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,         

FVF for CO
ft3/ scf 

9 0.00268

5 0.00248

5 0.00796

6 0.002286

3 0.002275

8 0.002406

1 0.00267

7 0.002565

3 0.002968

O2,   
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Area De

EA 1 West C
Normal

EA 2 South C
Normal

EA 3 East Ce
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EA 4 North
Over P

EA 5 NW - North
Over P

EA 6 SW - South
Normal to O

EA 7 
Eastern

Panhandl
Under-P

EA 8 
North & C

Normal
Pres

EA 9 South & So
Under P

escription 
A
De

entral NY;           
l Pressure 3

Central NY;          
l Pressure 4

entral NY;           
Pressured 3

east PA;             
Pressured 6

h Central  PA;     
Pressured 5

h Central  PA;     
Over Pressured 6

 OH & WV 
e; Normal to 
Pressured 

5

Central WV; 
 to Under-
ssured 

6

outhwest WV; 
Pressured 4

 

 

Table 7.  Mod

Model Lay

Average 
epth, ft. 

Thickn
ft

3,649 15

4,695 33

3,005 50

6,413 34

5,719 34

6,760 29

5,080 9

6,966 31

4,022 
21

(Tot
Marce

Assessm
Vol. 2: Basin-Level 

del Layer Attribute

yer Attributes for

ness, 
. 

Total 
Porosity
fraction

5 0.072

3 0.079

0 0.070

4 0.062

4 0.093

9 0.066 

9 0.115 

1 0.089 

1         
tal 

ellus) 
0.084 
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es for Lower Marc

 
 

r Lower Marcellu

y, 
n 

Matrix 
Permeability

md 

3.69E-06 

9.59E-06 

2.81E-06 

1.87E-06 

6.48E-05 

3.33E-06 

5.62E-04 

3.75E-05 

1.9E-05 

encing Effective CO2

Enhanced Gas Reco

cellus (Union Sprin

us (Union Spring

y, 
Water 

Saturation, 
fraction 

0.21 

0.22 

0.26 

0.19 

0.18 

0.51 

0.19 

0.24 

0.21 

2 Storage Capacity an
overy and CO2 Storag

 

ngs) 

gs) 

Calculated 
TOC, wt. % 

Mea
Ga

5.6 

6.3 

5.5 

5.6 

6.8 

4.1 

9.2 

6.7 

6.0 

nd Injectivity in Easte
ge Potential In The M

an Adsorbed 
as Content, 
scf/ ton 

M

93.3 

106.2 

75.3 

107.0 

123.6 

77.9 

148.7 

120.0 

93.6 

ern Gas Shales 
Marcellus Shale 

Theoretical 
Max. Adsorbed 

CO2, scf/ ton 

330.2 

376.8 

294.6 

353.1 

422.3 

261.8 

547.2 

413.3 

339.2 
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Area De
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Normal

EA 2 South C
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EA 3 East Ce
Under P
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Normal to O

EA 7 
Eastern

Panhandl
Under-P

EA 8 
North & C

Normal
Pres

EA 9 South & So
Under P

escription 
A
De

entral NY;           
l Pressure 3

Central NY;          
l Pressure 4

entral NY;           
Pressured 2

east PA;             
Pressured 6

h Central  PA;     
Pressured 5

h Central  PA;     
Over Pressured 6

 OH & WV 
e; Normal to 
Pressured 

5

Central WV; 
 to Under-
ssured 

6

outhwest WV; 
Pressured 

 

 

Table 8.  Mo

Model La

Average 
epth, ft. 

Thickn
ft

3,636 9

4,640 58

2,439 10

6,281 43

5,696 11

6,714 26

5,051 20

6,933 13

Assessm
Vol. 2: Basin-Level 

odel Layer Attribut

ayer Attributes fo

ness, 
. 

Total 
Porosity
fraction

9 0.059

8 0.060

0 0.070

3 0.044

1 0.058

6 0.065 

0 0.104 

3 0.076 
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tes for Upper Mar
 

or Upper Marcell

y, 
n 

Matrix 
Permeability

md 

1.18E-06 

7.18E-07 

2.81E-06 

7.88E-08 

5.46E-07 

1.42E-06 

2.22E-04 

6.37E-06 

encing Effective CO2

Enhanced Gas Reco

rcellus (Oatka Cre

lus (Oatka Creek

y, 
Water 

Saturation, 
fraction 

0.10 

0.57 

0.24 

0.41 

0.33 

0.28 

0.26 

0.32 

Absent 

2 Storage Capacity an
overy and CO2 Storag

 

eek)   

k)   

Calculated 
TOC, wt. % 

Mea
Ga

5.1 

4.7 

3.9 

3.7 

4.3 

4.6 

7.1 

5.7 

nd Injectivity in Easte
ge Potential In The M

an Adsorbed 
as Content, 
scf/ ton 

M

81.4 

74.5 

50.4 

72.0 

81.0 

84.5 

118.8 

102.1 

ern Gas Shales 
Marcellus Shale 

Theoretical 
Max. Adsorbed 

CO2, scf/ ton 

297.8 

278.1 

208.9 

234.0 

268.9 

286.7 

426.9 

351.6 
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EA 1 West C
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Normal to O

EA 7 
Eastern
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EA 8 
North & C

Normal
Pres

EA 9 South & So
Under P
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A
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Central NY;           
l Pressure 3

Central NY;          
l Pressure 4

entral NY;           
Pressured 

east PA;             
Pressured 6

h Central  PA;     
Pressured 5

h Central  PA;     
Over Pressured 6

 OH & WV 
e; Normal to 
Pressured 

5

Central WV; 
 to Under-
ssured 

6

outhwest WV; 
Pressured 

 

Table 9.  Mod

Model Lay

Average 
epth, ft. 

Thickn
ft

3,645 4

4,692 3

6,324 89

5,707 12

6,740 20

5,071 9

6,946 20

Assessm
Vol. 2: Basin-Level 

del Layer Attribute

yer Attributes for

ness, 
t. 

Total 
Porosity
fraction

4 0.061

3 0.040

9 0.05

2 0.043

0 0.036 

9 0.088 

0 0.062 
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 Characterization Of 

 
56 

es for Purcell/ Che

 

r Purcell/ Cherry

y, 
n 

Matrix 
Permeability

md 

8.23E-07 

4.69E-08 

1.83E-07 

7.06E-08 

1.23E-08 

3.27E-05 

9.43E-07 

 

encing Effective CO2

Enhanced Gas Reco

erry Valley Limest

y Valley Limeston

y, 
Water 

Saturation, 
fraction 

0.16 

0.53 

Absent 

0.46 

0.51 

0.78 

0.44 

0.49 

Absent 

2 Storage Capacity an
overy and CO2 Storag

 

tone 

ne 

Calculated 
TOC, wt. % 

Mea
Ga

2.5 

3.4 

3.3 

3.3 

2.5 

4.9 

5.2 

nd Injectivity in Easte
ge Potential In The M

an Adsorbed 
as Content, 
scf/ ton 

M

40.3 

58.3 

63.0 

61.3 

46.7 

83.1 

97.9 

ern Gas Shales 
Marcellus Shale 

Theoretical 
Max. Adsorbed 

CO2, scf/ ton 

147.4 

200.4 

204.9 

202.5 

152.7 

291.5 

320.7 
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MODEL 
AREA 

Area

AREA 1 Wes
Nor

AREA 2 Sout
Nor

AREA 3 Eas
Und

AREA 4 No
Ov

AREA 5 NW - N
Ov

AREA 6 SW - S
Normal t

AREA 7 
East

Panha
Und

AREA 8 
North

Nor

AREA 9 South &
Und

Marcellus Study 

a Description 
T

st Central NY;           
rmal Pressure 

th Central NY;          
rmal Pressure 

st Central NY;           
der Pressured 

ortheast PA;             
er Pressured 

North Central  PA;     
er Pressured 

outh Central  PA;     
to Over Pressured 

tern OH & WV 
andle; Normal to 
der-Pressured 
h & Central WV; 
mal to Under-
Pressured 
& Southwest WV; 
der Pressured 

 Area Total  

 

 

Table 10.  Sum

Summary of

Total Area, 
miles2 

Ad
Gas 

Bc

1,965 

1,820 

1,679 

7,825 

5,705 

5,571 

3,517 

6,305 

6,887 

41,274 

Assessm
Vol. 2: Basin-Level 

mary of Estimated

f Estimated Gas 

dsorbed       
 In-Place,    

cf/ mile2 

Fr
Gas In

Bcf/ 

4.9 5

17.0 15

7.0 6

26.5 38

12.9 20

11.9 14

9.5 11

15.7 19

4.4 3

13.6 17

ment of Factors Influe
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d Gas In-Place for

 In-Place for Mar

ree          
-Place,   
mile2 

Total Ads
Gas in-P

Bc

.9 9,67

5.8 30,9

.4 11,8

8.1 207,5

0.5 73,3

4.7 66,4

1.9 33,4

9.1 98,8

.8 30,4

7.8 562,5

encing Effective CO2

Enhanced Gas Reco

r Marcellus Model 

rcellus Model Ar

sorbed 
Place, 

cf 

Total F
Gas In-P

Bcf

76 11,51

913 28,75

827 10,80

546 297,8

319 117,1

433 81,66

493 41,80

862 120,6

440 26,17

509 736,4

2 Storage Capacity an
overy and CO2 Storag

 

 Areas  

reas  

Free 
Place, 
f 

Estimated 
Gas In-Pl

Bcf 

10 21,18

52 59,66

03 22,63

847 505,39

163 190,48

61 148,09

08 75,30

692 219,55

72 56,61

407 1,299 T

nd Injectivity in Easte
ge Potential In The M

 Total 
lace, 

Estimated
Maximum 

B

86 66

65 190

31 80

93 1,18

82 476

94 368

00 225

54 565

2 198

Tcf 3,35

ern Gas Shales 
Marcellus Shale 

d Theoretical 
 CO2 Storage, 
Bcf 

6,001 

0,467 

0,530 

84,168 

6,823 

8,350 

5,713 

5,895 

8,147 

56 Tcf 
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MODEL 
AREA 

AREA 1 

AREA 2 

AREA 3 

AREA 4 

AREA 5 

AREA 6 

AREA 7 

AREA 8 

AREA 9 

Marcellus 
Study Area 

Total  

Table 1

Estim

Area Description

West Central NY;   
Normal Pressure 

South Central NY;   
Normal Pressure 

East Central NY;    
Under Pressured 

Northeast PA;      
Over Pressured 

NW - North Central  
PA;      Over Pressured

SW - South Central  
PA;              

Normal to Over 
Pressured 

Eastern OH & WV 
Panhandle; Normal to

Under-Pressured 
North & Central WV; 

Normal to Under-
Pressured 

South & Southwest 
WV; Under Pressured

 

 

11.  Estimated The

mated Theoretica

n 
Total 
Area, 
miles2 

A

     1,965 

     1,820 

      1,679 

      7,825 

 
d 5,705 

 
     5,571 

o 3,517 

 
6,305 

d 6,887 

41,274 

Assessm
Vol. 2: Basin-Level 

eoretical Maximum

al Maximum CO2

Adsorbed CO2 

Storage,          
Bcf/ mile2 

17.9 

64.2 

37.0 

88.1 

43.5 

39.6 

35.1 

52.6 

15.7 

39.1 

ment of Factors Influe
 Characterization Of 
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m CO2 Storage Ca
 

2 Storage Capaci

Free            
(non-adsorbed) 

CO2 Storage,     
Bcf/ mile2 

15.7 

40.5 

10.9 

63.2 

40.1 

26.5 

29.1 

37.1 

13.1 

28.7 

encing Effective CO2

Enhanced Gas Reco

pacity for Marcell

ity for Marcellus 

Total Maximum 
Adsorbed       

CO2 Storage, 
 Bcf 

35,121 

116,848 

62,174 

689,581 

248,008 

220,437 

123,292 

331,770 

108,000 

1,935,171 

2 Storage Capacity an
overy and CO2 Storag

 

us Model Areas 

 Model Areas 

 
Total Maximum
Non-Adsorbed 
CO2 Storage, 

Bcf 

30,880 

73,618 

18,356 

494,587 

228,815 

147,913 

102,421 

234,185 

90,147 

1,420,921 

nd Injectivity in Easte
ge Potential In The M

m   
 

Theoretic
Maximum 

Storage Cap
Bcf 

66,001

190,467

80,530

1,184,16

476,823

368,350

225,713

565,895

198,147

3,356,09

ern Gas Shales 
Marcellus Shale 

cal 
CO2 

pacity, 
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Storage

Pote
Storage
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Non-Ads

Gas In
Total G

Maxi
Storage
million

Maxi
Stora

million
Total C

Ca
million

Total Ma
Storage 
Unit Are

As
Vol. 2: Basin-L

4633 
 2013 

12.  Estimated 

ential CO2 
e Area, acres 
ential CO2 
e Area, mile2 
bed Gas In-
ace, Bcf 
sorbed, ‘Free’ 
n-Place, Bcf 
Gas In-Place, 

Bcf 
mum CO2 

e, Adsorbed, 
n tonnes, Mt 
mum CO2 

age, ‘Free’, 
n tonnes, Mt 
CO2 Storage 
apacity,             
n tonnes, Mt 

aximum CO2 
 Capacity per 
ea, Mt/ mile2 

sessment of Fac
Level Characteri

 Total Gas In-

New York 

3,496,798 

5,464 

52,416 

51,065 

103,481 

10,926 

6,268 

17,194 

3.15 

ctors Influencing
zation Of Enhan

Place and The
Aggre

 Pennsylv

12,224,7

19,10

347,29

496,67

843,96

59,08

44,45

103,53

5.42

g Effective CO2 S
nced Gas Recov

 
59 

 

eoretical Maxi
egated by Stat

 
 

vania W
Virg

704 8,44

1 13

99 129

70 146

69 276

3 22

5 16

38 38
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Storage Capacit
very and CO2 Sto

imum CO2 Sto
te 

West 
ginia 

Ea
W

42,802 

,192 

9,302 

6,864 

6,166 

,434 

,548 

,982 

.95 

ty and Injectivity 
orage Potential I

orage Capacity

astern Ohio &
West Virginia

Panhandle 

2,250,702 

3,517 

33,493 

41,808 

75,300 

6,290 

5,226 

11,516 

3.27 

 

 in Eastern Gas 
In The Marcellus

y for Marcellu

& 
a Total 

Ar

26,41

41,

562

736

1,29

98

72

171

4.

 Shales 
s Shale 

 

s – 

 Study 
rea 

15,006 

,273 

2,509 

6,407 

98,916 

,733 

,496 

1,229 
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42,650 1
24,312 
174,665 5
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SIMPLIFIED  UNCONVENTIO
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arcellus (Oatka Cr

ity, 
Water 

Saturation, 
fraction 

6 0.10 

6 0.57 

6 0.24 

6 0.41 

6 0.33 

6 0.28 

4 0.26 

6 0.32 

Absent 

2 Storage Capacity an
vering Methane and 

 

reek)   

Calculated 
TOC, wt. % 

M
G

5.1 

4.7 

3.9 

3.7 

4.3 

4.6 

7.1 

5.7 

nd Injectivity in Easte
 Storing CO2 in Easte

Mean Adsorbed 
Gas Content, 

scf/ ton 

81.4 

74.5 

50.4 

72.0 

81.0 

84.5 

118.8 

102.1 

ern Gas Shales 
ern Gas Shales 

Theoretical 
Max. Adsorbed 

CO2, scf/ ton 

297.8 

278.1 

208.9 

234.0 

268.9 

286.7 

426.9 

351.6 
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Model 
Area 

Area D

REA 1 West
Norm

REA 2 South
Norm

REA 3 East 
Unde

REA 4 Nor
Ove

REA 5 NW - No
Ove

REA 6 SW - So
Normal to

REA 7 
Easte

Panhan
Unde

REA 8 
North &

Norm
P

REA 9 South & 
Unde

Description 

t Central NY;           
mal Pressure 

h Central NY;          
mal Pressure 

 Central NY;           
er Pressured 

rtheast PA;             
r Pressured 

orth Central  PA;     
r Pressured 

uth Central  PA;     
o Over Pressured 

ern OH & WV 
ndle; Normal to 
er-Pressured 
& Central WV; 

mal to Under-
ressured 
 Southwest WV; 
er Pressured 

 

Vol

Table 10.  M

Average 
Depth, ft. 

Thic

3,645 

4,692 

6,324 

5,707 

6,743 

5,071 

6,946 

Assessm
 8: Assessment of Te

 

Model Layer Attribu

ckness, 
ft. 

Tota
Porosi
fractio

4 0.06

3 0.04

89 0.06

12 0.04

20 0.05

9 0.088

20 0.065

ment of Factors  Influe
echnical and Econom
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utes for Purcell/ C

al 
ity, 
on 

Matrix 
Permeabili

md 

1  1.60E-06

0  3.27E-08

5  2.89E-06

3  6.00E-08

1 3.08E-07

8 5.00E-05

5 2.89E-06

encing Effective CO2

mic Potential of Recov

 

Cherry Valley Lime

ity, 
Water 

Saturation, 
fraction 

6 0.16 

8 0.53 

Absent 

6 0.46 

8 0.51 

7 0.78 

5 0.44 

6 0.49 

Absent 

2 Storage Capacity an
vering Methane and 

 

estone 

Calculated 
TOC, wt. % 

M
G

2.5 

3.4 

3.3 

3.3 

2.5 

4.9 

5.2 

nd Injectivity in Easte
 Storing CO2 in Easte

Mean Adsorbed 
Gas Content, 

scf/ ton 

40.3 

58.3 

63.0 

61.3 

46.7 

83.1 

97.9 

ern Gas Shales 
ern Gas Shales 

Theoretical 
Max. Adsorbed 

CO2, scf/ ton 

147.4 

200.4 

204.9 

202.5 

152.7 

291.5 

320.7 
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Model 
Area 

Area D

REA 1 West 
Norm

REA 2 South
Norm

REA 3 East 
Unde

REA 4 Nort
Over

REA 5 NW - No
Over

REA 6 SW - Sou
Normal to 

REA 7 
Easte

Panhan
Unde

REA 8 
North &

Norm
Pr

REA 9 South & S
Unde

Description 
A
D

 Central NY;          
mal Pressure 

 Central NY;          
mal Pressure 

Central NY;           
er Pressured 

theast PA;             
r Pressured 

rth Central  PA;     
r Pressured 

uth Central  PA;     
 Over Pressured 

rn OH & WV 
dle; Normal to 
r-Pressured 

& Central WV; 
al to Under-
ressured 
Southwest WV; 

er Pressured 

Vol

Table 11.  M

Average 
Depth, ft. 

Thic

3,649 

4,695 

3,005 

6,413 

5,719 

6,763 

5,080 

6,966 

4,022 (T
Mar

Assessm
 8: Assessment of Te

 

Model Layer Attribu

ckness, 
ft. 

Tota
Porosi
fractio

15 0.07

33 0.07

50 0.07

34 0.08

34 0.09

36 0.080

9 0.115

31 0.087

21         
Total 
rcellus) 

0.084

ment of Factors  Influe
echnical and Econom

36 

 

utes for Lower Ma

al 
ity, 
on 

Matrix 
Permeabili

md 

2  7.40E-06

9  1.97E-05

0  5.74E-06

7  4.30E-05

3  8.00E-05

0 1.97E-05

5 5.62E-04

7 4.37E-05

4 3.10E-07

encing Effective CO2

mic Potential of Recov

 

arcellus (Union Sp

ity, 
Water 

Saturation, 
fraction 

6 0.21 

5 0.22 

6 0.26 

5 0.19 

5 0.18 

5 0.51 

4 0.19 

5 0.24 

7 0.21 

2 Storage Capacity an
vering Methane and 

 

prings) 

Calculated 
TOC, wt. % 

M
G

5.6 

6.3 

5.5 

5.6 

6.8 

4.1 

9.2 

6.7 

6.0 

nd Injectivity in Easte
 Storing CO2 in Easte

Mean Adsorbed 
Gas Content, 

scf/ ton 

93.3 

106.2 

75.3 

107.0 

123.6 

77.9 

148.7 

120.0 

93.6 

ern Gas Shales 
ern Gas Shales 

Theoretical 
Max. Adsorbed 

CO2, scf/ ton 

330.2 

376.8 

294.6 

353.1 

422.3 

261.8 

547.2 

413.3 

339.2 



Vo

 
DE-FE0004
October 23,

 

Table 12: 

 

No Inj 21

No Inj 25

No Inj 30

No Inj 35

EGR 21

EGR 25

EGR 30

EGR 35

Average per

80 acres

No Inj 21

No Inj 25

No Inj 30

No Inj 35

EGR 21

EGR 25

EGR 30

EGR 35

Average per

80 acres

No Inj 21

No Inj 25

No Inj 30

No Inj 35

EGR 21

EGR 25

EGR 30

EGR 35

Average per

80 acres

Ass
l 8: Assessment

4633 
 2013 

Methane Reco

Cum CH4 

Prod 

(Bcf)

Reco

(%

1.66 42

1.78 46

1.90 49

2.00 5

0.95 24

1.25 32

1.49 38

1.68 43

r 
1.59

Cum CH4 

Prod 

(Bcf)

Reco

(%

9.42 59

9.82 62

10.20 64

10.50 66

7.69 48

8.76 55

9.52 60

10.00 63

r 
9.49

Cum CH4 

Prod 

(Bcf)

Reco

(%

4.68 75

4.79 77

4.89 79

4.97 80

4.87 79

4.93 80

4.98 80

5.03 80

r 
4.89

sessment of Fac
t of Technical an

overy and CO2

 

overy 

%)

Cum CO2 

Inj (Bcf)

2.9 ‐

6.0 ‐

9.1 ‐

1.7 ‐

4.5 2.53

2.1 2.74

8.4 2.79

3.4 2.62

2.67

overy 

%)

Cum CO2 

Inj (Bcf)

9.5 ‐

2.0 ‐

4.4 ‐

6.3 ‐

8.6 4.83

5.3 6.70

0.1 7.81

3.2 8.37

6.93

overy 

%)

Cum CO2 

Inj (Bcf)

5.9 ‐

7.6 ‐

9.3 ‐

0.6 ‐

9.1 4.75

0.0 4.31

0.9 3.83

0.7 3.49

4.10

Area 7

Area 1

Area 4

ctors  Influencing
nd Economic Pot

3

2 Storage for C
Scenarios –

Cum CO2 

Prod 

(Bcf)

Cum CH

Prod

(Bcf)

‐ 3.89

‐ 4.12

‐ 4.36

‐ 4.55

0 2.06

0 2.83

0 3.42

0 3.86

3.64

Cum CO2 

Prod 

(Bcf)

Cum CH

Prod

(Bcf)

‐ 5.4

‐ 5.6

‐ 5.8

‐ 6.0

0 3.6

0 4.5

0 5.1

0 5.4

5.18

Cum CO2 

Prod 

(Bcf)

Cum CH

Prod

(Bcf)

‐ 5.68

‐ 5.88

‐ 6.08

‐ 6.24

0.17 5.83

0.06 6.23

0.02 6.45

0.00 6.59

6.12

g Effective CO2 S
tential of Recove
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Case 2 Compl
– All Marcellus

H4 

d 
Recovery 

(%)

Cum

Inj

48.6

51.5

54.5

56.9

25.8 2

35.3 3

42.7 4

48.3 4

3

H4 

d 
Recovery 

(%)

Cum

Inj

62.8

65.1

67.4

69.8

41.5

52.2

59.0

63.1

5

H4 

d 
Recovery 

(%)

Cum

Inj

65.4

67.7

70.0

71.8

67.2

71.7

74.3 1

75.9 1

9

Area 8

Area 2

Area 5

Storage Capacit
ering Methane a

letion Strategy
s Areas 

m CO2 

 (Bcf)

Cum CO2 

Prod 

(Bcf)

‐ ‐

‐ ‐

‐ ‐

‐ ‐

2.72 0

3.71 0

4.46 0

4.73 0

3.91

m CO2 

 (Bcf)

Cum CO2 

Prod 

(Bcf)

‐ ‐

‐ ‐

‐ ‐

‐ ‐

3.3 0

5.0 0

6.0 0

6.5 0

5.20

m CO2 

 (Bcf)

Cum CO2 

Prod 

(Bcf)

‐ ‐

‐ ‐

‐ ‐

‐ ‐

8.5 0.00

9.7 0.01

10.1 0.01

10.3 0.01

9.65

ty and Injectivity 
and Storing CO2 

y for Alternati

Cum CH4 

Prod 

(Bcf)

Recov

(%)

1.59 36.2

1.73 39.4

1.87 42.6

2.00 45.6

0.72 16.4

1.06 24.2

1.35 30.7

1.56 35.5

1.49

Cum CH4 

Prod 

(Bcf)

Recov

(%)

5.85 58.0

6.12 60.7

6.38 63.2

6.59 65.3

4.12 40.9

5.05 50.0

5.67 56.2

6.06 60.1

5.73

Cum CH4 

Prod 

(Bcf)

Recov

(%)

1.49 38.5

1.61 41.6

1.74 45.0

1.85 47.8

0.32 8.3

0.69 17.9

1.06 27.4

1.30 33.7

1.26

 in Eastern Gas 
 in Eastern Gas 

 

ive Injection T

ery 

)

Cum CO2 

Inj (Bcf)

Cu

2 ‐

4 ‐

6 ‐

6 ‐

4 1.49

2 2.19

7 2.26

5 2.25

2.05

ery 

)

Cum CO2 

Inj (Bcf)

Cu

0 ‐

7 ‐

2 ‐

3 ‐

9 4.93

0 6.72

2 7.81

1 8.4

6.97

ery 

)

Cum CO2 

Inj (Bcf)

Cu

5 ‐

6 ‐

0 ‐

8 ‐

3 2.9

9 2.3

4 1.7

7 2.2

2.28

Area 6

Area 9

Area 3

 Shales 
 Shales 

 

Timing 

 

um CO2 

Prod 

(Bcf)

‐

‐

‐

‐

0

0

0

0

um CO2 

Prod 

(Bcf)

‐

‐

‐

‐

0

0

0

0

um CO2 

Prod 

(Bcf)

‐

‐

‐

‐

0.0

0.0

0.0

0.0
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Total Ar
Acres

rea 1 1,257,8
rea 2 1,164,4
rea 3 1,074,4
rea 4 5,007,9
rea 5 3,651,0
rea 6 3,565,6
rea 7 2,250,7
rea 8 4,035,1
rea 9 4,407,6

26,415,

Assu

conomic Areas @

rea, 
s

Total Area, 

miles2 T

845 1,965

491 1,820

462 1,679

988 7,825

027 5,705

689 5,571

702 3,517

195 6,305

607 6,887

006 41,274 1

mes  50% o

50% o

@ $5.00/Mcf -- 4, 5,

Vol

39 

Table 13: Methan

Estimated 
Total Gas In-

Place, Bcf

Estim
Theore

Maximu

Storag

21,186 66,0

59,665 190,

22,631 80,5

505,393 1,184

190,482 476,

148,094 368,

75,300 225,

219,554 565,

56,612 198,

1,298,917 3,356

of well sites are ac

of the accessible w

, 6, & 8 

Assessm
 8: Assessment of Te

 

ne Recovery and 

mated 
etical 

um CO2 

ge, Bcf

No. of 
Wells at 80-

Acre 
Spacing

001 15,723

467 14,556

530 13,431

4,168 62,600

823 45,638

350 44,571

713 28,134

895 50,440

147 55,095

6,094 330,188

ccessible

well sites are bett

ment of Factors  Influe
echnical and Econom

 

CO2 Storage Pote

No. of 
Accessible, 

Feasible 
Well Sites

CH4

Produc
per W

(Bcf

7,862 1.59

7,278 3.64

6,715 1.49

31,300 9.49

22,819 5.18

22,286 5.73

14,067 4.89

25,220 6.12

27,548 1.26

165,094

ter than average

encing Effective CO2

mic Potential of Recov

 

ential for the Marce

4 

ction 
Well 

f)

CO2 Stored 

per Well 
(Bcf)

Te

Pro
P

9 2.67

4 3.91 2

9 2.05

9 6.93 2

8 5.20 1

3 6.97 1

9 4.10 6

2 9.65 1

6 2.28 3

8

6

2 Storage Capacity an
vering Methane and 

 

ellus Shale 

echnical 

CH4 

oduction 
Potential 

(Bcf)

Technica

Product
Potent

Better t
Average(

12,490 6,24

26,465 13,23

9,972 4,98

296,997 148,4

118,088 59,04

127,696 63,84

68,822 34,41

154,409 77,20

34,641 17,32

849,581 424,7

697,191 348,5

nd Injectivity in Easte
 Storing CO2 in Easte

al CH4 

tion 
tial  
han 
(Bcf)

CO2 

Storage 
Potential 

(Bcf)

5 20,990

32 28,421

6 13,750

99 216,830

44 118,658

48 155,219

11 57,604

05 243,247

21 62,671

91 917,390

95 733,954

ern Gas Shales 
ern Gas Shales 

 

CO2 

Storage 
Potential 

(MMtonne)

1,111

1,504

728

11,472

6,278

8,213

3,048

12,870

3,316

48,539

38,834
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MODEL 
AREA 

Ar

AREA 1 

AREA 2 N

AREA 3 So
N

AREA 4  Sou
(Broo

AREA 5 (Co

AREA 6 E

AREA 7 West P
E

AREA 8 

AREA 9 N

AREA 10 

AREA 11 So

Utica/ Point 
Study Are

 

ea Description 

Western NY &             
Northwest PA 

North Central NY           

outh Central NY;         
North Central PA 

utheast Central NY       
ome & Tioga Cos.) 

Northeast NY             
ortland, Madison, 
Otsego Cos.) 

Northeast  PA;             
East Central PA 

PA; WV  Panhandle; 
East Central OH 

Northwest PA;             
Eastern OH 

Northwest WV;           
Southeast OH 

Central WV 

Southwest-                
outh Central WV 

 Pleasant              
ea Total 

Vol

Table 14. Descri

Total Area, 
Acres 

4,050,794 

1,992,915 

1,793,827 

1,572,025 

2,451,694 

6,777,578 

7,170,236 

4,133,518 

1,948,414 

3,421,544 

1,751,393 

37,063,938 

Assessm
 8: Assessment of Te

 

ption and Summa

Total Area, 
miles2 Res

G

6,329 

3,114 

2,803 

2,456 

3,831 

10,590 

11,204 

6,459 

3,044 

5,346 

2,737 

57,913 
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ary of Utica Shale/

Estimated 
servoir Pressure 
Gradient, psi/ft 

0.46 

0.53 

0.53 

0.63 

0.44 

0.63 

0.60 

0.53 

0.53 

0.53 

0.53 

 

encing Effective CO2

mic Potential of Recov

 

/ Point Pleasant M

Mean Reservoir 
Pressure,        

psia 

M

2,720 

2,928 

4,812 

5,968 

2,224 

7,717 

6,621 

3,547 

4,738 

6,406 

4,083 

 

2 Storage Capacity an
vering Methane and 

 

Model Areas 

Mean Reservoir 
Temperature, 

0F 

131 

126 

178 

184 

119 

250 

208 

143 

176 

222 

158 

 

nd Injectivity in Easte
 Storing CO2 in Easte

FVF for 
Methane,         

ft3/ scf 

0.00458 

0.00476 

0.00370 

0.00328 

0.00505 

0.00316 

0.00313 

0.00425 

0.00373 

0.00306 

0.00397 

 

ern Gas Shales 
ern Gas Shales 

FVF for CO2,   
ft3/ scf 

0.00237 

0.00234 

0.00227 

0.00216 

0.00239 

0.00203 

0.00208 

0.00238 

0.00230 

0.00203 

0.00244 
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Model 
Area 

Area D

REA 1 Wes
Nor

REA 2 North

REA 3 South
North

REA 4  Southe
(Broome

REA 5 
Nor

(Cortla
Ots

REA 6 Nort
East

REA 7 West PA; 
East 

REA 8 Nor
Ea

REA 9 Nort
Sou

REA 10 Ce

REA 11 So
South

rchie water satura

 

Description 
D

stern NY &             
rthwest PA 

h Central NY           

h Central NY;         
h Central PA 
east Central NY       
e & Tioga Cos.) 
rtheast NY             
and, Madison, 
sego Cos.) 
theast  PA;             
t Central PA 
 WV  Panhandle; 
 Central OH 
rthwest PA;             
astern OH 
thwest WV;           
utheast OH 
entral WV 

outhwest-                
h Central WV 

ation algorithm use

 

Vol

Table 15. Model L

Average 
Depth, ft. 

Thic

5,710 1

5,421 1

8,953 1

9,297 1

4,734 1

12,077 1

10,907 1

6,544 1

8,807 1

11,991 

7,661 

ed to compute wa

Assessm
 8: Assessment of Te

 

Layer Attributes fo

ckness, 
ft. 

Tota
Porosi
fractio

172 0.029

104 0.027

127 0.026

116 0.020

199 0.03

137 0.027

155 0.025

107 0.03

105        0.023

84 0.020

43 0.033

ater saturation for 
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or Upper Utica Sh

al 
ity, 
on 

Matrix 
Permeabili

md 

9 5.18E-06

7 4.62E-06

6 4.37E-06

0 3.11E-06

1 5.80E-06

7 4.62E-06

5 8.15E-05

1 9.17E-05

3 7.84E-05

0 7.39E-05

3 9.53E-05

r the Upper Utica 

encing Effective CO2

mic Potential of Recov

 

hale– Archie Water

ity, 
Water 

Saturation, 
fraction* 

6 0.65 

6 0.87 

6 0.80 

6 0.54 

6 0.68 

6 0.73 

5 0.73 

5 0.73 

5 0.96 

5 0.73 

5 0.60 

Shale model laye

2 Storage Capacity an
vering Methane and 

 

r Saturation 

Calculated 
TOC, wt. % 

M
G

0.9 

0.6 

0.5 

0.4 

1.1 

0.8 

0.70 

1.3 

0.5 

1.0 

0.8 

er. 

nd Injectivity in Easte
 Storing CO2 in Easte

Mean Adsorbed 
Gas Content, 

scf/ ton 

13.6 

9.3 

8.5 

7.5 

16.6 

14.9 

9.4 

15.0 

5.8 

13.0 

10.1 

ern Gas Shales 
ern Gas Shales 

Theoretical 
Max. Adsorbed 

CO2, scf/ ton 

26.8 

18.3 

15.7 

13.7 

33.7 

26.8 

24.1 

42.1 

15.5 

33.6 

27.7 
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Model 
Area 

Area D

REA 1 Wes
Nor

REA 2 North

REA 3 South
North

REA 4  Southe
(Broome

REA 5 
Nor

(Cortla
Ots

REA 6 Nort
East

REA 7 West PA; 
East 

REA 8 Nor
Ea

REA 9 Nort
Sou

REA 10 Ce

REA 11 So
South

mandoux water sa
 

Table 16.

Description 
D

stern NY &             
rthwest PA 

h Central NY           

h Central NY;         
h Central PA 
east Central NY       
e & Tioga Cos.) 
rtheast NY             
and, Madison, 
sego Cos.) 
theast  PA;             
t Central PA 
 WV  Panhandle; 
 Central OH 
rthwest PA;             
astern OH 
thwest WV;           
utheast OH 
entral WV 

outhwest-                
h Central WV 

aturation algorithm

 

Vol

. Model Layer Attr

Average 
Depth, ft. 

Thic

5,882 

5,525 

9,080 

9,413 

4,933 1

12,214 

11,062 

6,651 

8,912 

12,075 

m used for the bas

Assessm
 8: Assessment of Te

 

ributes for Organic

ckness, 
ft. 

Tota
Porosi
fractio

45 0.038

10 0.033

36 0.032

60 0.052

121 0.047

35 0.04

34 0.038

41 0.043

28         0.032

12 0.024

sal Utica Shale m
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echnical and Econom

44 

 

c-Rich Basal Utica

al 
ity, 
on 

Matrix 
Permeabili

md 

8 8.63E-06

3 6.50E-06

2 6.14E-06

2 1.91E-05

7 1.44E-05

1 1.02E-05

8 1.05E-04

3 1.16E-04

2 9.35E-05

4 7.99E-05

model layer; correc

encing Effective CO2

mic Potential of Recov

 

a Shale – Simando

ity, 
Water 

Saturation, 
fraction* 

6 0.25 

6 0.28 

6 0.29 

5 0.22 

5 0.32 

5 0.25 

4 0.25 

4 0.27 

5 0.35 

5 0.38 

Absent 

cts the Archie equ

2 Storage Capacity an
vering Methane and 

 

oux Water Saturat

Calculated 
TOC, wt. % 

M
G

1.0 

1.1 

1.2 

2.4 

2.1 

1.8 

1.7 

2.3 

1.1 

0.7 

uation for shale. 

nd Injectivity in Easte
 Storing CO2 in Easte

tion 

Mean Adsorbed 
Gas Content, 

scf/ ton 

15.7 

17.3 

22.1 

45.6 

30.8 

34.7 

23.2 

26.8 

13.2 

9.7 

ern Gas Shales 
ern Gas Shales 

Theoretical 
Max. Adsorbed 

CO2, scf/ ton 

31.0 

33.9 

41.1 

83.2 

62.5 

62.3 

59.9 

74.9 

35.3 

25.1 



 
D
O

 

M
A

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

AR

*Sim

 

DE-FE0004633 
October 23, 2013 

Table 17. Mode

Model 
Area 

Area D

REA 1 Wes
Nor

REA 2 North

REA 3 South
North

REA 4  Southe
(Broome

REA 5 
Nor

(Cortla
Ots

REA 6 Nort
East

REA 7 West PA; 
East 

REA 8 Nor
Ea

REA 9 Nort
Sou

REA 10 Ce

REA 11 So
South

mandoux water sa

el Layer Attributes

Description 
D

stern NY &             
rthwest PA 

h Central NY           

h Central NY;         
h Central PA 
east Central NY       
e & Tioga Cos.) 
rtheast NY             
and, Madison, 
sego Cos.) 
theast  PA;             
t Central PA 
 WV  Panhandle; 
 Central OH 
rthwest PA;             
astern OH 
thwest WV;           
utheast OH 
entral WV 

outhwest-                
h Central WV 

aturation algorithm

 

Vol

s for Shale - Rich P

Average 
Depth, ft. 

Thic

9,116 1

9,473 1

5,054 1

12,249 1

11,096 1

6,692 

8,940 

12,087 

7,704 

m for the Upper (s

Assessm
 8: Assessment of Te

 

Point Pleasant (Up

ckness, 
ft. 

Tota
Porosi
fractio

109 0.04

109 0.040

104 0.042

130 0.040

113 0.045

59 0.048

61      0.055

45 0.043

87 0.049

shaley) Point Plea

ment of Factors  Influe
echnical and Econom
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pper Point Pleasa

al 
ity, 
on 

Matrix 
Permeabili

md 

1 1.02E-05

0 9.66E-06

2 1.08E-05

0 9.66E-06

5 1.20E-04

8 1.28E-04

5 1.47E-04

3 1.16E-04

9 1.30E-04

asant model layer;
 

encing Effective CO2

mic Potential of Recov

 

nt) and Equivalen

ity, 
Water 

Saturation, 
fraction* 

Absent 

Absent 

5 0.34 

6 0.23 

5 0.29 

6 0.26 

4 0.26 

4 0.20 

4 0.28 

4 0.24 

4 0.52 

r; corrects the Arc

2 Storage Capacity an
vering Methane and 

 

nt Formations – Si

Calculated 
TOC, wt. % 

M
G

1.7 

1.8 

1.5 

1.6 

1.8 

2.1 

2.9 

1.4 

1.6 

chie equation for s

nd Injectivity in Easte
 Storing CO2 in Easte

imandoux Water S

Mean Adsorbed 
Gas Content, 

scf/ ton 

31.4 

33.1 

22.9 

30.8 

24.6 

24.6 

36.6 

18.5 

19.6 

shale. 

ern Gas Shales 
ern Gas Shales 

Saturation 

Theoretical 
Max. Adsorbed 

CO2, scf/ ton 

58.4 

60.4 

46.5 

55.3 

63.4 

68.9 

98.2 

47.8 

53.5 
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Table 18. Mode

Model 
Area 

Area D

REA 1 Wes
Nor

REA 2 North

REA 3 South
North

REA 4  Southe
(Broome

REA 5 
Nor

(Cortla
Ots

REA 6 Nort
East

REA 7 West PA; 
East 

REA 8 Nor
Ea

REA 9 Nort
Sou

REA 10 Ce

REA 11 So
South

rchie water satura

el Layer Attributes

Description 
D

stern NY &             
rthwest PA 

h Central NY           

h Central NY;         
h Central PA 
east Central NY       
e & Tioga Cos.) 
rtheast NY             
and, Madison, 
sego Cos.) 
theast  PA;             
t Central PA 
 WV  Panhandle; 
 Central OH 
rthwest PA;             
astern OH 
thwest WV;           
utheast OH 
entral WV 

outhwest-                
h Central WV 

ation algorithm use

 

Vol

s for Carbonate - R

Average 
Depth, ft. 

Thic

9,225 

9,582 1

5,158 

12,379 

11,209 

6,751 

9,001 

12,132 

ed for the Lower P

Assessm
 8: Assessment of Te

 

Rich Point Pleasan

ckness, 
ft. 

Tota
Porosi
fractio

51 0.037

107 0.037

89 0.034

99 0.045

87 0.046

79 0.046

53   0.044

34 0.035

Point Pleasant mo
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nt (Lower Point Pl

al 
ity, 
on 

Matrix 
Permeabili

md 

7 8.15E-06

7 8.15E-06

4 6.88E-06

5 1.28E-05

6 1.23E-04

6 1.23E-04

4 1.18E-04

5 9.91E-05

odel layer. 
 
 

encing Effective CO2

mic Potential of Recov

 

leasant) and Equiv

ity, 
Water 

Saturation, 
fraction* 

Absent 

Absent 

6 0.52 

6 0.37 

6 0.54 

5 0.43 

4 0.43 

4 0.43 

4 0.42 

5 0.33 

Absent 

2 Storage Capacity an
vering Methane and 

 

valent Formations

Calculated 
TOC, wt. % 

M
G

1.4 

1.7 

1.0 

1.9 

1.5 

1.5 

1.6 

0.4 

nd Injectivity in Easte
 Storing CO2 in Easte

s – Archie Water S

Mean Adsorbed 
Gas Content, 

scf/ ton 

24.4 

31.8 

15.2 

36.3 

19.6 

17.0 

20.5 

5.2 

ern Gas Shales 
ern Gas Shales 

Saturation 

Theoretical 
Max. Adsorbed 

CO2, scf/ ton 

45.3 

58.0 

30.8 

65.1 

50.6 

47.7 

55.0 

13.4 
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mated Reservoir Press

stimated Mean Reserv

per Utica Shale 

G

Average Tota

erage Matrix Permeabi

al Utica Shale (High TO

G

Average Tota

Average Matr

nt Pleasant/ Pt. Pleasa

e‐Rich

G

Average Tota

Average Matr

al Point Pleasant/ Pt. 

ivalents ‐ Carbonate‐R

G

Average Tota

Average Matr

M

We

Pe

ure Gradient, psi/ft

voir Temperature, oF

Depth, ft.

Gross Thickness, ft. 

al Porosity, fraction

lity  of Net Pay, md 8

OC)

Depth, ft.

Gross Thickness, ft. 

al Porosity, fraction

ix Permeability, md

ant Equivalents       

Depth, ft.

Gross Thickness, ft. 

al Porosity, fraction

ix Permeability, md

Pleasant 

Rich

Depth, ft.

Gross Thickness, ft. 

al Porosity, fraction

ix Permeability, md

Vol

Table 19.  Key Pa
odel Area 1 

estern NY & 

NW 

ennsylvania

Model Area 

North Centr

NY

0.46 0.53

131.1 125.8

5,710 5,421

172 104

0.029 0.027

8.815E‐05 8.477E-05

5,882 5,525

45 10

0.038 0.033

1.051E‐04 9.532E‐05

Absent Absent

Absent Absent

Assessm
 8: Assessment of Te

 

arameters by Laye

2 

al 

Model Area 3   

S Central NY & 

N Central PA

Mode

Eas

(m

Broo

Tiog

0.53 0

178.1 18

8,953 9,

127 1

0.026 0.

5 8.313E-05 7.39

9,080 9,

36 6

0.032 0.

9.347E‐05 1.38

9,116 9,

109 1

0.041 0.

1.115E‐04 1.09

9,225 9,5

51 1

0.037 0.

1.031E‐04 1.03

ment of Factors  Influe
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er and Model Area
l Area 4   

st NY        

ainly  

ome & 

ga, Co)

Model Area 5 ‐

A   Northeast 

NY

.63 0.44

83.8 118.9

,297 4,734

116 199

.020 0.031

93E‐05 9.166E‐05

,413 4,933

60 121

.052 0.047

82E‐04 1.253E‐04

,473 5,054

09 104

.040 0.042

93E‐04 1.137E‐04

582 5,158

07 89

.037 0.034

31E‐04 9.720E‐05

encing Effective CO2

mic Potential of Recov

 

a used in the Simu

Model Area 6  

NE PA & E‐

Central PA

Model Are

West PA, 

Panhandl

Central O

0.63 0.60

250.0 207.7

12,077 10,907

137 155

0.027 0.025

8.477E-05 4.128E‐0

12,214 11,062

35 34

0.041 0.038

1.115E‐04 8.628E‐0

12,249 11,096

130 113

0.040 0.045

1.093E‐04 1.283E‐0

12,379 11,209

99 87

0.045 0.040

1.205E‐04 9.664E‐0

2 Storage Capacity an
vering Methane and 

 

ulation Runs 
ea 7   

WV 

le, E 

OH

Model Area 8   

NW PA, 

Eastern OH

Mo

No

WV,

0.53

7 143.0

7 6,544

107

5 0.031

06 5.801E‐06 3

2 6,651

41

8 0.043

06 1.146E‐05 6

6 6,692

59

0.048

05 1.521E‐05 2

9 6,751

79

0 0.046

06 1.358E‐05 1

nd Injectivity in Easte
 Storing CO2 in Easte

del Area 9   

orthwest 

  Southeast 

OH

Model Area 10

Central WV

0.53 0.53

176.0 222.3

8,807 11,991

105 84

0.023 0.020

.685E‐06 3.109E‐06

8,912 12,075

28 12

0.032 0.024

.140E‐06 3.900E‐06

8,940 12,087

61 45

0.055 0.043

.263E‐05 1.146E‐05

9,001 12,132

53 34

0.044 0.035

.213E‐05 7.278E‐06

ern Gas Shales 
ern Gas Shales 

 

0  Model Area 11  

Southwest‐ 

South Central 

WV

0.53

157.9

7,661

43

0.033

6.498E‐06

Absent

7,704

87

0.049

1.610E‐05

Absent
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j 35 2.73
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j 35 0.23
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25 0.14

30 0.17
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0.00

4 
Recovery 

(%)

Cum CO

Inj (Bcf

3.3 ‐

3.8 ‐

4.4 ‐
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