Micromechanics of Solid Foams with Open Cells
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Denser liquid foams are softer — G decreases with p

Liquid Foams

Gf~G/R32

Solid Foams

Gf~E¢2




Predicting structure-property-processing relationships involves
the fluid mechanics and solid mechanics of foams

@ Foam Structure: Micrographs and Models @ Foam Micromechanics: Fluids and Solids
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The cell structure of low-density foams can be viewed as
polyhedra packed to fill space

Liquid Foam Solid Foam

Dry Soap Froth Low-Density Open-Cell Foam
e.g., Flexible Polyurethane Foam



Confocal microscopy of Plateau borders in emulsions

Eric Weeks, Physics, Emory University and Doug Wise, Physics, Harvard University



Polyurethane foam skeleton from image analysis of MRl and XMT data

Matt Montminy, PhD thesis, U Minnesota (2001)

Montminy, Tannenbaum & Macosko,

The 3D structure of real polymer foams,

J. Coll. Int. Sci. 280 202-211 (2004).
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Strut length distribution

Foam Strut Length Diztribution I
2066 struts detected. Mean:  0.2808 mm
Std Dev: 0.1038 mm
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Modeling low-density open-cell foams
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Ordered Foams

Kelvin Cell
Weaire-Phelan (A15)

Random Foams

Monodisperse Polydisperse Bidisperse



Gibson-Ashby Correlation for Open-Cell Foams
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Modeling low-density open-cell foams with random structure
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Finite Element Model
Beam Elements




The edge-length distribution of Voronoi structures is very different from foams

Voronoi Laguerre polydisperse foam
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Young’s modulus of low-density open-cell foams
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Simulation of Uniaxial Compression

Animation by Mike Neilsen 0.25

Yiewport: 1 QDB: Scratch/udgod2irp
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Uniaxial compression of low-density open-cell foams
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Plateau Borders in a Wet Kelvin Foam

Kelvin Cell

p=0.001

-—— Surface Tension = o

Film Tension = 20

p=0.01

Plateau borders in liquid foams correspond to struts in solid foams



Modeling the strut-level geometry of open-cell foams




Random Monodisperse Foam




Evaluating the Cross-Section at Strut Midpoints




Evaluating the Cross-Section at Strut Midpoints
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Cross-Sectional Area at Strut Midpoints

= Random Monodisperse Foam

p=0.025
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Material Distribution in Struts

Kyriakides and Jang, UT, Austin
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Aluminum
Polyester Urethane

Random Foam Model




Realistic models of foam structure enable
prediction of structure-property-processing relationships
development of constitutive models

What are the important characteristics of foam structure?
How much do they influence foam properties?

Which models of foam structure are realistic?
Which are useful?

CELL EDGE
BENDING




Animation by Dave Hensinger




Microstructure of Open-Cell Kelvin Foam

Simple model based on triangular struts Dave Hensinger

Use Surface Evolver to calculate the shape
of Plateau borders in liquid foam.




Polyester Urethane (PU) Foams
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Polyester Urethane Foam Morphology

Micro-Computed X-

ray Tomography: Scanco uCT 80




PU Microstructure
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PU Ligament Geometry
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Gong et al. [2005]

Polyester Urethane Foams
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Crushing of PU Foam

0.8 3 ppi Polyester Urethane Foam
o)
(psi) \
0.6 ~ ©
» o © @
0.44
0.2
L 3.75x10°s™
0 ad u
0 0.2 0.4 0.6

——0/H




PU Anisotropy
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Anisotropic Kelvin Cell
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Rise Direction Characteristic Domain Response (PU)
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Gong et al., 2005
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Transverse Direction Characteristic Cell Response
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Crushing of Finite Size (12x28 Cells) PU Foam Model

Free Edge Free Edge

I\I\I.\I\I\I\

l‘ \l\l\ NINONININONY
\I\I\I\I\l\I\I\I\I\I\I\I\I\I\I\I\I\

0.2 . -
Uniform K p* _
Deformation - o= 0.025 A=1.3

1

Sic

~

61 3 L
— x10

0.1

0.670

12x28 Cells =0.197




AP S S oSS
L 2 A 2 AR A G R G P o S S o et oo o
R R R R R S A AL AR
R S e NS NONININONONININININ N IR IR 8 AN AN AN
(RIRIRIR SRR \Qgtg‘%&wo\o\?%‘ s

. 2 2 S

P\
SRORS

SORELL

$CQ 5K P
R X
NPNPNININONINON
S adrad;
ST

X
Ly DN
SSSIIRIIKESL Y
SRR IR (LD
NA O O e s
e VLY LYY EY L
LYY ""/‘."/‘0”/‘0”/0’40:4}:4"/ Y
A%
2 o SRS ST T IR0
SRR o,‘.>$,4£&$>'élé#6/ﬁm»4 202
” /:./ol L oo

S
IO
N2 5 LK SEEROKERETIIINNN
S S S S S ST S TS S S TR I TATIR IR
o) ‘\'o,\'o\'.\'O\'s{ LS (s\'s,i‘,\.s\,‘s\,\'.\,\'s\,\..\,'\,.\..\.'\t.
o 2 878708788
Z N e e
SO R S A A S AN T IR
L0202

%O 8%

o LS AR ARG AR ASAS AL

%7 A 7 Y )
572555 SRS VS e aSey A A A Ao A )

28 oRCGoRG 0G0 R0 R P ARG ARG 228 228 2 R PG PG 28 22 2 PG PG P8 X 2 PRE 2T S

R o oo o o o oA o R R o o R R R R R s e S

S o S e e o e e e e
S St A I I A AP
N ONONONO @ NG RO OININININININININININY;
NONONONoONONONONONONONON NoNoNoNoNONONONONON 3 IS RS
SETLTALITAD R S S N S N e
SIS S SETOTLOFOILOTLO
NONONONOINONONOINOINOINGN NONINONINONINONINONG,
T TOTPTEO TP OO
OO ISINISENENINES INTN

INONININONININININ

I

QD S SR
SIS s oy
NI ENININTNINININ, N A B S e OSSN e reied
SRR A R L e A O AU NS SININININININON:
FX SIS XSS XSS RS e P S o S5 o S R S SR S T
0 787878 S S e R R F S PSS ST 3 52 o2 52 5 )

2N 7878787787778 S S e
A PP PP PR P 3

ot 25275
2L SR G P PR S SR S S S S S ARG 2=
22 2T ol 20 oR 2T 2T 27 PP A% P8 a0 A% 2T 228 PR PO 22 2R 22 28 2 ST
o A
P o 2P e 2R P P R o 2R o 2 2R R 2 2o 2 e e S

S 225 2 S S S o TS o S T Y
.4 ‘i\"\‘\ N ‘l“l“l ‘I 7 /‘v. \% v!"'v."‘"v“ %% cFporbonionfs
O T SO ANONONONINUNUNUNINUNY:
RSO S DI o

S,

2 &

N7 eV e e et e et e et e et e e
208 aT e e et et et e et et
IS/48287878707878-9-.0-18..8.¢

S

2 s
202 o2
S 575 2 S S
L S S S A




Aluminum Foam
Al 6101-To
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Al Microstructure
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Al Ligament Geometry
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Crushing of 6x9x6 Cells Domain Al Foam

Y 3 6x9x6 Cells

Analysis
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Internal X-Ray Tomography Images of Evolution of Crushing




Al-6101-T6 Foam (ERG Duocel): 10-ppi —=82%
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Monitor Deformation at Sites A and B Site B







Internal X-Ray Tomography Images of Evolution of Crushing




Crushing Responses of Different Cell Size Al Foams
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Comparison of Rise and Transverse Responses
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Models for Initial Elastic Moduli




Elastic Moduli
Anisotropic, Nonuniform Cross Section
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Kelvin Characteristic Cell Model
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* Shear Deformable

e Beam Element B32
* 192 Elements
« 2268 DOF

3 Nodes

* Quadratic -
* 6 DOF / Node

* 8 Elements / Ligament



