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Evaluating and Improving
Local Hyperspectral Anomaly Detectors

Leonardo R. Bachega
School of Electrical and
Computer Engineering
Purdue University
West Lafayette, IN 47907
lbachega@ purdue.edu

Abstract—This paper addresses two issues related to
the detection of hyperspectral anomalies. The first issue
is the evaluation of anomaly detector performance even
when labeled data is not available. The second issue is
the estimation of the covariance structure of the data in
local detection methods, such as the RX detector, when
the number of available training pixels n is not much
larger than (and may even be smaller than) the data
dimensionality p.

Our first contribution is to formulate and employ a
mean-log-volume approach for evaluating local anomaly
detectors. Traditionally, the evaluation of a detector’s
accuracy has been problematic. Anomalies are loosely
defined as pixels that are unusual with respect to the other
pixels in a local or global context. This loose definition
makes it easy to develop anomaly detection algorithms
— and many have been proposed — but more difficult to
evaluate or compare them. Qur mean-log-volume approach
allows for an effective evaluation of a detector’s accuracy
without requiring labeled testing data or an overly-specific
definition of an anomaly.

The second contribution is to investigate the use of
the Sparse Matrix Transform (SMT) to model the local
covariance structure of hyperspectral images. The SMT
has been previously shown to provide full rank estimates
of large covariance matrices even in the n < p scenario.
Traditionally, the number of training pixels needed for
good estimates of the covariance needs to be at least as
large as the data dimensionality (and preferably it should
be several times larger). Therefore, when one deploys the
RX detector in a sliding window, the choices to select
small window sizes are limited because of the n > p
restriction associated to the covariance estimation. Our
results suggest that RX-style detectors using the SMT
covariance estimates perform favorably compared to other
methods even (indeed, especially) in the regime of very
small window sizes.

I. INTRODUCTION

Anomaly detection promises the impossible: it is tar-
get detection without knowing anything about the target.
In the context of hyperspectral imagery, the anomalous
pixels are those that are unusual with respect to the other
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pixels in a local or global context. A number of anomaly
detectors have been developed for hyperspectral datasets,
many of which are surveyed by Stein er. al. [1], and more
recently by Matteoli er. al. [2]

Local detectors form an important class of algorithms.
They work using a statistical model of the background
pixels in the local neighborhood of the pixel under test.
In general, only the pixels within a sliding window are
used to estimate properties of the local context. To the
extent that the background statistical properties are non-
stationary across the image, this local statistical char-
acterization has the potential to improve the detection
accuracy. One problem with these local methods is that
the number of training samples (pixels), n, needed for a
good estimate of the covariance must be at least as large
as the data dimensionality (number of spectral bands), p,
and preferably should be several times larger than p. [3]
This n > p requirement rules out small window sizes.
The potential increase in detection accuracy due to the
local characterization of the background (in a small
window) is compromised by the Jack of adequate training
samples needed to estimate the covariance.

Another way to address the covariance estimation
problem is to use the Sparse Matrix Transform (SMT).
The SMT provides full rank estimates of large covariance
matrices even when the number of training samples n
is smaller than the data dimensionality p. [4] We have
recently shown that the SMT improves the accuracy of
“global” anomaly detectors. [5] In this paper, we sug-
gest that RX-style detectors using the SMT covariance
estimates perform favorably compared to other methods,
even in the regime of very small window sizes.

The rest of this paper is organized as follows: Sec-
tion II formulates the anomaly detection task and reviews
the most commonly used covariance estimation methods
used in anomaly detection; Section III describes the SMT
covariance estimation and how the SMT estimates yield



highly accurate detectors even when small window sizes
are used; Section IV introduces the mean-log-volume
as a measure of detection accuracy and show how it
can be used to select the window size that maximizes
the detection accuracy; Section V presents our main
experimental results. Finally, Section VI presents the
main conclusions.

II. HYPERSPECTRAL ANOMALY DETECTION

Hyperspectral anomaly detection consists in finding
pixel regions (objects) in the hyperspectral image with
pixels that differ substantially from the background, i.e.,
the pixels in the regions surrounding these objects.

In general, there is no precise definition of what con-
stitutes an anomaly. A common way of defining anoma-
lies is to say that anomalies are not concentrated. [6]
Here we assume that anomalous samples are drawn from
a broad, uniform distribution with a much larger support
than the distribution of typical (ie, not anomalous)
samples. This assumption allows us to describe anomaly
detection in terms of a binary classification problem.

A. Anomaly Detection as Binary Classification

Let x be a p-dimensional random vector. We want to
classify x as rypical if it is drawn from a multivariate
Gaussian distribution N{y, R), or as anomalous if it is
drawn from a uniform distribution U/ (z) = ¢, where ¢
is some constant. Formally, we have the following hy-
potheses:

7‘[02
7‘[12

x ~ N(p, R)

x~ U, ey

where Ho and H, are referred as the null and alterna-
tive hypotheses respectively. According to the Neyman-
Pearson lemma [7], optimal classifier has the form of a
log-likelihood ratio test

g J PO HY)
l(X) - lob {P(X,Ho) } 2 107 (2)

that maximizes the probability of detection, p(H,; H,)
for a fixed probability of false alarm, p(#,; Ho), which
is controlled by the threshold ly.

The log-likelihood ratio test in (2) can be written as

p(x; Ho)
14 1
=logec+ 5 log 27 + 3 log | R|

{(x) =log {M} = logc — log p(x; Ho)

+o(x—w) R (x—p) 2 o 3
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We can incorporate the constant terms in (3) together
with /5 into a new threshold, 7, such that the significance
test in (3) is equivalent to the test

Dp(x)=+/(x —p)!R~Yx—p)2n. 4

The statistic Dg(x) is interpreted as the Mahalanobis
distance between the sample x and the mean p of the
background distribution. If such distance exceeds the
threshold 7, we label x as an anomaly.

In practice, one does not know the true parameters
p and R of the background pixel distribution NV (1, R).
In order to compute the statistic Dr(x) in (4) , the
practitioner needs first to compute good estimates 4 and
R of w1 and R respectively, from the samples (pixels)
available.

B. Sliding Window-based Detection

The RX detection algorithm [8], [9] uses a sliding
window centered at the pixel x, as illustrated in Fig. |.
The window pixels are used to compute the covariance
estimate R of the background. As argued in [2] the
pixels closest to x within the Guard window are left out
of the estimation to avoid contaminating the estimate
with potentially anomalous pixels. The dimension of
the guard window is chosen according to the expected
maximum size of an anomalous object. An interesting
variation of the RX detector (not investigated here)
uses a third window around x, larger than the guard
window but smaller than the outer window, to estimate
the mean g. [2] The motivation is that a good estimate
of the mean requires fewer pixels than a good estimate
of the covariance.

The pixels within the outer window are used as the
training pixels in the estimation of the covariance ma-
trix R. The choice of the window size is a compromise
between two factors: (i) The window should be small
enough that it covers a homogeneous region of the
background, therefore, being accurately modeled by the
multivariate Gaussian N (p, R); (ii) The window should
be large enough that the number of pixels within the
outer window is enough to produce reliable estimates of
the covariance R. At least p + 1 pixels are required for
non-singular sample covariance estimates.

C. Covariance Estimation Methods

In this section, we discuss some of the methods used
to estimate the covariance matrix R.

1) Sample Covariance: Let X = [x1,- -+ ,Xy] be the
set of n i.i.d. p-dimensional Gaussian random vectors
drawn from N (0, R). The sample covariance S is given
by ) ,,

S§=-XX".

n
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Fig. 1. Square sliding window used in the RX detection algorithm.
The pixels in the outer window are used to compute the covariance
estimate R of the background surrounding the pixel x. The pixels
within the inner window (referred as the guard window are not used
in the covariance computation to avoid that potential anomalous pixels
contaminate the estimate R.

which is the unconstrained maximum likelihood estimate
of R. [7]

When n < p, the sample covariance S is singular,
with rank n and overfits the data. As argued in [3], [2],
in the case of hyperspectral data, it is usually desirable
to have n > 10p so that S is a reliable estimate of R.
But even when n is small and S is by itself unreliable,
the sample covariance is still useful as a starting point
for the regularized shrinkage estimates reviewed below
as well as the SMT introduced in Section III.

2) Diagonal: Because it is the inverse of R that is
used in (4) , it is important that the estimate of R be
full-rank. A simple way to obtain a full-rank estimate
of R with a small number of samples n (especially when
n < p) is to treat all the p dimensions as uncorrelated
and simply estimate the variances for each of the p
coordinates. This results in the estimator

D = diag(S),

which is generally of full-rank and can be well estimated
even with small n. However, D tends to underfit the
the data since the assumptions that the coordinates are
uncorrelated is typically unrealistic.

3) Shrinkage: The shrinkage estimation is a very pop-
ular method of regularizing estimates of large covariance
matrices. [10], [11], [12] It is based on the combination
of the sample covariance matrix S that overfits the data
with another estimator 7" (called the shrinkage target)
that underfits the data:

R=(1-a)S+aT, 3

where a € [0,1]. The choice of the value a that
maximizes the likelihood of the estimate R is typically
done through a cross-validation procedure.

The most common variation of the shrinkage
method [10], [11] uses o2 I as the shrinkage target, where
o? is the average variance across all the p dimensions
and [ is the p x p identity matrix. The covariance

estimator is given by
R=(1-0a)S+ac?l (6)

A variation of (5) proposed by Hoffbeck and Land-
grebe [12] uses D = diag(S) as the shrinkage target,
resulting in the following shrinkage estimator

R=(1—-a)S+aD. 7

The authors in [12] also propose a computationally
efficient leave-one-out cross-validation (LOOC) scheme
to estimate o in (7).

4) Quasilocal Covariance: This method proposed by
Caefer et. al. [13] considers the eigen-decomposition
of the covariance matrix R = EAFE!, and makes the
observation that the eigenvalues in the matrix A are more
likely to change across different image locations while
the eigenvectors in £ remain mostly pointed to the same
directions across the entire image.

The observation above suggests that one can obtain
a global estimate of the eigenvector matrix £ using
all the pixels in the image, and then can adjust the
eigenvalues in A locally by computing the variances
independently in each direction using only pixels that are
within the sliding window. Since the number of pixels
in the entire image, we typically have n > p, and so
the sample covariance S will provide a full-rank global
estimate and its eigenvectors, Eglobal can be used as the
estimates of £ across all positions of the sliding window.
Finally, the estimate of the matrix A is estimated locally
at each position of the sliding window, by computing
variances in each of the global eigenvector directions.
This approach results in the quasilocal estimator of
covariance:

A ~ A ot
R= EglobalAlocalEglobal'

II1. THE SPARSE MATRIX TRANSFORM (SMT)

The Sparse Matrix Transform (SMT) [4], [5] can be
used to provide full-rank estimates of the covariance
matrix R used in the detection framework in Section II.
The method decomposes the true covariance R into
the product R = EAFE!, where E is the orthonormal
matrix containing the eigenvectors of R and A is a
diagonal matrix containing the eigenvalues of R. The
SMT then provides the estimates 7~ and A with the
diagonal elements of A being strictly positive.



A. SMT Covariance Estimation

Given a training set with n independent p-dimensional
i.i.d random vectors drawn from the multivariate Gaus-
sian M(0, R), and organized into the data matrix X =

[X1,: - ,Xn). The Gaussian likelihood of observing the
data X is given by
|R| /2

I(X;R) = exp {%trace(R_IS)} (8)

(271-)7va"2
where S = %XX‘ is the sample covariance, a sufficient
statistic for the likelihood of the data X. The joint
maximization of (8) with respect to £ and A results in
the maximum likelihood (ML) estimates

E = argEneliQnK{fdiag(EtSE}|} )
A = diag(E'SE) , (10

where Qg is the set of allowed orthonormal transforms.

If n > p, and the set Qp includes all orthonormal
transforms, then the solution to (9) and (10) is given
by the sample covariance; ie, EAE' = S. However,
as discussed in Section II, when n < p, the sample
covariance, S overfits the data and is a poor estimate
of the true covariance R.

In order to regularize the covariance estimate, we
impose the constraint that 2;; be the set of sparse matrix
transforms (SMT) or order K. More specifically, we will
assume that the eigen-transformation has the form

K
Ex=]][Gy=G1 Gk €k .
k=1

(1

for a model order K. Each Gy is a Givens rotation [4]
over some (i, jx) coordinate pair by an angle 6y,

Gr=1+00k, Jk,0k),

where
cos(Biy—1 ifi=j7=drori=7=ji
0], - sin{6y) if i =4 and j = jip
i) —sin(fg) if i =g, and j = iy '
0 otherwise

(12)
and K is the model order parameter.

The optimization of (9) is non-convex, so we use
a greedy optimization approach to design each rota-
tion, G, in sequence to minimize the cost [4]: Let
Sk—1 = Gt _Sk_2Gk—;. At the kth step of the greedy
optimization, we select the pair of coordinates (%, ji)

such that
ese) — arg . ma (Sk—l)?j
o Jh) = argy max | o e Ty ]
k> Jk S1,j (Sk-1)ii(Sk—1)4;

i.e, the most correlated pair of coordinates, and choose
the angle

_ —2(Sk-1)ir i )
f, = = tan 1( Ll
fT2 (Sk=1)igir = (Sk=1)50jx

that completely decorrelates the 2, and j, dimensions.
This greedy optimization procedure can be done fast if
a graphical constraint can be imposed to the data. [14]

Finally, for an SMT of order K, we have the estimates

Ex Gi-Gx (13)
Ak = diag(E%SEKk) , (14)

with the covariance estimate given by
Rsur = ExAgE. (15)

B. SMT Model Order

The model order parameter K can be estimated using
cross-validation [4], [14], a Wishart Criterion [5], or the
minimum description length (MDL) approach derived
in [5]. We used the MDL criterion for the experiments in
this paper. According to the MDL criterion, we select the
smallest value of K such that the following inequality
is satisfied:

S.12. _ n — 5log
max [ K5 S]_MP(J%2_3&£>,
7 [S/(],‘i[SK]jj n

where Si = E‘}(SE'K.

It is often useful to express the order of the SMT as
K = rp, where r is the average number of rotations per
coordinate, being typically very small (» < 5) for several
previously studied datasets.

C. Shrinkage SMT

The SMT covariance estimate in  (15) can be used
as a shrinkage target, alternative to the ones described in
Section II-C3, resulting in the following Shrinkage-SMT
estimate:

R= (I-a)S+ QRSMT .

IV. ELLIPSOID MEAN LOG-VOLUME

In this section, we develop the Ellipsoid Mean Log-
Volume, a novel metric to evaluate the accuracy of
anomaly detection algorithms that make detection de-
cisions based on a Mahalanobis statistic such as Dg
in (4) . Different versions of these detectors use dif-
ferent techniques to estimate the covariance yielding
different detection accuracies depending on how well the
covariance estimate R approximates the true background
covariance R.



Traditionally, receiver operating characteristics (ROC)
curves have been widely used to evaluate anomaly detec-
tors. The ROC approach requires both samples labeled
as typical and samples labeled as anomalous in order to
estimate the both the probability of detection and the
probability of false alarm used in the ROC analysis.
Unfortunately, anomalies are rare events and it is often
difficult to have enough data labeled as anomalous in
order to estimate the probability of detection required in
the ROC analysis.

The approach developed here seeks to characterize
how well the estimates of the background model (i.e.,
and R) fit the training (typical) pixel data, overcoming
the limitation of the ROC analysis described above.
More specifically, we evaluate the volume of the hyper-
ellipsoid within the region

(x= @R~ x— ) <, (16)
where 7 controls the probability of false alarm, as
described previously. Such a volume is evaluated by the
following expression:

N 7‘—7)/2\/@
V(R,n —mﬂp- (7

Smaller values of V (R, n) indicate smaller probabilities
that an anomalous data point would fall within the hyper-
ellipsoid region of (16) . Based on this observation, the
core idea in our approach is to use the value of V(R,7)
as a proxy for the probability of missed detection. There-
fore, for a fixed probability of false alarm, smaller values
of V(R,n) indicate more accurate detection. Because the
direct computation of V(R,n) tends to be numerically
unstable, often leading to numerical overflow for large
values of p, in practice we work with log V(R,7) as our
measure of accuracy.

This approach has been used before in global anomaly
detection [5], [15], [16], but we are extending it here
to local sliding window-based anomaly detection. These
detectors produce a different local estimate of the back-
ground covariance at each location of the sliding window
across the image. We suggest measuring detection accu-
racy in terms of the expected log-volume of the hyper-
ellipsoid, E[log V (R, 7)] across the whole hyperspectral
image, where each different estimate R is computed for
each position of the sliding window using local training
data pixels.

V. EXPERIMENTS

All experiments in this section were performed using
theBlindrad hyperspectral dataset, [17] a HyMap image
of Cook City, MT of 800 x 280 pixels, each with 126

hyperspectral bands. Fig. 2 displays a RGB rendering
of this dataset.

In all experiments, a sliding window like the one
described in Fig. 1 moves across the image and, at each
position it estimates the covariance R from the samples
of the outer window using several covariance estimation
methods previously discussed. Such covariance is used
to compute Dp in (4) for each pixel within the guard
window. The radius 7 is adjusted globally so that a
fraction of the points corresponding to a fixed probability
of false alarm is left out of the ellipsoid region. Finally
we compute the expected value E[logV(R,n)| over
all window positions and take that as the measure of
anomaly detection performance.

Fig. 3 shows the coverage plots with the expected log-
volume of ellipsoid vs. the probability of false alarm for
different window sizes. The hyperspectral bands of the
dataset were rotated to the Quasilocal coordinate system

by the matrix E,,,,; (see Sec. II-C4). These “ROC-like”
curves suggest that the regularized methods are more
accurate, especially when small window sizes are used.
When large window sizes are used, the unregularized
sample covariance has its performance similar to the

regularized methods.

Fig. 4 compares the performance of several detectors
in both the original and the quasilocal coordinate systems
at two different fixed false alarm rates. The diagonal
covariance estimate performs poorly in the original co-
ordinates (Figs. 4(a) and 4(b)), but remains a compet-
itive method in the quasilocal coordinates (Figs. 4(c)
and 4(d)); in fact, the diagonal estimator in quasilocal
coordinates is just the quasilocal covariance estimator
suggested by Caefer er. al. [13]. The Shrinkage-SMT
estimates are among the best methods in both spaces,
though in the quasilocal space, Shrinkage-Diagonal de-
tectors perform just as well. When the window size used
to estimate the covariance matrix grows large, we ob-
serve the increase in the expected ellipsoid log-volume;
i.e., the degradation of the detection accuracy for all the
methods. This degradation is due to the distribution of
the background pixels being non-stationary across the
image. Therefore, the estimate of the covariance using
large windows tends to yield poor estimates. When small
window sizes are used, the training pixels are more
likely to come from a homogeneous region with Gaus-
sian distribution. Nevertheless, this is a regime where
poor estimates of the covariance are due to the limited
number of training samples, as observed in the curves
for detectors using the sample covariance. On the other
hand, the results suggest that the regularized methods
perform best with smaller window sizes. Finally, the



Fig. 2. RGB rendering of the 800 x 280 pixel Blindrad hyperspectral dataset, captured using a HyMap sensor with 126 channels.
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Fig. 3. Coverage plots with the expected ellipsoid log-volume vs. probability of false alarm for various outer window sizes.
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practitioner can use the curves in Fig. 4 as a criterion to
select the window size that produces the most accurate
detector for a chosen covariance estimation method.

V1. CONCLUSIONS

In this paper we have shown how to use the ex-
pected log-volume of ellipsoid to measure local detector
accuracy. This measure was used to compare different
detectors as well as a to provide a criterion for selecting
the optimal size of the sliding window. We have also
shown how to use the SMT to produce regularized
covariance estimates to be used in detection. While
Shrinkage-SMT often produces good results, our results
show that Shrinkage-Diagonal performs just as well
when combined with the quasilocal method proposed
in [13]. In the future, we plan to address how to push the

covariance methods to work with even smaller window
sizes.
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