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1 Objectives and highlighted accomplishments

The master project under which this work is funded had as its main objective to develop compu-
tational methods for modeling electronic excited-state and optical properties of various nanostruc-
tures. The Minnesota team was comprised of two collaborating groups: The first directed by Jim
Chelikowsky from the dept. of Chemical Engineering and Materials Sciences (Now at the university
of Texas at Austin), and the second under the direction of Yousef Saad, from the department of
computer science and engineering. The specific goals of the computer science group were primarily
to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent
Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The
first objective was to study and develop effective numerical algorithms for solving large eigenvalue
problems such as those that arise in Density Functional Theory (DFT) methods. The second ob-
jective was to explore so-called linear scaling methods or Methods that avoid diagonalization. The
third was to develop effective approaches for Time-Dependent DET (TDDFT). Our fourth and final
objective was to examine effective solution strategies for other problems in electronic excitations,
such as the GW /Bethe-Salpeter method, and quantum transport problems.

The following is a list of a few highlighted accomplishments for the duration of the project.
Section 2 presents details on selected topics.

1. The project begun with an investigation on the effective use of planewave methods for TDDFT.
We developed a new, FFT-based, Time-dependent Density Functional Theory code for TDDFT
which attained a factor or 20 to 35 over our earlier code which worked entirely in real-space,
see [11].

2. In the course of exploring TDDFT, we investigated the solution of related Helmholtz equations
[12] and proposed a number of effective strategies for solving indefinite complex linear systems.

3. Along with Bernard Philippe (University of Rennes, France), we considered domain-decomposition
type methods for solving eigenvalue problems [13]. This work provided some useful insight into
the Automatic Multi-level Substructuring methods.



4. We wrote an exhaustive review paper [17] on numerical methods for electronic structure calcu-
lations for the STAM review journal. Another survey-type article [6] reviewed our work in the
area of TDDFT.

5. One of the most significant accomplishments in the work supported by this grant is our work
on Chebyshev- subspace iteration [22]. The method proposed in [22] represented a significant
departure from our classical approach by merging the diagonalization loop with the nonlinear
self-consistent loop. Typically, this work resulted in a factor of 10 speed-up or more for large
Systems.

6. The algorithm and codes resulting from the above contribution enabled us to perform calcula-
tions that were not possible before. Among these is our work on magnetism in iron [18], and
the study of vibrational and other properties evolutive properties of nanocrystals [8, 7, 9].

7. We have continued to develop and expand the capabilities of our code PARSEC - in particular
periodic systems were treated [1]. At the same time we developed a matlab version of PARSEC,
named RSDFT, geared toward educational and prototyping use.

8. Various strategies were tested for eigenvalue calculations [19, 20, 22, 21].

9. In a collaboration with Stefano Baroni (SISSA, Trieste, Italy) we developed a method based on
the Lanczos algorithm for performing Time-Dependent Density Functional Theory calculations
[2, 15]. This work generated quite a good number of citations in the literature.

2 Research contributions

Fast TDDFT using planewave bases. The project started with the development of a novel, FFT-based,
Time-dependent Density Functional Theory code. This code attained a factor or 20 to 35 over our
earlier implementation which worked entirely in real-space. This gain was achieved by (1) using a
new algorithm (2) better optimization of the technique. The paper appeared in [11].

Efforts in Diagonalization algorithms. One of the main objectives of the project was to find methods for
reducing the cost of diagonalization by using algorithms that are specifically tailored to the situation
of DFT. The main efforts in this direction were based on a number of observations. First, we
observed that most electronic structures calculation codes focus too much on computing individual
eigenvalues accurately while what matters is simply to have a good basis (typically orthogonal) of the
invariant subspace associated with the occupied states. Focussing on eigenvalues and eigenvectors,
will tend to require costly algorithms, primarily because diagonalization codes demand repetitive
orthogonalizations to get accurate eigenvectors. This is the situation for our earlier code and of
the widely used code ARPACK. It is not too uncommon for orthogonalization to consume 90% of
the time spent in a typical DFT code. In fact, it is even possible to avoid computing eigenvectors
altogether and this constitutes the main foundation of so-called order n, or linear scaling, methods.
The second basic observation we made is that the problem under consideration is really a nonlinear
eigenvalue problem and it is solved as a sequence of linear eigenvalue problems only for historical
reasons (simplicity of the self-consistent iteration).

We have explored and tested a number of new options for diagonalization in our real-space DFT
code (PARSEC) including the following:

1. Block Davidson methods [21]. The goal of this approach was to exploit information previous
self-consistent iterations. The results were good but the improvements did not warrant an
inclusion in PARSEC.

2. A Chebyshev-Davidson algorithm [20]. This technique exploits a Chebyshev filter with the idea
of reducing the cost of orthogonalization.



Partial Lanczos ARPACK
No MATVECS | REORTHS. | MEMORY MB | secs MATVECS | RESTARTS | MEMORY MB | secs
248 3150 109 2268 2746 3342 20 357 16454
350 4570 184 3289 5982 5283 24 504 37371
496 6550 302 4715 13714 6836 22 714 67020

Table 1: Costs for Partial Lanczos and ARPACK for GeggHjoo. This matrix is a Hamiltonian in real-space which arises from
the similation of a Germanium cluster (99 Ge Atoms, 100 H atoms). Its size is n = 94, 341, and it has nnz=633,2795
nonzero entries. The number of occupied states is 248. The table compares various costs for the situtations when
subspaces of dimension 248 (the minimun required), 350, and 496 are computed. The algorithm is about 6 times faster
than ARPACK for the first 2 cases, which are the more practical ones.

3. The idea of filtered iteration was taken a little further by selecting the filter polynomial more
carefully. Specifically we considered least-squares polynomials which approximate a step func-
tion. The step function has value one for occupied states and zero elsewhere. Two articles have
been published on this general idea: [4, 16].

4. Lanczos algorithm with partial reorthogonalization [5]. The main point of this study was to show
that by focusing on the convergence of the invariant subspace instead of individual eigenvectors,
one can reduce the cost of “diagonalization” in a significant way. This is due mainly to the
reduction of the orthogonalization costs since the Lancozs algorithm can be used with partial
reorthogonalization instead of full reorthogonalization. A gain of a factor of up to 7 can be made
in the cost of diagonalization at the expense of using more memory. In [5], it was argued that
for the problems generally under consideration, memory is still not a major issue. In addition,
it is also possible to exploit secondary storage in case memory were to become a bottleneck. An
illustration is shown in Table 1.

5. Finally, we also did some work on Block-Schur methods for symmetric eigenvalue problems as
a means to take advantage of eigenspaces from previous iterations in the self-consistent loop in
DFT codes [21].

Efforts in linear-scaling methods. In [3] we investigated the issue of generating the charge density
without the availibility of eigenvalues and eigenvectors. As is well-known in Density Functional
Theory, the charge density can be viewed as the diagonal of a certain projector (the density matrix)
which is simply the spectral projector associated with the occupied states. This is one of the main
ingredients used in so-called order-n methods. The paper [3] considers a number of new ways of
estimating the diagonal of a matrix, when the main operation is the matrix-vector product.

Chebyshev Subspace iteration. A major development in this project took place toward the beginning
of the 3rd year. We re-examined again the idea of filtering and this resulted in a new algorithm which
yielded a major improvement both in reducing cost and in improving robustness of our real-space
code. This particular contribution [19, 22] had a good impact on the field.

The idea we explored was simply to merge diagonalization loop with the nonlinear loop. This idea
stems from the viewpoint mentioned above that the overall problem is a nonlinear problem, so it is
wasteful to compute eigenvalues accurately. Instead, the idea is to perform of a subspace iteration
whereby some initial subspace is improved by a Chebyshev filter at each self-consistent iteration.
The main difference with standard diagonalization is that we do not iterate the basis to convergence.
Instead, we let the nonlinear iteration take care of the convergence. We have seen cases where the
gain in time when compared with a standard package such as ARPACK is as high as 15. A parallel
version of the code was developed and this became the default eigensolver in PARSEC [22].

Acceleration techniques for nonlinear problems. This work was motivated by the problem in electronic
structure calculations, whereby a fixed point iteration, known as the Self-Consistent Field (SCF)
iteration, is accelerated by various strategies termed ‘mixing’. Our specific goal here was to improve



method | # MV products | # SCF steps | total energy | CPU (secs)

ChebSI 114526 10 -77.316873 8870.10
ARPACK 142047 10 -77.316873 | 62026.37

TRLan 145909 10 -77.316873 | 26852.84

Table 2: This test is for a silicon cluster of 525 silicon atoms passivated with 276 hydrogen atoms (Si525 Ho76). The
matrix size is n = 292,584 and the number of occupied states (eigenvectors to be computed) is 1,194. The table
compares 3 methods used. The first is the new method which does not focus on eigenvectors (using Chebshev filters
of degree 8). The other two are based on standard diagonalization and utilize the well-known ARPACK package and a
competitive algorithm called Thick Restart Lanczos (TRLan) developed by H. Simon and Kesheng Wu from LBL. Times
shown are for the whole self-consistent iteration. As can be seen, in all cases, the code takes 10 outer (SCF) iterations to
converge. Notice that the number of matrix-vector operations is only marginally reduced for ChebSI relative to the other
two methods. However, the overall cost is about 7 times less than that obtained with ARPACK.

the acceleration schemes used in our real-space code PARSEC, both from the point of view of
robustness and that of speed. We explored two classes of multisecant methods which allow to take
into account a variable number of secant equations at each iteration. The first is the Broyden-like
class, of which Broyden’s family is a subclass, and Anderson mixing is a particular member. The
second class is that of the nonlinear Eirola-Nevanlinna-type methods. The codes resulting from this
study have been incorporated into PARSEC. A paper that described this work was published in the
literature [14].

Solving complex systems in Transport. We considered the solution of sparse linear systems that arise
from the application of real space pseudopotential methods in the study of electron transport prop-
erties of nanoscale junctions. These problems give rise to linear systems of equations with complex
variables which are difficult to solve by standard iterative methods. We analyzed the performance
of a few preconditioners for solving these complex linear systems which originate from the applica-
tion of real space pseudopotential methods in the study of electron transport properties of nanoscale
junctions. These linear systems of equations are part of a self-consistent loop to compute the charge
density and corresponding potential at the junctions. The coefficient matrices for these systems have
a regular structure with two dense blocks associated with boundary conditions. These dense blocks
cause difficulties to general preconditioners, due to the amount of fill-in which they tend to generate.
The preconditioners studied were of the general-purpose kind, such as ILU with threshold (ILUT),
ILU with level of fill (ILUK), and the Algebraic Recursive Multilevel Solvers (ARMS). The study
shows that ARMS with diagonal dominance — based nonsymmetric ordering (ddPQ) is generally
more robust than the other preconditioners which were tested.

We also studied systems which are of the same type but which are easier to work with. Indeed,
the wave-like nature of the problem yields systems that are somewhat similar to the systems obtained
from the Helmholtz equations. We have developed some new strategies which perform quite well for
Helmoltz equations.

TDDFT from a Liouville operator perspective. In a collaboration with Stefani Baroni’s team from
SISSA in Trieste (Italy) we explored Lanczos-type algorithms for Time-Dependent Density Func-
tional Theory (TD-DFT) calculations. A method developed by Baroni and his group expresses the
problem in a form which can be viewed as that of solving a sequence of linear systems with a shifted
matrix. The number of shifts can be large so the best candidate for this type of calculation is
an adaptation of the Lanczos algorithm. However, as the shift (which corresponds to frequency)
gets well inside the spectrum, the performance of the Lanczos algorithm deteriorates. The method
consisted essentially of running the nonsymmetric algorithm without reorthogonalization and com-
puting the wanted quantities from the resulting sequence of vectors. This new implementation of
time-dependent density-functional theory allows the entire spectrum of a molecule or extended sys-
tem to be computed with a numerical effort comparable to that of a single standard ground-state
calculation. The method is particularly well suited for large systems and/or large basis sets, such as



plane waves or real-space grids.

The method uses a super-operator formulation of linearized time-dependent density-functional
theory. It represents the dynamical polarizability of an interacting-electron system as an off-diagonal
matrix element of the resolvent of the Liouvillian super-operator. One-electron operators and den-
sity matrices are treated using a representation borrowed from time-independent density-functional
perturbation theory, which permits to avoid the calculation of unoccupied Kohn-Sham orbitals. The
resolvent of the Liouvillian is evaluated through the non-symmetric Lanczos method. Each step of
the Lanczos recursion essentially requires twice as many operations as a single step of the iterative
diagonalization of the unperturbed Kohn-Sham Hamiltonian. Suitable extrapolation of the Lanc-
zos coefficients allows for a dramatic reduction of the number of Lanczos steps necessary to obtain
well converged spectra, bringing such number down to hundreds (or a few thousands, at most) in
typical plane-wave pseudopotential applications. The resulting numerical workload is only a few
times larger than that needed by a ground-state Kohn-Sham calculation for a same system. Two
consecutive papers were published describing this work [2, 15].

3 Personnel

This grant provided partial or full support for the following researchers during the duration of the
project:

1. Suzanne Shontz [post-doc associate 2004-2006]
Costas Bekas [post-doc associate 2003-2005]
Prakah Dayal [post-doc associate 2006-2007]
Daniel Osei-Kuffuor [graduate student 2004-2007]

Haw-ren Fang [post-doc associate 2006-2008]

S o N

Adam Jundt [graduate student 2006-2007]

Among the above, Suzanne Shontz is currently a faculty member at Penn-State university (recipient
of a PECASE award in 2011), Daniel Osei-Kuffuor is a researcher in Lawrence Livermore Lab., and
Costas Bekas is at IBM Zurich (team member recipient of a recent Gordon Bell Award).

4 Software

Some of the techniques developed during the project were retrofitted into our code PARSEC. In
addition, we also devoted some effort in developing a matlab version of our real-space electronic
structures code. This code, called RSDFT, has been assembled by a team of physicists, and computer
scientists, including several undergraduate students (not supported by this grant) who worked as
summer interns. It is targetted at an audience of mathematicians and computer scientists.

5 Publications

An updated list of technical reports and articles published under this grant is given in the references.
All papers are available online under the “research reports” link of:
http://www.cs.umn.edu/~saad
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