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Interaction of materials is ubiquitous in real life scenarios and has attracted vast interest from the computational
modeling community. The challenge of numerically simulating such problems, in spite of advances in
computing resources and numerical methods, arises from the limitations in the algorithmic framework that can
handle a whole range of problems such as moving boundary and large deformation. Many of the existing
approaches seem to break down under large material deformation scenarios while performing adequately for
more benign situations.

Most numerical simulation methods are either Eulerian or Lagrangian. Eulerian descriptions of problems
involving large deformations require advection of the various state variables, causing significant numerical
diffusion error. When using a Lagrangian treatment, one encounters significant mesh entanglement and
distortion issues that result in significant errors and even failure of the calculation in some cases. Fifteen years
ago, Anderson et al. [1] modeled the interaction of a tungsten projectile with a steel target using an Eulerian
code and compared the results with experimental data. To avoid numerical diffusion, more recent approaches to
solve such problems are often based on the finite element method with rezoning to mitigate the effects of grid
distortion [2]. These methods Jimit the amount of rezoning to reduce the numerical diffusion associated with this
process. For numerical stability, these methods also remove highly distort elements resulting in the loss of mass
and momentum in the calculation. This practice is a significant source of error in impact phenomena, where the
effects of momentum and inertia are important. To avoid such errors, Huang et al. [3] and Grujicic et al. [4]
recently employed a method that converts the highly distort or failed elements into particles and then use
smooth particle hydrodynamics (SPH) to handle them. This type of approach combines the advantages of the
individual techniques and has gained some popularity in recent years. However, switching between methods is
often computationally inefficient and introduces numerical errors.

In an effort to avoid the difficulties mentioned above, the modeling community has realized the need for a
hybrid Eulerian-Lagrangian method that allows particles and mesh nodes to communicate information in every
time step without causing numerical diffusion errors. The particle-in-cell (PIC) method first developed by the
Fluid Dynamics Group at the Los Alamos national laboratory (Harlow [S]) is one such technique. In the PIC
method the Eulerian mesh stays fixed while Lagrangian particles move through the mesh during material
deformation. This method combines mesh and particle capabilities while eliminating the difficulty related to
mesh deformation in a Lagrangian method and the numerical diffusion issues plaguing an Eulerian calculation.
Since its inception in the 1960s, many improvements have been made to the PIC method, with the material point
method (MPM) being the most recent variant. The work of Sulsky et al. [6] provides a mathematical basis for
this approach. The MPM lends itself naturally to modeling large material deformations. The amount of
computation per cell for the MPM is much greater than that for a pure Eulerian or Lagrangian method.
However, in many finite volume or finite element based calculations, the amount of elements or cells needed for
a dynamic problem is determined by the need to avoid mesh distortion or to limit numerical diffusion. Such
difficulties are not present in the MPM. For a given problem, much fewer cells are needed in the MPM than in a
pure Eulerian or Lagrangian method, thus making the overall efficiency of the MPM greater.
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Direct application of the MPM to multimaterial interactions requires tracking material interfaces and developing
an appropriate contact algorithm. Furthermore, material interactions often result in mixing of the materials and
blurring their boundaries. To avoid dealing with these difficulties, we employ an approach used in the study of
multiphase flows. Specifically, we treat the interacting materials as inter-penetrating continua. Their actual
locations or interfaces are represented by volume fractions or the change in the volume fraction. In this way we
avoid the need to deal with the contact region or interface directly. The interaction between the materials is
represented by the exchange force in the mixed cells or control volumes in the calculation. This multiphase
flow approach is often more convenient in dealing with problems of material impact or fluid-structure
interactions. For example, many solid materials always contain some porosity. This porosity has little effect for
slow deformation. However, for high strain rate motions, such as shock wave impact on solid structures, the
porosity has a significant effect on wave speed. In projectile-armor and other material impact problems, the
melting of the materials could cause a mixed layer near the contact surface. For modeling such situations, the
multiphase approach seems to be the only choice. In this study we employ a set of equations developed based
on the ensemble phase averaging method for multiphase flows or multimaterial interactions (Zhang et al. [7]).

In solving the model equations, we extend the MPM for solids to multiphase flows or multimaterial interactions.
This combination of multiphase flow theory and the MPM is attractive for multimaterial simulations. Using this
approach, one can not only model interacting solids, but also fully coupled fluid-structure interactions. The main
objective of this paper is to assess the performance of this approach of combining the multimaterial interaction
theory and the MPM in the context of fluid-structure interactions. In this study we first validate the model
implementation in CartaBlanca with the experimental data of Anderson et al. [1]. We then study the numerical
behavior of various modeling options such as single phase and multiphase approaches. Following this we
extend the capability to include an anisotropic elastic stress model for handling composites. To illustrate this,
we model the interaction of a tungsten projectile with a steel-composite sandwich target.
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Disperse and continuous multiphase problems

Disperse multiphase flow: Only one
continuous phase. All other phases are in
forms of particles, droplets, bubbles, with
sizes small compared to the length scale of
the problem.

Continuous multiphase flow: two or more
phases occupying domains with length scales
comparable to that of the problem.

The theories for disperse multiphase flows are
reasonably well developed, but not so for
continuous multiphase flows.

For continuous multiphase flows, material
motion of each phase is often described by
the equation set for the phase. Phase
interactions are considered as boundary

conditions. Numerically, various contact How to derive a unified theoretical
algorithms, such as level set, volume of fluid, framework to deal with the transitional
and immersed boundary, are used. flows?

Even less theories for transitional flows:

Current theories: jet breakup, fragmentation How t°_ solve the equations
model. numerically?



Probabilistic Description

» Exact positions of interfaces or
phase boundaries are difficult, but
not very interesting to track.

 Phase interactions on the interfaces
can have very small length and time
scale. Often, it is random.

« A probabilistic description is Let P(M) be the probability of motions (flows, physical
' systems) and

necessary. | o .

Cx, M)= 1, ;fprhasell

0, otherwise '

» A philosophical question: If we are able to
make great effort to trace every interaction
in all details (to know all hidden variables),
do we still need a probabilistic description?

The volume fraction of phase i is defined as
0"'=[ C"(x,t, M)P(M)aMm.

The answer: Yes!

» This is related to Einstein-Podolsky-Rosen

paradox (1935) in quantum mechanics.
A series of experiments in early 1980's

disproved Bell's inequality, and the hidden

variable theory.

* The need for probabilistic descriptions is
not because we don't know enough. It is
part of the nature.

For a quantity ¢ of phase i we define its average as
<q<”>:ﬁf C'(x,t,M)q.(x,t, M)P(M)dM.

In ensemble phase average, we only average over
those motions in which the point x is occupied by the
phase at that time .

Different from time or volume averaging technique,
in ensemble average, there is no need to pre-specify
length or time scale.



Ensemble Phase Averaging Method

In ensemble phase average (Zhang et al. Int. J.
Multiphase flow, 2007):

Vig")=(Vgq" >+—ﬂq '—(¢" IV Y P(M)dM.

0 in_, 0
E@] >_<E ,“C] - 6[

0

/" 0q"
| ot

CL (g™ )+ g P(M)d M

Let g = p(), and noting a—+V (v''g")=0,
without phase change, we ﬂave the averaged
mass conservation equation:

~(07(p )+ V6" (v p)) =0

ot
Let ) = p(i) v () we have the momentum equation:
(07" H)+ V(0 (o) 5
ot
apl)v 0
=g Py +V-(p"v 1y

-0"'V p+ V0e((a"+al +pI)|+ f"

ML p(M)dM.

E<9,_-<q<”) FV-(07 (v "))

Other than extremely non-linear constitutive
relations, we assume

(M= (V' _[ (VoY) K t=1)d T, )

In an ensemble phase average

<V'V(i)>?'—'V'<Vm>.

We use
<V.v(i)>:a(i)v_<v(i)>_’_ B(i)

where B() is related to compressibilities, thermal
expansion, species change, etc, inside phase i.




Multi-velocity Formulation

Multi-velocity formulation is obtained from the ensemble phase averaging technique.

Advantages:

» Unified framework of equations for impact, fragmentation, and debris flows.

* No need to switch equations and numerical codes in different stage of material
interactions.

» Applicable to all fluid-structure interactions.

» Can be used to consider material interactions happening inside material, such as porous
solid in a fluid. o, Wiz

New issues: s

» Material interactions models.

||||||||

» Velocity and traction continuity across material interfaces.
« Enforcing continuity: Y, 6"'=1.

« Comparison with traditional methgd _
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Comparison of single and multi-velocity results

& Comparison of rodeling approaches

Nose and tail positions with time for 4.95 c¢m thick steel plate, 1.7 km/s projectile velocity

[

Distance in cms
[y

t 10 20 30 40 50 60
1 Time (microseconds)
» One-velocity: projectile and target are
modeled in velocity field. Air is not 2 1 ~impact surface = =Original rear surface
considered. ® Nose (experiment) O Tail [experiment)
2] — Nose {one-velocity) — Tait {one-velocity)
» Two-velocity: projectile and target are 4 - ~Nose (two-velocity) - -Tail (two-velocity]
modeled in one velocity field. Airis | | /.. Nose (threevelocity] - il (three-velocity)
modeled as the other velocity field. 5 .
Aoy I
» Three-Velocity: projectile, target and pa—tﬂLv'(PmeV(l))

air are modeled by separate velocity ; N, p
fields. =—0"V-p+V[0"(c"+pI)]-F"



Comparison of single and multi-velocity results

5 microseconds 20 microseconds i 5 microseconds 20 microseconds

3-velocity 2-velocity 3-velocity 2-velocity 3-velocity 2-velocity 3-velocity 2-velocity

Projectile-concrete interaction in air Projectile-concrete interaction in water

This results are obtained using dual domain material point (DDMP) method that eliminated
the noise associated with cell crossing of material points (Zhang et al. 2011, JCP).



Numerical Methods for the Averaged Equations

 Traditionally used finite element methods suffer mesh distortion difficulties because
of fragmentation and debris flow.

+ Eulerian method, such as finite difference, finite volume, cannot be efficiently used
because of failure flags need to follow the motion of the material and cannot be
averaged.

+ For brittle materials, at a point the material is either failed ( failure = 1) or not failed (failure = 0).
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FEM, (Lagrangian Method) Material point method

Cline and Reaugh, J. De. Physique IV, 1991



The Material Point Method (MPM)

For problems involving large deformation and history of the materials. To avoid difficulties of
numerical diffusion associated with Eulerian methods, and mesh distortion associated with
Lagrangian method, we choose material point method (MPM) .

The material point method (MPM), uses
both Eulerian mesh and Lagrangian
points. The Lagrangian points are also
called material points, or particles.

 Particle-in-cell (PIC) method was invented
by Frank Harlow in the 1960’s. Nearest grid
point interpolation was used.

* In the late 1980’s, shape functions were
introduced. The method is then called
FLuid Implicit Particle (FLIP) method.

* In the 1990’s particle-in-cell method was re-
formatted based on weak solutions to
partial differential equations (or the virtual
work theory). Since then the method is
called material point method (MPM). F. H. Harlow and A. A. Amsden, LA-4700, 1971




Material point method (MPM) vs. finite element method (FEM)

du
; dtj =—[ oV S,(x)dv+ | ogS,(x)dv+ f S.(x)0-ndS, (the virtual work principle).
MPM FEM
f o-VS.(x)dv=) v,o0,VS(x,) f oV S, (x)dv=> w,J, »VS(x,),
p g
where subscript p denotes material points that where subscript ¢ denotes Gauss integration

move across the Eulerian mesh. points.

\ E
_ o - - < X
== I:J'/ L ] f N

N
. ) du, _ | ' 7
u, ':up+ AZZ,’CTS"(xP) ' \
du,
n+1 n i
X + At 2, u; t)S,; . .
p = A2 dt )5ix,) Gauss points are fixed on elements.

+1 Z m un l xn+1)
p " p Elements are Lagrangian. They can become
‘n"\u/:(eezh Ce”s or elements are Eulerian. They are distorted for large material deformation.

Both the material points and Gauss points are Lagrangian points and can be used to track deformation
history of the material. However, FEM has the difficulty of mesh distortion. The original MPM has also
its own difficulties, but has been overcome by the dual domain material point (DDMP) method.



Dual domain material point (DDMP) method

du
ZTZ—ZV o, VS, (x +fpgS dv+f S.(x)o-ndS,
A
The discontinuity of the shape function gradient y i
causes an instability (Bardenhagen and Kober, //\

2004).
Solution: Replace VS, by

V S, (x)=a(x)V S (x)+[1-

N

VS (x)=X (5, Vs,

where a(x) = 0 on ceII boundary.

Original MPM Dual domain material / , \

point (DDMP) method



Continuity: Y 0"'=1.

e To ensure no unphysical void, crack, or over-lap of the
materials, in the multi-velocity formulation, the volume
fractions of all phases sum to one.

« However, in the material point method:

and there is no way to ensure ) 0,'=1

numerically. If this constraint is used directly in MPM,
significant error will occur (Zhang, et al. 2008, J. of
Comp. Phys. 227, pp. 3159-3173) .

e To ensure the continuity constraint, we use

220 +u"V 6=,

In the sense of weak solution, this constraint is
equivalentto Y 6''=1.



Transition from continuous to disperse flows
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Continuous to disperse flow transition

Debris cloud from an Impact:
Velocity: 6.71km/s. Materials: Al-2024
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Taylor impact of brittle material
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Conclusions

Ensemble phase averaging method and multi-velocity formulation is
applicable to both continuous and disperse flows.

The derived equations can be solved using the improved material
point method (DDMP) to simulation material failure, breakup,
fragmentation and transition from continuous to disperse flows.

This combination of mathematical formulation and numerical method
avoids many conceptual and numerical difficulties associated with
conventional methods, such as code or formulation switching for
different flow regimes.

To recover conventional results only a very simple material interaction
model is needed.

Currently not many material interaction models are available, because
of lack of numerical tool.

| hope that this combination of the formulation and the numerical
method will encourage the model development.



