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ABSTRACT  
 

Extensive neuroscience research on the hippocampus has 

identified its crucial role in memory formation and recall.  

Specifically, associative binding of the components 

comprising an episodic memory has been identified as 

one of the functions performed by the hippocampus.  

Based upon neuroanatomical function we have devised a 

computational cortical-hippocampal architecture using 

variants of adaptive resonance theory (ART) artificial 

neural networks.  This computational model is capable of 

processing multi-modal sensory inputs and capturing 

qualitative memory phenomena such as auto-association 

and recall.  Model performance is assessed both 

qualitatively and quantitatively.  From a quantitative 

standpoint, we have applied the mathematics of 

information theory to quantify the similarity between 

recalled images yielded by the model and the unaltered 

original inputs.  Thus in this paper we present a 

neurologically plausible computational architecture as 

well as a quantitative assessment of model performance. 
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1. INTRODUCTION 

 
Although tragic, legendary neuroscience patient H.M.’s 

memory impairment was instrumental in instigating 

awareness of the role played by medial temporal lobe and 

specifically the hippocampus [6]. Rather than serving as a 

central repository of memories, it was recognized that the 

hippocampus is key to forming episodic memories. 

Furthermore, associative binding of the components 

comprising an episodic memory is one of the functions 

performed by the hippocampus. 

 

Modeled after cortical-hippocampal structure and 

function, this paper presents a neural architecture for 

episodic memory formation and recall developed as a 

collaborative effort by Sandia National Laboratories, the 

University of Illinois at Urbana Champaign, Boston 

University, and the University of New Mexico.    

 

2. MODEL ARCHITECTURE 

 
 We have devised a computational cortical-hippocampal 

architecture using variants of adaptive resonance theory 

(ART) [1] artificial neural networks as the fundamental 

component. Our architecture is guided by accepted 

hippocampus sub-region functionality, neural density, 

and connectivity. To this effect, as the entry point to 

hippocampus, our representation of the entorhinal cortex 

(EC) facilitates the convergence of multiple sensory 

streams by uniting dorsal and ventral visual streams. This 

combination is then received by our representation of 

dentate gyrus (DG) region which performs a kind of 

pattern reduction and separation. Maintaining an 

approximate anatomically correct ratio of neural inputs to 

outputs, we have represented dentate gyrus as a series of 

winner-take-all fuzzy-ART modules. This effectively 

yields sparse encodings for differing input signals. 

Resultant unique representations from the DG module are 

auto-associated within CA3 (in cornu ammonis) such that 

related memories are bound together. Computationally, 

this is implemented by incorporating self-organizing map 

neighborhood update properties within the learning rules 

of an ART module. And finally the major output regions 
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of the hippocampal loop, a conjoined representation of 

CA1 (also in cornu ammonis) and subiculum creates a 

temporal sequence linking of CA3 encodings back to the 

original entorhinal cortex representation. This encoding is 

represented as a semi-supervised laterally primed 

adaptive resonance theory module. 

 

Our cortical-hippocampal architecture is depicted in 

Figure 1 portraying the incorporated modules as well as 

their connectivity and data flow.  As illustrated in Figure 
1, beginning at the bottom, two separate processing 

streams focus upon different information sources but 

converge as they move upwards to the hippocampal loop 

representation (top part of Figure 1).  The convergence of 

information streams proceeds to propagate through the 

hippocampus and back out to cortex for long term 

storage. 

 

 
Figure 1: Architectural Overview 

3. QUALITATIVE ANALYSIS 

 
This computational model is capable of processing multi-

modal sensory inputs and capturing qualitative memory 

phenomena such as auto-association and recall.  

Neuroscience research has identified that the process of 

neural activation within the hippocampal loop propagates 

from EC to DG, to CA3, and finally out through 

CA1/subiculum back to EC.  From a qualitative 

standpoint, as a baseline comparison we compare neural 

activations within our model to ensure they exhibit the 

same flow.  Additionally, we have also compared 

performance with human subjects in the ability to 

automatically associate novel relationships between 

visual stimuli that have a shared context but are never 

explicitly shown together.  This capability may be 

qualitatively perceived by observing the similarity in 

activations within our model.  Figures 2 and 3 depict the 

graphical user interface (GUI) of our model in which the 

input images are captured in the lower left hand box, and 

the remaining regions portray activation within the 

various neural regions.  Of particular interest is the CA3 

activation in the upper left.  As shown in the figures, 

when distinctly different faces are paired with a common 

house, this notion of cohabitation is captured through 

CA3 association encoding.  For a more in depth 

description see [8].     

 

 
Figure 2: Novel Relationship Association 1 

 

 
Figure 3: Novel Relationship Association 2 

     

4. COMPUTATIONAL EXPERIMENT 

PARADIGM 

 
In addition to qualitatively assessing phenomena such as 

activity of particular neural regions and data flow paths, 

we have compared our model’s performance with that of 

human subjects in experiments conducted by other 

researchers.  In particular, we have compared the model 

to a study performed by Preston et al. in which human 

subjects are trained on black and white photographs of 

face-house pairs [4].  Following the training phase, 

during testing subjects performed a forced-choice 

judgment task in which they were shown only either a 

face or house and were required to answer which 

corresponding house or face completed the pair.  

Additionally, they were also tested on their ability to 
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identify related face-face pairs which were independently 

presented in conjunction with a common house, but were 

never seen together.   

 

We have replicated this procedure by presenting to our 

model low resolution face-house pairs, such as that 

shown in Figure 4.  Analogous to the forced-choice 

judgment task, we presented the model a partial input cue 

by presenting a blank as one of the inputs, and 

subsequently the model performs a full recall 

reconstructing the image associated with the non-blank 

input.  This experimental paradigm may be seen as 

follows in Figure 5. 

 

 

Figure 4: Input Face-House-Pair Images 

 
Figure 5: Forced-choice Judgment Computational Paradigm 

5. QUANTITATIVE ANALYSIS 
 

In the human subject realm, in addition to neural 

activation, a verbal response is given to gauge learned 

associations. We have not modeled all of the appropriate 

neural and physiological mechanisms to directly compare 

our model’s output with human subject verbal responses. 

However, the classic Turing test seeks to equate the 

playing field when comparing humans and computers by 

abstracting the traits which are inherently human or 

machine [7]. In a similar manner, just as the human 

subjects are not required to reproduce a hand drawn 

image of their memory but rather select the choice closest 

to their memory, we do not expect our model to produce 

a perfect recall but rather interpret its recollection to be 

the image which is closest to its recalled encoding.  

Assessing which image is closest provides a means of 

quantitatively analyzing our model.   

 

Although a seemingly simple concept, distance may be 

assessed in many different ways.  The Euclidean distance 

between two points in a plane measures how close they 

are in space.  Hamming distance defines the distance 

between two binary strings of equal length as the number 

of positions in which the two strings differ. It quantifies 

the number substitutions required to make two strings 

match.  One of the most significant applications of 

Kolmogorov complexity is the normalized information 

distance [3]: 

 

    ( 1 ) 

However, a major drawback of Kolmogorov complexity 

is the fact that it is non-computable. That is, given x, we 

cannot compute K(x) exactly. Rather, we can only 

approximate K(x).  As a consequence, we cannot compute 

the NID directly.  Instead, this metric may be 

approximated using compression.  Given a compressor C, 

the resulting approximation of the NID is the normalized 

compression distance [2],[3],[5]: 

 

   ( 2 )  

 

where C(x) is the compressed size of x and C(xy) is the 

compressed size of the concatenation of x and y.   

 

Using the Lempel-Ziv-Markov chain algorithm (LZMA) 

for compression, we were able to compute the NCD of 

two images.  And so, without the model being able to 

provide explicit output this yields a quantifiable way of 

assessing model performance.     

 

6. RESULTS 

 
We have performed two experiments with our model 

using the eight face house pairs portrayed in Error! 
Reference source not found..  The pairs were 

presented sequentially one pair at a time presenting the 

data in the left column followed by that of the right.  

Faces associated with a shared house were uniformly 

spaced, in the presentation sequence, with three different 

Formatted: Font: (Default) Times New
Roman, 10 pt

Deleted: Figure 4

Formatted: Font: (Default) Times New
Roman, 10 pt

Deleted: Figure 5

Deleted: Figure 5



face-house pairs interjected in between.  Additionally, 

opposite genders were paired with a given house such 

that the association formation was based upon shared 

context and not similarity in features.   

 

The results of the first experiment using this data set are 

recorded in Table 1.  Contained within this chart are the 

pair wise NCD values for a particular face (across the 

row) against the four possible houses (columns).  The 

smallest NCD value then corresponds to the correct 

answer (or house).  As shown, the model was correct on 

six of eight presentations.  House1, represented by the 

first column, is never selected as the recalled house.  This 

missing representation led to the two erroneous answers, 

Face1 and Face5, which should have been associated 

with House1.  Rather, in each case they were coupled 

with another one of the faces with similar features.  For 

example, Face5 has some perceivably similar facial 

features as Face7, whom is appropriately paired with 

House3 (which Face5 answered).   

 

 
House1 House2 House3 House4 

Face1 0.849 0.8571 0.8601 0.2308 

Face2 0.85 0.4104 0.8599 0.8268 

Face3 0.8432 0.861 0.5191 0.8484 

Face4 0.849 0.8571 0.8601 0.2308 

Face5 0.8432 0.861 0.5191 0.8484 

Face6 0.85 0.4104 0.8599 0.8268 

Face7 0.8432 0.861 0.5191 0.8484 

Face8 0.849 0.8571 0.8601 0.2308 

     

 
Correct Answer Incorrect Answer 

Table 1: Preliminary Experimental Results 

To address the issue of this misrepresentation, we 

adjusted the representational fidelity of the model.  ART 

neural networks include a vigilance parameter which 

dictates the precision of category representation [1].  By 

using ART neural networks as the fundamental 

component of the architecture we can alter the precision 

of the model by adjusting the ART vigilance parameter 

without altering the overall neural structure.  In the first 

experiment, the ART modules representing cortex used a 

vigilance of 0.8.  For the second experiment, we 

increased vigilance in each of the ART modules within 

the first and second levels of cortex to 0.9 and 0.85 

respectively (Figure 6).  The first two levels of cortex in 

the model create the initial representations of the input 

images.   

 

Figure 6: Architecture Sub-structure 

\Increasing the precision of these initial representations 

allows the model to distinguish between similar inputs 

and additionally produces a more crisp recall.  The 

second experiment atones to this improvement as shown 

by the results given in Table 2.  All of the houses are 

captured in this experiment, and only Face4 yielded an 

incorrect association.  We believe the reason for this 

incorrect recall when cued with Face4 is due to the 

striking similarity between faces one and four.  Along 

this line of reasoning, Face4 errantly recalls House1, 

which is the house correctly associated with Face1.  

Besides the binary assessment of correct or incorrect 

recollection, the improved performance of the model in 

the second experiment is also apparent by the magnitude 

of the NCD values.  The most specific recalled image 

from our first experiment yields a NCD value of 0.23, as 

compared with the least specific recalled image in our 

second experiment which has a NCD value of 0.27.  

Additionally, the very small NCD values in the second 

experiment, less than 0.1, indicate a very close match to 

the original house images. 

 
House1 House2 House3 House4 

Face1 0.0087 0.8523 0.8538 0.8432 

Face2 0.8471 0.094 0.8596 0.8442 

Face3 0.8519 0.861 0.2701 0.8464 

Face4 0.0087 0.8523 0.8538 0.8432 

Face5 0.0087 0.8523 0.8538 0.8432 

Face6 0.8471 0.094 0.8596 0.8442 

Face7 0.8519 0.861 0.2701 0.8464 

Face8 0.849 0.8571 0.8594 0.1054 

     

 
Correct Answer Incorrect Answer 

Table 2: Increased Vigilance Quantitative Results 
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7. CONCLUSIONS 

 
Qualitative analysis provides a means of assessing 

whether the model performs at a functional level 

comparable with the neuroanatomy that the architecture 

design was based upon. Our quantitative analysis 

provides a more rigorous means of analyzing models.  

The NCD distance metric is not tied to any particular 

features of the model, but rather is a mathematically 

rigorous universal distance metric applicable to other 

neural modeling problems as well.  Specifically, it serves 

as a mechanism working towards the ability to both 

quantitatively assess neurocomputational models as well 

as to compare various models to one another despite 

differences in implementation details and other limiting 

factors.  Thus, in this paper we have presented a 

neurologically plausible artificial neural network 

computational architecture of episodic memory and recall 

modeled after cortical-hippocampal structure and 

function, with a information theoretic based quantitative 

mathematical assessment. 
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