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Interaction of materials is ubiquitous in real life scenarios and has attracted vast interest from the computational 
modeling community. The challenge of numerically simulating such problems, in spite of advances in 
computing resources and numerical methods, arises from the limitations in the algorithmic framework that can 
handle a whole range of problems such as moving boundary and large deformation. Many of the existing 
approaches seem to break down under large material deformation scenarios while performing adequately for 
more benign situations. 

Most numerical simulation methods are either Eulerian or Lagrangian. Eulerian descriptions of problems 
involving large deformations require advection of the various state variables, causing significant numerical 
diffusion error. When using a Lagrangian treatment, one encounters significant mesh entanglement and 
distortion issues that result in significant errors and even failure of the calculation in some cases. Fifteen years 
ago, Anderson et al. [1] modeled the interaction of a tungsten projectile with a steel target using an Eulerian 
code and compared the results with experimental data. To avoid numerical diffusion, more recent approaches to 
solve such problems are often based on the finite element method with rezoning to mitigate the effects of grid 
distortion [2]. These methods limit the amount of rezoning to reduce the numerical diffusion associated with this 
process. For numerical stability, these methods also remove highly distort elements resulting in the loss of mass 
and momentum in the calculation. This practice is a significant source of error in impact phenomena, where the 
effects of momentum and inertia are important. To avoid such errors, Huang et al. [3] and Grujicic et al. [4] 
recently employed a method that converts the highly distort or failed elements into particles and then use 
smooth particle hydrodynamics (SPH) to handle them. This type of approach combines the advantages of the 
individual techniques and has gained some popularity in recent years. However, switching between methods is 
often computationally inefficient and introduces numerical errors. 

In an effort to avoid the difficulties mentioned above, the modeling community has realized the need for a 
hybrid Eulerian-Lagrangian method that allows particles and mesh nodes to communicate information in every 
time step without causing numerical diffusion errors. The particle-in-cell (PIC) method first developed by the 
Fluid Dynamics Group at the Los Alamos national laboratory (Harlow [5]) is one such technique. In the PIC 
method the Eulerian mesh stays fixed while Lagrangian particles move through the mesh during material 
deformation. This method combines mesh and particle capabilities while eliminating the difficulty related to 
mesh deformation in a Lagrangian method and the numerical diffusion issues plaguing an Eulerian calculation. 
Since its inception in the 1960s, many improvements have been made to the PIC method, with the material point 
method (MPM) being the most recent variant. The work of Sulsky et al. [6] provides a mathematical basis for 
this approach. The MPM lends itself naturally to modeling large material deformations. The amount of 
computation per cell for the MPM is much greater than that for a pure Eulerian or Lagrangian method. 
However, in many finite volume or finite element based calculations, the amount of elements or cells needed for 
a dynamic problem is determined by the need to avoid mesh distortion or to limit numerical diffusion. Such 
difficulties are not present in the MPM. For a given problem, much fewer cells are needed in the MPM than in a 
pure Eulerian or Lagrangian method, thus making the overall efficiency of the MPM greater. 
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Direct application of the MPM to multimaterial interactions requires tracking material interfaces and developing 
an appropriate contact algorithm. Furthermore, material interactions often result in mixing of the materials and 
blurring their boundaries. To avoid dealing with these difficulties, we employ an approach used in the study of 
multi phase flows. Specifically, we treat the interacting materials as inter-penetrating continua. Their actual 
locations or interfaces are represented by volume fractions or the change in the volume fraction . In this way we 
avoid the need to deal with the contact region or interface directly. The interaction between the materials is 
represented by the exchange force in the mixed cells or control volumes in the calculation. This multiphase 
flow approach is often more convenient in dealing with problems of material impact or fluid-structure 
interactions. For example, many solid materials always contain some porosity. This porosity has little effect for 
slow deformation. However, for high strain rate motions, such as shock wave impact on solid structures, the 
porosity has a significant effect on wave speed. In projectile-armor and other material impact problems, the 
melting of the materials could cause a mixed layer near the contact surface. For modeling such situations, the 
multi phase approach seems to be the only choice. In this study we employ a set of equations developed based 
on the ensemble phase averaging method for multi phase flows or multimaterial interactions (Zhang et al. [7]). 

In solving the model equations, we extend the MPM for solids to multiphase flows or multimaterial interactions. 
This combination of multiphase flow theory and the MPM is attractive for multi material simulations. Using this 
approach, one can not only model interacting solids, but also fully coupled fluid-structure interactions. The main 
objective of this paper is to assess the performance of this approach of combining the multimaterial interaction 
theory and the MPM in the context of fluid-structure interactions. In this study we first validate the model 
implementation in CartaBlanca with the experimental data of Anderson et al. [1]. We then study the numerical 
behavior of various modeling options such as single phase and multiphase approaches. Following this we 
extend the capability to include an anisotropic elastic stress model for handling composites. To illustrate this, 
we model the interaction of a tungsten projectile with a steel-composite sandwich target. 
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Disperse and continuous multiphase problems 

Disperse multiphase flow: Only one 
continuous phase. All other phases are in 
forms of particles, droplets, bubbles, with 
sizes small compared to the length scale of 
the problem. 

Continuous multiphase flow: two or more 
phases occupying domains with length scales 
comparable to that of the problem. 

The theories for disperse multiphase flows are 
reasonably well developed, but not so for 
continuous multiphase flows. 

For continuous multiphase flows, material 
motion of each phase is often described by 
the equation set for the phase. Phase 
interactions are considered as boundary 
conditions. Numerically, various contact 
algorithms, such as level set, volume of fluid, 
and immersed boundary, are used. 

Even less theories for transitional flows: 
Current theories: jet breakup, fragmentation 
model. 

How to derive a unified theoretical 
framework to deal with the transitional 
flows? 

How to solve the equations 
numerically? 



Probabilistic Description 

• Exact positions of interfaces or 
phase boundaries are difficult, but 
not very interesting to track. 

• Phase interactions on the interfaces 
can have very small length and time 
scale. Often, it is random. 

• A probabilistic description is 
necessary. 

• A philosophical question: If we are able to 
make great effort to trace every interaction 
in all details (to know all hidden variables), 
do we still need a probabilistic description? 
The answer: Yes! 

• This is related to Einstein-Podolsky-Rosen 
paradox (1935) in quantum mechanics. 
A series of experiments in early 1980's 
disproved Bell's inequality, and the hidden 
variable theory. 

• The need for probabilistic descriptions is 
not because we don't know enough. It is 
part of the nature. 

Let P(M) be the probability of motions (flows, physical 
systems) and 

C li) (x , M)= f 1, tf x EP.hase il. lo, otherwlse 

The volume fraction of phase i is defined as 

e (i) = fe U) (x , t, M) P (M)dM. 

For a quantity q(i) of phase i we define its average as 
(i) - 1 f (i) <q ) - eU) C (x , t, M)qj(x, t, M)P(M)dM. 

In ensemble phase average, we only average over 
those motions in which the point x is occupied by the 
phase at that time t. 

Different from time or volume averaging technique, 
in ensemble average, there is no need to pre-specify 
length or time scale. 



Ensemble Phase Averaging Method 
In ensemble phase average (Zhang et al. Int. J. 
Multiphase flow, 2007): 

V ( q(il) =(V q(i)) +_1 f [q(i ) - ( q(i)) ] V e (i ) P(M)dM. 
e l l) 

~( q(il) = (.JL q(i)) + _1 f [q (i) _ ( q(i)) ].JL e (i) P (M) dM. 
a tat e (1) a t 

~(e. ( q(i)) )+ V. ( eli) ( v(i) q(il ) ) 
at I 

I (i) ) ~eU\ aX! + V _(v(i l qUI ) + (;iii qlj) P(M)d M 

a (i) 

() () . q n ( (i) (i)) 0 Let q I = pI, and noting -t-+ v . v q = , 
without phase change, we ~ave the averaged 
mass conservation equation: 

~ (e(i) ( p(i)) )+ V.( e(i) (vU) p(i)) ) = 0 
at 

Let q(i) = p(i) v (i) we have the momentum equation: 

~ (e(i) ( p(i)) v(i) )+ V.( eli) (p(i)) v (i) v(i) ) 
at 

I (i ) (i) ) ~elj) \ a P
a 

/ + V _(plj) vUI viii) 

= -e(i) V p+ V· [e «u(i)) +u~~ + pJ)]+ f U) 

Other than extremely non-linear constitutive 
relations, we assume 

(u (i)) =a(i)( (V v(i)) J f <V v(il) (T ) K(i)( t-T)d T J"' ) 

In an ensemble phase average 

<\7 'v(i)) * \7.< v(i)) . 

We use 

<\7 ·v(i) ) =c/ il \7.< vU)) + B (i) 

where 8(i) is related to compressibilities, thermal 
expansion, species change, etc, inside phase i. 

... ... 
t 



Multi-velocity Formulation 
Multi-velocity formulation is obtained from the ensemble phase averaging technique. 
Adva ntages: 
• Unified framework of equations for impact, fragmentation, and debris flows. 
• No need to switch equations and numerical codes in different stage of material 

interactions. 
• Applicable to all fluid-structure interactions. 
• Can be used to consider material interactions happening inside material, such as porous 

solid in a fluid. 
New issues: 
• Material interactions models. 

• Velocity and traction continuity across material interfaces. 

• Enforcing continuity: I e {i) = 1. 

• Comparison with traditional methode 
(i ) .) 

For interface interaction' p ij = _ e I e j Pj !v(i) - v(J) !( v(i) -v(J) ) 
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Comparison of single and multi-velocity results 

a _ 100£+0& 
rr 

• One-velocity: projectile and target are 
modeled in velocity field. Air is not 
considered. 

• Two-velocity: projectile and target are 
modeled in one velocity field . Air is 
modeled as the other velocity field . 

• Three-Velocity: projectile, target and 
air are modeled by separate velocity 
fields. 

6 Compiill'ison of modeling approaches 

Nose and tail positions with time for 4.95 cm thic.k steel plilte, 1.7 km/ s projectile velocity 
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a p v + V. (p (i) VU) VU) ) 

at 
=-e(i) V·p+V·[e(i) (a (i )+ pI )]-FW). 
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Comparison of single and multi-velocity results 
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This results are obtained using dual domain material point (DDMP) method that eliminated 
the noise associated with cell crossing of material points (Zhang et al. 2011, JCP). 
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Numerical Methods for the Averaged Equations 

• Traditionally used finite element methods suffer mesh distortion difficulties because 
of fragmentation and debris flow. 

• Eulerian method, such as finite difference, finite volume, cannot be efficiently used 
because of failure flags need to follow the motion of the material and cannot be 
averaged. 
• For brittle materials, at a point the material is either failed ( failure = 1) or not failed (failure = 0). 
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Cl ine and Reaugh , J. De. Physique IV, 1991 



The Material Point Method (MPM) 
For problems involving large deformation and history of the materials. To avoid difficulties of 
numerical diffusion associated with Eulerian methods, and mesh distortion associated with 
Lagrangian method, we choose material point method (MPM) . 

The material point method (MPM), uses 
both Eulerian mesh and Lagrangian 
points. The Lagrangian points are also 
called material points, or particles. 

• Particle-in-cell (PIC) method was invented 
by Frank Harlow in the 1960's. Nearest grid 
point interpolation was used. 

• In the late 1980's, shape functions were 
introduced. The method is then called 
FLuid Implicit Particle (FLIP) method. 

• In the 1990's particle-in-cell method was re­
formatted based on weak solutions to 
partial differential equations (or the virtual 
work theory). Since then the method is 
called material point method (MPM). F. H. Harlow and A. A. Amsden, LA-4700, 1971 



Material point method (M~M) vs. finite element method (FEM) 

mij d !:.j =-f o· V Si (x) dv+ f pg Sit x) dv+ Lv s, (x) []. n dS, (the virtual work principle). 

MPM 
f a·V Si(x)dv=L vpap'V S(xp) 

p 

~here subscript p denotes material points that 
move across the Eulerian mesh. 

• 
• 

• • 
I ···· At > • 

• 
• • 

I 
n+ 1 n " d U i ( ) Up =Up+t1tL..Ji~SiXP 

n+ 1 n " ( d U i ) ( ) Xp =Xp+ t1t L..J i Ui + O.5~ t Si Xp 

n+ 1 ~ n+ 1 S ( n+ 1 ) miu i =L..Jpmpu p n xp 
Mesh cells or elements are Eulerian. They are 
ixed. 

FEM 
f o·VSi(x)dv=LWgJg g'VS(xg), 

g 

here subscript g denotes Gauss integration 
points. 

• • 

• • 
I ~ Jlt . ,/ 

• 

Gauss points are fixed on elements. 

Elements are Lagrangian. They can become 
!distorted for large material deformation. 

Both the material points and Gauss points are Lagrangian points and can be used to track deformation 
history of the material. However, FEM has the difficulty of mesh distortion. The original MPM has also 
its own difficulties, but has been overcome by the dual domain material point (DDMP) method. 



Dual domain material point (DDMP) method 

mi dJ~i =-L v pa p. V Si( X p) + f p g Si (x )dv + f 8v Si(X )u·ndS, 
p 

The discontinuity of the shape function gradient 
causes an instability (8ardenhagen and Kober, 
2004). 

Solution: Replace V S . by 
1 -V Si(x)=a(x)V Si(x)+[l-a(x)]V Si(X), 

----- N 1 
V Si(X)= L -(Sj ' V SJSj(x), 

'-) V . )- ) 

where a(x) = 0 on cell boundary. 
x 

v~ 

y 

S. 
I 

..................... } .. 
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a 

x 

~ 
.... .. Y..§ 
---VS 
-VS 

Original MPM 
Dual domain material 
point (DDMP) method 
~ 



Continuity: Ii e (i) = 1. 

• To ensure no unphysical void, crack, or over-lap of the 
materials, in the multi-velocity formulation, the volume 
fractions of all phases sum to one. 

• However, in the material point method: 

~ (i ) s ( 
e (i )= L..-J p V p n x p ) 

n 
V n 

and there is no way to ensure L. e;:)= 1 
l 

numerically. If this constraint is used directly in MPM, 
significant error will occur (Zhang, et al. 2008, J. of 
Compo Phys. 227, pp. 3159-3173) . 

• To ensure the continuity constraint, we use 

:t (I 8~)) +u(" ) 'V I 8::)=0. 
In the sense of weak solution, this constraint is 
equivalentto L . e~) = l . 

l 

• 
• • 
• I . 

• 



Transition from continuous to disperse flows 
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Continuous to disperse flow transition 

Debris cloud from an Impact: 
Velocity: 6.71 kmls. Materials: AI-2024 
1 Ch 0.15 1 1 Ch 0.5 1 '--1 - Ch- l-.0-

(i) Axial Experiment Ch= Ch= Ch= Ch= " E 
velocities (Piekutowskii, 0.02 0.15 0.5 1.0 <\7'v(i) =£X(i) \7' <v(i)+ B (I) , a (l)=l-tanh(--E) 

(km/s) 1993) C h 

Point 1 6.3 6.29 6.25 5.9 5.77 I 1 ~.::, Ch=O.02 
~ ....... " , - - - Ch=O.15 
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. 0 1 2 3 4 
POint 4 3.9 3.92 4.09 6.1 6.11 Effective plastic strain 



Taylor impact of brittle material 
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Conclusions 

• Ensemble phase averaging method and multi-velocity formulation is 
applicable to both continuous and disperse flows. 

• The derived equations can be solved using the improved material 
point method (DDMP) to simulation material failure, breakup, 
fragmentation and transition from continuous to disperse flows. 

• This combination of mathematical formulation and numerical method 
avoids many conceptual and numerical difficulties associated with 
conventional methods, such as code or formulation switching for 
different flow regimes . 

.... 

• To recover conventional results only a very simple material interaction 
model is needed. 

• Currently not many material interaction models are available, because 
of lack of numerical tool. 

• I hope that this combination of the formulation and the numerical 
method will encourage the model development. 


