground layer'', describes how the abstractions of the upstairs layer might be 
realized in a way that captures the key distinctions in Honeywell's view of access control.  The 
upstairs model aims to be descriptive of the structure of a broad set of RBAC systems; the downstairs 
model gives more details tailored towards specification of systems like Honeywell's.  Taken together 
the aboveground and underground models completely describe an RBAC model suitable for process 
control systems; the relationship between the two is illustrated in Figure 9. It should be remembered 
though that the model is more general in several ways than is needed for Honeywell's implementation.  
It should also be remembered that the model concepts are more precise than needed for exposure to 
the user. We believe that the precision will be useful both for validating that a given RBAC 
implementation meets some higher level access control objectives, and will help guide our thinking as 
we consider problems related to role engineering. These two layers of the model give a sort of 
assembly language view of a program, while a user is accustomed to presentation at a higher and more 
concrete level. 
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Figure 9 A two-layered framework integrating Attribute-based policies into RBAC 

4.3.2 The Aboveground Level  
In this section, we mainly use first order logic to make formal descriptions, and follow the convention 
that all unbound variables are universally quantified in the largest scope. The aboveground level is a 
simple and standard RBAC model, but extended with constraints on attributes of the “environment”. 
We use the notion of environment to represent the context of a user’s access, such as the time of 
access, the access device, the system’s operational mode, and so forth. 
The model is formally described as a tuple, 

M = (U, R, P, O, OP, EP, URAe, RPAe), 
where U  is a set of users.   A user could be either a human being or an autonomous software agent; R 
is a set of roles.  A role reflects a job function, and is associated with a set of permissions; O is a set of 
objects.  Objects are the resources protected by access control; OP  is a set of operator.  An operator 
represents a specific type of operations; P is a set of permissions.  A permission is defined by a 
legitimate operation, which comprises an operator and an object; EP is a set of predefined environment 
state patterns.  We use environment state to model the context of a user’s access. Each environment 
state pattern (environment pattern, hereafter) defines a set of environment states; URAe  is the 
extended user-role assignment relation, which is basically a mapping from users to roles, associated 

 

Copyright 2014 by Honeywell International Inc. All Rights Reserved 
Restrictions applicable to use by or for the U.S. Government:  Unlimited Rights 

Page 38 of 47 

 



RBAC Driven Least Privilege Architecture for Control Systems 

with certain environment patterns; RPAe is the extended role-permission assignment relation, which 
is basically a mapping from roles to permissions, also associated with certain environment patterns.  
All sets are finite.   In the following, we give some further formal description of environment. 
 
Environment 
We represent the context of access as environment, and model an environment as a vector of 
environment attributes, each of which is represented by an environment variable (called an attribute 
name) associated with an attribute value in a domain. An environment is defined by n  attributes, let vi   
∈ Di ,i  = 1, ..., n, be the ith environment variable, where Di   is the domain of that environment 
variable; then a vector (v1 , ..., vn ), in which all variables are instantiated is called an environment 
state  (also denoted as s.) The set of all possible environment states is denoted by E.  Choice of 
environment attributes (and hence environment state) is do- main dependent. Environment attributes, 
particularly the dynamic attributes, are gathered by an access control engine at runtime. 
Example (environment state): Assume that the environment is defined by three attributes: mode, 
access location and access time; then mode = “normal” and access location = “station 1” and access 
time = “8:00AM Monday” is an environment state. 
An environment pattern, denoted as e, is treated as an individual in domain EP, but is semantically 
defined by a first-order logical expression of assertions involving environmental attributes. An 
environment pattern defines a set of environment states, in which every environment state satisfies the 
environment pattern, i.e.  

{(v1 , ..., vn )|e(v1 , ..., vn )}. 
Hereafter, sometime we directly use e to denote the set of environment states defined by the 
environment pattern. 
Examples (environment pattern): Access_ location  = station_1 and access_ time  ∈ [8 : 00, 22 : 00] is 
an environment pattern, which defines the set of all the environment states, having any mode, 
access_location  at station_ 1 , and access_ time  between 8:00AM and 10:00PM. 
We say that an environment state  s  matches environment pattern e, iff:  e(s) is true.  An environment 
pattern can be empty, denoted by φ, which is most general; every state matches φ.   We say that e1   is 
subsumed by e2 , iff: the set of all environment states that match e1   is a subset of the set that match 
e2 .  That is, subsume(e2, e1 ), iff: {s|e1 (s)} ⊆ {s|e2 (s)}.  The relation is reflexive, transitive, and anti-
symmetric. 
 
User-role assignments 
A particular user-role assignment associates a user, a role, and an environment pattern: 

URAe ⊆ U × R × EP,                             (1) 
where EP  is the set of all environment patterns that have been defined for the system of interest. 

The semantics of a user-role assignment, (u, r, e) ∈ URAe, is defined as: 
match(s, e) → has_ role(u, r),                      (2) 

 

Copyright 2014 by Honeywell International Inc. All Rights Reserved 
Restrictions applicable to use by or for the U.S. Government:  Unlimited Rights 

Page 39 of 47 

 



RBAC Driven Least Privilege Architecture for Control Systems 

which states that if the real environment state  s  matches the given environment pattern e, then user u 
is assigned to role r. We assume that the RBAC engine could understand the semantics of each 
environment pattern as defined. 
 
Basic RBAC models define user-role assignments simply as a mapping from users to roles, 

URAe ⊆ U × R.                                   (3) 
We have extended this notion with a dependency on the environment, as a means to integrate certain 
extended RBAC features of context and constraints.  The environment pattern associated with a user-
role assignment is the environment- dependent condition which is sufficient for the assignment. This 
feature can be regarded as constrained user-role assignment. If there are no constraints on user-role 
assignments, the associated environment patterns are simply empty, so the model becomes the 
common one. 

In this model, the relation between URAe  and URA is: 

(u, r) ∈ URA ↔ (∃e, (u, r, e) ∈ URAe ).             (4) 
User-Role assignments may be expressed in tabular form. Table 1 shows an example, with an 
environment extension. 

 
 
Role-permission assignments 
A role-permission assignment associates a role, a permission, and an environment pattern. Thus the set 
of all such assignments is a subset 

RPAe ⊆ R × P × EP.                             (5) 

The semantics of a role-permission  assignment, (r, p, e) ∈ RPAe , is defined as: 
match(s, e) → has_ permission(r, p),               (6) 

which states that if the real environment state s  matches the pattern e, then permission p is assigned to 
role r.  
Similar to user-role assignments, we’ve extended the common role-permission assignment with 
environment patterns. 

The relation between RPAe  and RPA is: 

(r, p) ∈ RPA ↔ (∃e, (r, p, e) ∈ RPAe ).              (7) 
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As with user-role assignments, the role-permission assignment may also be organized in tabular 
fashion. 
 

4.3.3 The Underground Level  
The underground level of RBAC model focuses on the security policies used to construct the 
aboveground level of RBAC model. Those security policies are a formalism of a role engineers’ tacit 
knowledge about access control based on the attributes of users, roles, objects, and the environment, 
and the relation among them.  
In the following, all users, roles, permissions, operators, and the security objects are treated as “objects 
” (in the sense of the object-oriented design) and each of which has certain attributes.  obj.attr, or 
equivalently attr (obj), denotes the attribute attr  of object obj. 
 
The attributes needed in RBAC are typically domain dependent, and need to be customized for each 
specific target system.   Some examples of attributes are as follows. The attributes of users may 
include “id”, “department”, “security clearance”, “knowledge domain”, “academic degree” or 
“professional certificate”.   A role may have attributes such as “name”; “type” reflecting job function 
types such as “manger”, “engineer”,  and “operator”;  “security level”; “professional requirements”; 
“direct superior roles” and “direct subordinate roles” (if role hierarchy is modeled). Objects may have 
attributes such as “id”, “type”, “security level”, “state”.   Operators may have attributes  like “name”, 
and “type”.   The environment attributes may include “access time”, “access location”, “access 
application”, “system mode”, “target value”, and so forth. 
 
Role-Permission Assignment Policy 
The role-permission assignment policy is a set of rules. Each rule has the following structure: 
 roleId{ 

target { 
role_pattern; 
permission_ pattern { 
operator_pattern; 
object _pattern; 

}; 
environment_pattern; 
} 
condition; 
decision. 

 } 
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where, all of the patterns and the condition are FOL (First Order Logic) expressions; an environment 
pattern, as presented in 4.3.2,  defines  a set of environment  states; similarly, a role pattern defines a 
set of roles by specifying their common attributes; a permission pattern, consisting of an operator 
pattern and one object pattern,  defines a set of permissions by specifying their common features w.r.t. 
the attributes of the operator and the object in a permission; an operator  pattern defines a set of 
operators (or operation types); each object  pattern defines a set of objects; the target, which is, 
formally, the Cartesian product of the above sets of roles, permissions, and environment patterns, 
defines the  range  of (role,  permission, environment pattern) triples to which this  rule applies ; the 
condition is a logical expression defining a relation among the attributes of both the roles, the 
permissions (operators and objects), and the environment.  This expression is the condition under 
which a role-permission assignment can be made; the decision is the role-permission assignment.  
This form of rules states that when the condition is true, a role covered by the role pattern can be 
assigned with a permission covered by the permission pattern in the specified environment pattern. 
Let patternR (r) denote a role pattern, referring the role as r, e.g. r.type=“engineer”; patternP (op , o) 
denote the general form of a permission pattern, referring to permissions of form p(op , o). A 
permission pattern actually consists of zero or one operator pattern and zero or one object pattern; 
patternE (ε) represents a predefined environment pattern ε; condition (r, p(op, o), ε) denotes a logical 
expression, describing a relation among the attributes of role r, object o, and environment ε. 
The semantics of a role-permission assignment rule is defined as follows. 
 

(∀r, op , o)(patternR (r) ∧ patternP (p(op, o)) ∧ pattern E (ε)∧ condition (r, p(op, o), ε)  
→  (r, p(op , o), ε) ∈ RPAe )                          (8) 

which states that for any role r, satisfying the given role pat tern pattern R (r), for any permission p(op, 
o), satisfying per- mission pattern pattern P (p(op, o)), if condition(r,p(op,o),ε) is true, then role r  is 
assigned with permission p(op,o) in environment pattern ε. 
A pattern can be empty, φ.  An empty pattern defines the most general pattern, which every element in 
a domain matches. For example, if role pattern is empty, then the defined role-permission assignment 
rule is applied to all of the roles in R.  Therefore, if the target of a rule is empty, then the rule is most 
general and applicable to all combinations of role, permission, and environment; on the other hand, a 
rule is most specific, (i.e. only applicable to a single specific combination,) if the target of the rule is 
defined most specifically, i.e. the role pattern is exactly defined as a specific role instance, the 
permission pattern is exactly defined as a specific permission/operation, and the environment pattern 
is also most specific.  Generally, the target of a rule defines a specified range of (role, permission, 
environment) triples to which the rule applies. 
In this framework, a role could be defined based on a role template. Different from the concept of 
“role” in RBAC, a role template is associated with a set of permission patterns rather than 
permissions.  The idea is developed to address scaling issues that arise in the DCS domain.   
For simplicity, we only use positive rules.  If (r, p, e) is in RPAe , then role r is assigned with 
permission p in environment e; if not, by the close world assumption, we conclude that role r does not 
have permission p in environment e. 
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In role engineering, the defined role-permission assignment policy (rule set) is applied to all possible 
combinations of (role instance, permission, environment pattern), and if a combination can be inferred 
by any rule, then it is included in the RPAe on the aboveground level of RBAC model. 
 
User-Role Assignment Policy 
User-role assignment is highly dependent on business rules and constraints. In our view, the task of 
assigning users to roles can be approached like the role-permission assignment problem, in terms of 
policies that enforce those rules and constraints.   Such policies would be formulated in terms of user 
and role attributes, and would be crafted to enforce things like Separation of Duty.  However, unlike 
role- permission assignment, user assignment may have to balance competing or conflicting policy 
rules against each other. Correspondingly a complete policy oriented formulation will need to specify 
how to combine rules and arrive at a final assignment decision. In what we present below, an attribute 
based user-role assignment policy is used only to identify potential assignments. A rule-combining 
algorithm is used for making the final assignments. 
Similar to the role-permission assignment rule, the user-role assignment rule consists of: 

rule id { 
target { 

user_pattern; 
role_pattern; 
environment_pattern; 

} 
condition; 
decision. 

} 
where, similarly, an user/role/environment pattern defines a set of users/roles/environment states by 
specifying the common attributes;  all of the patterns  and the condition  are expressions in first order 
logic; differently, the decision  of a rule is to mark  an (user, role, environemt_pattern) triple  as a 
potential  assignment. 
Let patternU (u) denote a user pattern, referring to user u;  patternR (r) denote a role pattern, referring 
to role r; patternE (ε) denote the specification of an environment pattern; condition (u, r, ε) denote a 
logical expression, describing a relation among the attributes of user u, role r, and environment pattern 
ε. 
The semantics of a user-role assignment rule is defined as follows. 

(∀u, r)(pattern U (u) ∧ pattern R (r) ∧ pattern E (ε)∧ condition(u, r, ε) 
→ (u, r, ε) ∈ temp  URAe ),                                             (9) 

which states that for any user u satisfying patternU (u), any role r  satisfying patternR (r), if the 
condition that states a relation among the attributes  of u, r, and ε  is true, then (u, r, ε) ∈ temp_ URAe , 
which means that according to this rule, u can be assigned to r in environment ε. 
Example: 
rule:{ 
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target:{ 
role_pattern(r): r.type  = "chemical engineer"; 
environment_pattern (e):{  

Device = "Station_1.2"  
and  Time  = "Weekday"  
and  Mode = "Normal" } 

} 
condition:{ 

knowledge_match(u,r);  
security_req_match (u,r);  
u.base_plant = "Houston"; 

} 
decision:  add  (u,r,e)  in URAe. 

} 
In this rule, knowledge match(u, r) is a function which returns true if the professional knowledge of 
user u matches the knowledge requirements of role r; security_req_match(u, r) is a function which 
returns true if the user meets the security requirements of role r.  A necessary condition for considering 
assigning a user u to role r is that the user work at the Houston plant (where presumably one finds 
Station 1.2.) 
The rule has no filter on the users it considers.  The rule applies to roles with job type attribute 
“chemical engineer”. Now suppose that there is a role “Engineer.Zone.1.2” designed to work in Zone 
1, on Station  1.2, on weekdays; this role has job type attribute chemical engineer, requires 
professional knowledge in Chemical Engineering, and at least a Bachelor’s degree in that field. Going 
through employees one finds John, who works at the Houston plant; John has a Bachelor degree on 
Chemical Engineering; and suppose that John meets the security requirements for role 
“Engineer.Zone.1.2”. The patterns for user and role cover these instances, the condition of the rule is 
true, and so the assignment of John to that role will be marked as possible.  Of course, there may be 
other roles that John is suitable for, and there may be other employees suitable for role 
“Engineer.Zone.1.2”, so a later step is needed to select among all assignments marked as possible, by 
considering some constraints such as separation of duty. 
The following is the pseudo-code of rule combining algorithm. 
rule_combining(temp_URAe) { 

for (i =  0;  i <  constraints.length(); i++){ 
if ( ! satisfy(temp_URAe,  constraints[i])){ 

add  i in  conflictList; 
} 

} 
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if ( conflictList.length() == 0)  { URAe =  temp_URAe; 
}  else  { 

if (constraintConflictResolution(temp_URAe, conflictList, temp2_URAe)) 
URAe  =  temp2_URAe; 

else 
notify(temp_URAe,  conflictList); 

} 
} 
 
Note that the constraint conflict resolution algorithm is dependent on constraints, which in turn are 
domain-dependent, so it is difficult to give a general algorithm for constraint conflict resolution.  If 
conflict cannot be resolved by algorithm, the algorithm will inform RBAC administrator, and the 
conflict resolution needs to be performed manually (or with tools we have not identified) by the role-
engineer. 
 

4.4 Summary 
Starting from today’s practice of DCS in Honeywell, particular the practice of Experion system, we 
developed a highly usable RBAC model for DCS (DCS-RBAC) that facilitates smooth migration from 
Experion systems to RBAC and ease the management of roles, permissions, and security objects. This 
approach meets the requirements of RBAC in the control system context.  
We also developed a rigorous formal RBAC model for DCS, which has two layers - the aboveground 
and underground levels.  This formalism keeps the simplicity of RBAC in the aboveground level, and 
hides the complexity of the knowledge used to create RBAC model in the underground level. The 
underground level uses attribute-based policies to manage URAs (user to role assignments) and RPAs 
(role to permission assignments).  
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5 Appendix A - Terms, Acronyms and Abbreviations 
 

Below are the terms, acronyms, and abbreviations used within this document. 
AES - Advanced Encryption Standard 
API – Application programming interface 
BITW – Bump In The Wire 
CA – Certificate Authority 
Certificate - X.509 v3 public key certificate used to authenticate a device or function. 
CRL – Certificate Revocation List 
CSR – Certificate Signing Request 
DCS - Distributed Control System 
ESP - Encapsulating Security Payload 
GMAC - Galois Message Authentication Code 
HMAC - hash-based message authentication code  
HMI - Human Machine Interfaces  
HPS - Honeywell Process Solutions  
HUG – Honeywell user group 
IKE - Internet key exchange 
INL - Idaho National Labs  
IPsec - Internet Protocol Security 
IT – Information Technology 
ITI - Information Trust Institute  
LDAP – Lightweight Directory Access Protocol  
MITM - man in the middle 
PA – Policy Agent 
PAA - Policy audit and analysis 
PBKDF2 - Password-Based Key Derivation Function 2  
PDP - policy decision point  
PEP - policy enforcement point  
PID - Proportional-Integral-Derivate 
PKI - public-key infrastructure 
PLC - programmable logic controller  
NFR - Non Functional Requirement 
RFC – Request for comment 
SA – Security Association 
SCADA - Supervisory Control and Data Acquisition 
SCEP - Simple Certificate Enrollment Protocol 
SP – Set Point 
SPI - Security Parameters Index  
SRS - Software Requirements Specification 
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TLS - Transport Layer Security 
UIUC - University of Illinois at Urbana Champaign  

 VPN - virtual private network 
 

 

Copyright 2014 by Honeywell International Inc. All Rights Reserved 
Restrictions applicable to use by or for the U.S. Government:  Unlimited Rights 

Page 47 of 47 

 


	1 Executive Summary
	2 Introduction
	2.1 Goals and Objectives
	2.2 Project Summary
	2.3 Planned Tasks
	2.4 Problems and Challenges

	3 Products and Technology Transition
	4 Access Control Model
	4.1 Requirements
	4.2 DCS-RBAC Policy Model
	4.2.1 Key Concepts
	4.2.2 RBAC policy relational database schema
	4.2.3 RBAC Policy Enforcement Framework
	4.2.4 Performance Evaluation

	4.3 Formal Model
	4.3.1 A Two-layered Framework of RBAC
	4.3.2 The Aboveground Level
	4.3.3 The Underground Level

	4.4 Summary

	5 Appendix A - Terms, Acronyms and Abbreviations

