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Abstract-This paper addresses two issues related to 
the detection of hyperspectral anomalies. The first issue 
is the evaluation of anomaly detector performance even 
when labeled data is not available. The second issue is 
the estimation of the covariance structure of the data in 
local detection methods, such as the RX detector, when 
the number of available training pixels n is not much 
larger than (and may even be smaller than) the data 
dimensionality p. 

Our first contribution is to formulate and employ a 
mean-log-volume approach for evaluating local anomaly 
detectors. Traditionally, the evaluation of a detector's 
accuracy has been problematic. Anomalies are loosely 
defined as pixels that are unusual with respect to the other 
pixels in a local or global context. This loose definition 
makes it easy to develop anomaly detection algorithms 
- and many have been proposed - but more difficult to 
evaluate or compare them. Our mean-log-volume approach 
allows for an effective evaluation of a detector's accuracy 
without requiring labeled testing data or an overly-specific 
definition of an anomaly. 

The second contribution is to investigate the use of 
the Sparse Matrix Transform (SMT) to model the local 
covariance structure of hyperspectral images. The SMT 
has been previously shown to provide full rank estimates 
of large covariance matrices even in the n < p scenario. 
Traditionally, the number of training pixels needed for 
good estimates of the covariance needs to be at least as 
large as the data dimensionality (and preferably it should 
be several times larger). Therefore, when one deploys the 
RX detector in a sliding window, the choices to select 
small window sizes are limited because of the n > p 
restriction associated to the covariance estimation. Our 
results suggest that RX-style detectors using the SMT 
covariance estimates perform favorably compared to other 
methods even (indeed, especially) in the regime of very 
small window sizes. 

I. INTRODUCTION 

Anomaly detection promises the impossible: it is tar­
get detection without knowing anything about the target. 
In the context of hyperspectral imagery, the anomalous 
pixels are those that are unusual with respect to the other 

pixels in a local or global context. A number of anomaly 
detectors have been developed for hyperspectral datasets, 
many of which are surveyed by Stein et. al. [1], and more 
recently by Matteoli et. al. [2] 

Local detectors form an important class of algorithms. 
They work using a statistical model of the background 
pixels in the local neighborhood of the pixel under test. 
In general, only the pixels within a sliding window are 
used to estimate properties of the local context. To the 
extent that the background statistical properties are non­
stationary across the image, this local statistical char­
acterization has the potential to improve the detection 
accuracy. One problem with these local methods is that 
the number of training samples (pixels), n, needed for a 
good estimate of the covariance must be at least as large 
as the data dimensionality (number of spectral bands), p, 
and preferably should be several times larger than p. [3] 
This n » p requirement rules out small window sizes. 
The potential increase in detection accuracy due to the 
local characterization of the background (in a small 
window) is compromised by the lack of adequate training 
samples needed to estimate the covariance. 

Another way to address the covariance estimation 
problem is to use the Sparse Matrix Transform (SMT). 
The SMT provides full rank estimates of large covariance 
matrices even when the number of training samples n 
is smaller than the data dimensionality p . [4] We have 
recently shown that the SMT improves the accuracy of 
"global" anomaly detectors. [5] In this paper, we sug­
gest that RX-style detectors using the SMT covariance 
estimates perform favorably compared to other methods, 
even in the regime of very small window sizes. 

The rest of this paper is organized as follows: Sec­
tion II formulates the anomaly detection task and reviews 
the most commonly used covariance estimation methods 
used in anomaly detection; Section III describes the SMT 
covariance estimation and how the SMT estimates yield 



highly accurate detectors even when small window sizes 
are used; Section IV introduces the mean-log-volume 
as a measure of detection accuracy and show how it 
can be used to select the window size that maximizes 
the detection accuracy; Section V presents our main 
experimental results. Finally, Section VI presents the 
main conclusions. 

II. HYPERSPECTRAL ANOMALY DETECTION 

Hyperspectral anomaly detection consists in finding 
pixel regions (objects) in the hyperspectral image with 
pixels that differ substantially from the background, i.e., 
the pixels in the regions surrounding these objects. 

In general, there is no precise definition of what con­
stitutes an anomaly. A common way of defining anoma­
lies is to say that anomalies are not concentrated. [6] 
Here we assume that anomalous samples are drawn from 
a broad, uniform distribution with a much larger support 
than the distribution of typical (i.e., not anomalous) 
samples. This assumption allows us to describe anomaly 
detection in terms of a binary classification problem. 

A. Anomaly Detection as Binary Classification 

Let x be a p-dimensional random vector. We want to 
classify x as typical if it is drawn from a multivariate 
Gaussian distribution N (p" R) , or as anomalous if it is 
drawn from a uniform distribution U(x) = c, where c 
is some constant. Formally, we have the following hy­
potheses: 

Ha : x ~ N (p" R ) 
HI: x ~ U , 

(I) 

where Ha and HI are referred as the null and alterna­
tive hypotheses respectively. According to the Neyman­
Pearson lemma [7], optimal classifier has the form of a 
log-likelihood ratio test 

{ 
p(x; HI ) } 

I(x ) = log p(x; Ha) Z la, (2) 

that maximizes the probability of detection, P(Hl ; HI ) 
for a fixed probability of false alarm, P(Hl ; Ha), which 
is controlled by the threshold la. 

The log-likelihood ratio test in (2) can be written as 

{
P(X;Hl ) } I(x) = log ( ) = logc- log p(x;Ha) 
p x; Ha 

p 1 
= logc+ 2 log27r + 2Iog [R [ 

1 t 1 ( ) + - (x- p, ) R - x - p, z la 
2 

(3) 
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We can incorporate the constant terms in (3) together 
with la into a new threshold, TJ, such that the significance 
test in (3) is equivalent to the test 

DR(X) = J(x - p, )tR- l (X - p,) Z TJ. (4) 

The statistic DR (x) is interpreted as the Mahalanobis 
distance between the sample x and the mean p, of the 
background distribution. If such distance exceeds the 
threshold TJ, we label x as an anomaly. 

In practice, one does not know the true parameters 
p, and R of the background pixel distribution N (p" R ). 
In order to compute the statistic DR (x) in (4), the 
practitioner needs first to compute good estimates {.L and 
R of p, and R respectively, from the samples (pixels) 
available. 

B. Sliding Window-based Detection 

The RX detection algorithm [8], [9] uses a sliding 
window centered at the pixel x , as illustrated in Fig. I. 
The window pixels are used to compute the covariance 
estimate R of the background. As argued in [2] the 
pixels closest to x within the Guard window are left out 
of the estimation to avoid contaminating the estimate 
with potentially anomalous pixels . The dimension of 
the guard window is chosen according to the expected 
maximum size of an anomalous object. An interesting 
variation of the RX detector (not investigated here) 
uses a third window around x, larger than the guard 
window but smaller than the outer window, to estimate 
the mean p,. [2] The motivation is that a good estimate 
of the mean requires fewer pixels than a good estimate 
of the covariance. 

The pixels within the outer window are used as the 
training pixels in the estimation of the covariance ma­
trix R. The choice of the window size is a compromise 
between two factors : (i) The window should be small 
enough that it covers a homogeneous region of the 
background, therefore, being accurately modeled by the 
multivariate Gaussian N (p" R); (ii) The window should 
be large enough that the number of pixels within the 
outer window is enough to produce reliable estimates of 
the covariance R. At least p + 1 pixels are required for 
non-singular sample covariance estimates . 

C. Covariance Estimation Methods 

In this section, we discuss some of the methods used 
to estimate the covariance matrix R. 

1) Sample Covariance: Let X = [Xl , ... ,xnl be the 
set of n i.i .d. p-dimensional Gaussian random vectors 
drawn from N (O, R). The sample covariance S is given 
by 
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Fig. I. Square sliding window used in the RX detection algorithm . 
The pixels. in the outer window are used to compute the covariance 
estimate R of the background surrounding the pixel x. The pixels 
within the inner window (referred as the gllard window are not used 
in the covariance computatjon to avoid that potential anomalous pixels 
contaminate the esti mate R. 

which is the unconstrained maximum likelihood estimate 
of R. [7] 

When n < p, the sample covariance S is singular, 
with rank nand overfits the data. As argued in [3] , [2], 
in the case of hyperspectral data, it is usually desirable 
to have n 2: lOp so that S is a reliable estimate of R. 
But even when n is small and S is by itself unreliable, 
the sample covariance is still useful as a starting point 
for the regularized shrinkage estimates reviewed below 
as well as the SMT introduced in Section III. 

2) Diagonal: Because it is the inverse of R that is 
used in (4) , it is important that the estimate of R be 
full-rank. A simple way to obtain a full-rank estimate 
of R with a small number of samples n (especially when 
n < p) is to treat all the p dimensions as uncorrelated 
and simply estimate the variances for each of the p 
coordinates. This results in the estimator 

D = diag(S) , 

which is generally of full-rank and can be well estimated 
even with small n . However, D tends to underfit the 
the data since the assumptions that the coordinates are 
uncorrelated is typically unrealistic. 

3) Shrinkage: The shrinkage estimation is a very pop­
ular method of regularizing estimates of large covariance 
matrices . [10] , [11], [12] It is based on the combination 
of the sample covariance matrix S that overfits the data 
with another estimator T (called the shrinkage target) 
that underfits the data: 

R = (1- a)S + aT, (5) 

where a E [0, 1]. The chOIce of the value a that 
maximizes the likelihood of the estimate R is typically 
done through a cross-validation procedure. 
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The most common VartatIOn of the shrinkage 
method [10], [II] uses a 2 I as the shrinkage target, where 
a 2 is the average variance across all the p dimensions 
and I is the p x p identity matrix. The covariance 
estimator is given by 

R = (1 - a)S + aa2 I. (6) 

A variation of (5) proposed by Hoffbeck and Land­
grebe [12] uses D = di ag (S ) as the shrinkage target, 
resulting in the following shrinkage estimator 

R = (1 -a)S+aD. (7) 

The authors in [12] also propose a computationally 
efficient leave-one-out cross-validation (LOOC) scheme 
to estimate a in (7) . 

4) Quasi/ocal Covariance: This method proposed by 
Caefer et. al. [13] considers the eigen·decomposition 
of the covariance matrix R = EAEt, and makes the 
observation that the eigenvalues in the matrix A are more 
likely to change across different image locations while 
the eigenvectors in E remain mostly pointed to the same 
directions across the entire image. 

The observation above suggests that one can obtain 
a global estimate of the eigenvector matrix E using 
all the pixels in the image, and then can adjust the 
eigenvalues in A locally by computing the variances 
independently in each direction using only pixels that are 
within the sliding window. Since the number of pixels 
in the entire image, we typically have n » p, and so 
the sample covariance S will provide a full-rank global 
estimate and its eigenvectors, EglObal can be used as the 
estimates of E across all positions of the sliding window. 
Finally, the estimate of the matrix A is estimated locally 
at each position of the sliding window, by computing 
variances in each of the global eigenvector directions. 
This approach results in the quasilocal estimator of 
covariance: 

III. THE SPARSE MATRIX TRANSFORM (SMT) 

The Sparse Matrix Transform (SMT) [4], [5] can be 
used to provide full-rank estimates of the covariance 
matrix R used in the detection framework in Section II . 
The method decomposes the true covariance R into 
the product R = E AEt , where E is the orthonormal 
matrix containing the eigenvectors of R and A is a 
diagonal matrix containing the eigenvalues of R. The 
SMT then provides the estimates E and A with the 
diagonal elements of A being strictly positive. 



A. SMT Covariance Estimation 

Given a training set with n independent p-dimensional 
i.i.d random vectors drawn from the multivariate Gaus­
sian N(O , R), and organized into the data matrix X = 
[Xl , .. . ,xnJ. The Gaussian likelihood of observing the 
data X is given by 

. _ I RI-n/2 {I _ 1 } 
l(X , R ) - (27r)np/2 exp - 2 trace(R S) (8) 

where S = ~ X X t is the sample covariance, a sufficient 
statistic for the likelihood of the data X. The joint 
maximization of (8) with respect to E and A results in 
the maximum likelihood (ML) estimates 

E 

A 

arg min { ldiag(EtSE)I } 
EEllK 

diag(E tSE) , 

(9) 

(10) 

where nK is the set of allowed orthonormal transforms. 
If n > p, and the set nK includes all orthonormal 

transforms, then the solution to (9) and (10) is given 
by the sample covariance; i.e, EAEt = S. However, 
as discussed in Section II, when n < p, the sample 
covariance, S overfits the data and is a poor estimate 
of the true covariance R. 

In order to regularize the covariance estimate, we 
impose the constraint that nK be the set of sparse matrix 
transforms (SMT) or order K. More specifically, we will 
assume that the eigen-transformation has the form 

K 

EK = II Gk = G 1 ... GK E nK , (II) 
k= l 

for a model order K . Each G k is a Givens rotation [4] 
over some (i k, j k) coordinate pair by an angle fh, 

where 

[8 1" ~ { 

COS (Bk) - 1 
sin(Bk ) 

if i = j = ik or i = j = j k 
if i = i k and j = j k 

- sin(Bk ) if i = jk and j = ik 

° otherwise 
(12) 

and K is the model order parameter. 
The optimization of (9) is non-convex, so we use 

a greedy optimization approach to design each rota­
tion, Gk, in sequence to minimize the cost [4]: Let 
Sk- 1 = GL1Sk - 2Gk- 1. At the kth step of the greedy 
optimization, we select the pair of coordinates (i k, j k) 
such that 

. . ( (Sk- d ~j ) (~k, Jk)=argi,j maX (S ) .. (S ) .. ' 
k- 1 It k- 1 JJ 
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i.e, the most correlated pair of coordinates, and choose 
the angle 

B 1 - 1 ( - 2(Sk - di dk ) 
k = - tan 

2 (Sk- 1)ikik - (Sk- d jdk 

that completely decorrelates the ik and j k dimensions. 
This greedy optimization procedure can be done fast if 
a graphical constraint can be imposed to the data. [14] 

Finally, for an SMT of order K , we have the estimates 

EK G1 · · ·GK 
AK diag(EkSEK ) 

with the covariance estimate given by 

A A A At 

R SMT = E KAKEK · 

B. SMT Model Order 

(13) 

(14) 

(15) 

The model order parameter K can be estimated using 
cross-validation [4] , [14], a Wishart Criterion [5], or the 
minimum description length (MDL) approach derived 
in [5]. We used the MDL criterion for the experiments in 
this paper. According to the MDL criterion, we select the 
smallest value of K such that the following inequality 
is satisfied: 

where SK = EkSEK. 
It is often useful to express the order of the SMT as 

K = rp, where r is the average number of rotations per 
coordinate, being typically very small (r < 5) for several 
previously studied datasets. 

C. Shrinkage SMT 

The SMT covariance estimate in (15) can be used 
as a shrinkage target, alternative to the ones described in 
Section II-C3, resulting in the following Shrinkage-SMT 
estimate: 

R = (1 - a)S + aRsMT . 

IV. ELLIPSOID MEAN LOG- VOLUME 

In this section, we develop the Ellipsoid Mean Log­
Volume, a novel metric to evaluate the accuracy of 
anomaly detection algorithms that make detection de­
cisions based on a Mahalanobis statistic such as DR 
in (4). Different versions of these detectors use dif­
ferent techniques to estimate the covariance yielding 
different detection accuracies depending on how well the 
covariance estimate R approximates the true background 
covariance R. 



Traditionally, receiver operating characteristics (ROC) 
curves have been widely used to evaluate anomaly detec­
tors . The ROC appr9ach requires both samples labeled 
as typical and samples labeled as anomalous in order to 
estimate the both the probability of detection and the 
probability of false alarm used in the ROC analysis. 
Unfortunately, anomalies are rare events and it is often 
difficult to have enough data labeled as anomalous in 
order to estimate the probability of detection required in 
the ROC analysis. 

The approach developed here seeks to characterize 
how well the estimates of the background model (i.e., p, 
and R) fit the training (typical) pixel data, overcoming 
the limitation of the ROC analysis described above. 
More specifically, we evaluate the volume of the hyper­
ellipsoid within the region 

( , )t R'- l( ' ) < 2 X - /1 X - /1 - "I, (16) 

where "I controls the probability of false alarm, as 
described previously. Such a volume is evaluated by the 
following expression: 

n P /
2 JiRi 

V(R, "I ) = f (l + p/ 2) T/P (17) 

Smaller values of V (R, "I ) indicate smaller probabilities 
that an anomalous data point would fall within the hyper­
ellipsoid region of (16) . Based on this observation, the 
core idea in our approach is to use the value of V (R, "I ) 
as a proxy for the probability of missed detection. There­
fore, for a fixed probability of false alarm, smaller values 
of V (R , "I ) indicate more accurate detection. Because the 
direct computation of V (R, "I ) tends to be numerically 
unstable, often leading to numerical overflow for large 
values of p, in practice we work with log V (R, "I ) as our 
measure of accuracy. 

This approach has been used before in global anomaly 
detection [5] , [15] , [16] , but we are extending it here 
to local sliding window-based anomaly detection. These 
detectors produce a different local estimate of the back­
ground covariance at each location of the sliding window 
across the image. We suggest measuring detection accu­
racy in terms of the expected log-volume of the hyper­
ellipsoid, E [log V (R, "I )] across the whole hyperspectral 
image, where each different estimate R is computed for 
each position of the sliding window using local training 
data pixels. 

V. EXPERIMENTS 

All experiments in this section were performed using 
theBlindrad hyperspectral dataset, [17] a HyMap image 
of Cook City, MT of 800 x 280 pixels, each with 126 
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hyperspectral bands. Fig. 2 displays a RGB rendering 
of this dataset. 

In all experiments, a sliding window like the one 
described in Fig. I moves across the image and, at each 
position it estimates the covariance R from the samples 
of the outer window using several covariance estimation 
methods previously discussed. Such covariance is used 
to compute D R in (4) for each pixel within the guard 
window. The radius "I is adjusted globally so that a 
fraction of the points corresponding to a fixed probability 
of false alarm is left out of the ellipsoid region. Finally 
we compute the expected value E [log V (R, "I) ] over 
all window positions and take that as the measure of 
anomaly detection performance. 

Fig. 3 shows the coverage plots with the expected log­
volume of ellipsoid vs. the probability of false alarm for 
different window sizes. The hyperspectral bands of the 
dataset were rotated to the Quasilocal coordinate system 
by the matrix E;lobal (see Sec. II-C4). These "ROC-like" 
curves suggest that the regularized methods are more 
accurate, especially when small window sizes are used. 
When large window sizes are used, the umegularized 
sample covariance has its performance similar to the 
regularized methods. 

Fig. 4 compares the performance of several detectors 
in both the original and the quasi local coordinate systems 
at two different fixed false alarm rates . The diagonal 
covariance estimate performs poorly in the original co­
ordinates (Figs. 4(a) and 4(b» , but remains a compet­
itive method in the quasilocal coordinates (Figs. 4(c) 
and 4(d»; in fact, the diagonal estimator in quasi local 
coordinates is just the quasilocal covariance estimator 
suggested by Caefer et. al. [13]. The Shrinkage-SMT 
estimates are among the best methods in both spaces, 
though in the quasi local space, Shrinkage-Diagonal de­
tectors perform just as well. When the window size used 
to estimate the covariance matrix grows large, we ob­
serve the increase in the expected ellipsoid log-volume; 
i. e., the degradation of the detection accuracy for all the 
methods. This degradation is due to the distribution of 
the background pixels being non-stationary across the 
image. Therefore, the estimate of the covariance using 
large windows tends to yield poor estimates. When small 
window sizes are used, the training pixels are more 
likely to come from a homogeneous region with Gaus­
sian · distribution. Nevertheless, this is a regime where 
poor estimates of the covariance are due to the limited 
number of training samples, as observed in the curves 
for detectors using the sample covariance. On the other 
hand, the results suggest that the regularized methods 
perform best with smaller window sizes. Finally, the 



Fig. 2. RG B rendering of the 800 x 280 pixel Blilldrad hyperspectral dataset, captured lIsing a HyMap sensor with 126 channels. 
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Fig. 4 . Expected ellipsoid log-volume v.\'. the dimension of the slid ing window fixed probabilities of false alarm in both the original, (a) and 
(b), and the quasilocal, (c) and (d), coordinate systems. 

practitioner can use the curves in Fig. 4 as a criterion to 
select the window size that produces the most accurate 
detector for a chosen covariance estimation method. 

VI. CONCLUSIONS 

In this paper we have shown how to use the ex­
pected log-volume of ellipsoid to measure local detector 
accuracy. This measure was used to compare different 
detectors as well as a to provide a criterion for selecting 
the optimal size of the sliding window. We have also 
shown how to use the SMT to produce regularized 
covariance estimates to be used in detection. While 
Shrinkage-SMT often produces good results, our results 
show that Shrinkage-Diagonal performs just as well 
when combined with the quasi local method proposed 
in [13]. In the future, we plan to address how to push the 
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covariance methods to work with even smaller window 
sizes. 
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