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Introduction: Taylor–Aris (shear) dispersion

Peak conc. convects with
cross-sectionally averaged
velocity, U 

(a) Initial con�guration t = 0   

(b) At large times, t >> Ο(a2/κ),

 

Gaussian pro�le for
temp. with peak as

x  = Ut ; dispersion

κe�  =  κ (a2U2/κ2)

Plug of heated �uid

x = 0  

x = 0 x = Ut x = 2Ut

“The transport process that leads to the spread of

this cross-sectionally averaged temperature pulse

turns out to resemble a pure axial conduction (or

diffusion) process and is therefore called Taylor

dispersion.” (Leal, Advanced Transport Phenomena, 2007, §3-H-2)

Key physics:
shear + diffusion =
enhanced diffusion.

Applications
I measuring molecular

diffusivity of solutes
(Taylor, Proc. R. Soc. A 1954)

I chromatography,
separations
(Golay, Gas Chromatography 1958)

I limits throughput and
resolution in microfluidics
(Bae et al., Lab Chip 2009)

What about granular shear
flows?
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Theory of Taylor–Aris dispersion

Diffusive passive tracer advected by a flow in 2D obeys

∂c

∂t
+ vx(z)

∂c

∂x
=

∂

∂x

(
D
∂c

∂x

)
+

∂

∂z

(
D
∂c

∂z

)
.

Let c(x , z , t) = c̄(x , t) + c ′(x , z , t) and vx(z) = vx + v ′x(z).

For L/h� vxh/D0 and |c ′|/c̄ � 1, can separate the evolution of the
mean c̄ from fluctuations c ′ to obtain a macrotransport equation:

∂c̄

∂t
+ vx

∂c̄

∂x
≈ ∂

∂x

(
D̄
∂c̄

∂x

)
− v ′x

∂c ′

∂x
,

∂

∂z

(
D
∂c ′

∂z

)
≈ v ′x

∂c̄

∂x
.

NB: ‘dispersion’ in the sense of ‘dispersal’ (not ω(k)).

(Taylor, Proc. R. Soc. A 1953; Aris, Proc. R. Soc. A 1956;

Brenner & Edwards, Macrotransport Processes, 1993; Griffiths & Stone, EPL 2012)
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Rapid granular flow down an inclined plane

Pressure is “hydrostatic” through the layer P = φρpg(h − z) cos θ.

Steady flow for θ2 > θ > θ0 = tan−1 µ.

Volume fraction φ variations are negligible.

Use your favorite local rheology (e.g., Forterre & Pouliquen, Annu. Rev. Fluid Mech. 2008),

∂vx
∂z

=

{
I0
d

(
tan θ − tan θ0

tan θ2 − tan θ

)√
φg cos θ

}√
h − z , vx(0) = 0︸ ︷︷ ︸

“no slip”

.

h

θ

vx(z)

x

z

d
g

O

⇒ vx(z) = 2
3A
[
h3/2 − (h − z)3/2

]
“Bagnold profile” (Bagnold, Proc. R. Soc. A 1954)

Christov & Stone Granular dispersion (APS March 2014) LA-UR-14-21335 4 / 8

http://www.lanl.gov


Introduction Granular shear flow Granular diffusivity Granular shear dispersion Summary

Diffusivity of granular materials in shear flow

Empirical model based on fitting to experimental data:
(Hwang & Hogg, Powder Technol. 1980)

D = D1︸︷︷︸
“molecular”

+ D2︸︷︷︸
“shear-induced”

γ̇, γ̇ ≡ ∂vx
∂z

.

Somehow suspicious: no shear (∂vx/∂z = 0) should ⇒ no diffusivity
(D = 0) since granular materials are non-Brownian.

Kinetic theory for perfect spheres and moderate φ up to ≈ 0.5:
(Savage & Dai, Mech. Mat. 1993)

D = χd2 |γ̇| , χ = χ(φ, e) =
d
√
πT

8(1 + e)φg0(φ)
.

Also works in the dense flow regime, see A16.00007.
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Taylor–Aris dispersion in a granular shear flow

Assume Bagnold profile vx(z) = 5
3vx [1− (1− z/h)3/2] and

Savage–Dai diffusivity D = D0

√
1− z/h, D0 = 5

2χd
2 vx
h .

Make dimensionless, introduce a Péclet number Pe = vxh/D0, let
ε = h/L, and apply generalized Taylor–Aris for D = D(z):

∂C̄

∂T
=

(
1 +

3

55
Pe2

)
∂2C̄

∂ξ2
, ξ =

X − T√
3Pe/(2ε)

.

Compare to classical Taylor–Aris result for planar Couette flow:

∂C̄

∂T
=

(
1 +

1

30
Pe2

)
∂2C̄

∂ζ2
, ζ =

X − T√
Pe/ε

.

Same order of magnitude: 3/55 ≈ 0.055, 1/30 ≈ 0.033.
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General shear profile

Now, consider vx(z) =
(

1+α
α

)
vx [1− (1− z/h)α], α > 0.

For α < 1, convex profile as in segregated bidisperse mixtures.
(Wiederseiner et al., Phys. Fluids 2011; Fan et al., JFM 2014)

Then, the Taylor–Aris dispersivity is

D
D0

=


1
α

[
1 + α

2(4−α)(4+α)Pe
2
]
, D ∝ γ̇,

1 + 2
3(9+9α+2α2)

Pe2, D = const.
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Summary

Derived the Taylor–Aris dispersivity for a general shear profile and a
shear-rate dependent diffusivity:

D =
1

α

[
1 +

α

2(4− α)(4 + α)
Pe2

] [
(1 + α)

vx
h
χd2

]
To do:

I Bidisperse mixtures; include segregation fluxes ∝ S γ̇(1− c)c .

I Non-local effects for slow flows?

Ref.: Christov & Stone, “Shear dispersion in dense granular flows,”
Granular Matter, to appear; arXiv:1402.6765.

Thank you for your attention!
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