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Introduction: spectroscopy provides 
detailed information about many plasma sources

+

+

+
Atomic physics: 

the foundation

Collisional-radiative 

(non-LTE) models
NASA/Chandra 

supernova remnant

NASA/MIT

black hole accretion disk

Sandia’s Z machine

Livermore’s NIF
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Outline

� Introduction to collisional-radiative atomic models
- states & rates → synthetic spectra

- low-density “coronal” models

- general requirements for reliable collisional-radiative models

� Hybrid-structure atomic models

- computationally tractable models

that balance accuracy and completeness

� Applications of reliable non-LTE atomic models
- spectroscopic plasma diagnostics

- radiation transport

- radiation hydrodynamics
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Collisional-radiative models: atomic levels (states) 
coupled by atomic processes (rates)

Collisional and spontaneous rates form 

a rate matrix that is inverted to 

determine level populations.

With populations and radiative rates, 

synthetic spectra can be constructed 

and used for plasma diagnostics or 

radiation-hydrodynamic simulations

A variety of codes, (HULLAC, FAC, Cowan…) 

databases, (NIST, ATOMDB…), and 

approximations (screened hydrogenic, Lotz…) 

provide energy level structure and rate data 

– with varied accuracy.

Example: He- and Li-like ions
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Example: K-shell Fe emission spectra

Auger decay 

& dielectronic capture
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& 3-body recombination
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Low-density “coronal” models 
generally use high-accuracy atomic data

Example: 

L-shell Au emission 

from LLNL EBIT [1]

Coronal atomic models are widely used for EBIT, tokamak, and astrophysical 

sources, where low densities ensure that population is concentrated in ground states

[1] Brown, Hansen et al. PRE 77, 066406 (2008)

Low-density emission spectra are well-modeled by fine-structure collisional-radiative 

models. Less accurate models generally do not capture the effects of 

metastable levels or configuration interaction. 

metastable
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For complex ions, extensive 
fine structure models become intractable

While the number of singly-excited, 

“coronal” levels remains reasonable 

with increasing ion complexity, the 

number of levels required for an 

extensive model grows 

exponentially.

However, only “complete” models 

with extensive multiply-excited 

structure can accurately account 

for dielectronic recombination 

and satellite emission.
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Dielectronic recombination is critical 
for accurate collisional-radiative modeling

For coronal plasmas, global d.r. rates can be used (e.g. Mazotta [2], Bryans [3]), 

but these do not guarantee accurate satellite emission and are not valid at high densities.

Recent non-LTE workshop results illustrate the importance of d.r. 

– and the challenge of getting it right.

models without d.r.

models with d.r.

Charge state distributions at Te= 200 eV

Bryans et al.

Average ion charge of Argon at ne = 1012cm-3

[2] Mazotta et al., Astron. Astrophys. Supp 133, 403 (1998)

[3] Bryans et al. Ap J Supp 167, 343 (2006)
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Heroic modeling efforts can give excellent 
agreement with high-density experimental data

LANL’s MUTA [4], a huge fine-structure model with more than 107 transitions 

(some averaged) matches measured Fe L-shell transmission [5] very well, 

– as does a smaller hybrid-structure model [6]. 
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doubly excited 
2s2 2p5 nl → 2s2 2p4 3d nl

[4] Mazevet and Abdallah, J. Phys. B 39, 3419 (2006)

[5] Bailey et al. PRL 99, 265002 (2007)

[6] Hansen et al., HEDP 3, 109 (2007)

2s2 2p6→

2s2 2p5 3d
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A hybrid-structure approach to 
collisional-radiative modeling has many advantages

Fine structure (FAC) 
treatment of “coronal”

levels ensures good results 
at low densities: N ~ 200

Supplemental configs (FAC) 
with configuration-interaction shifts 

provide continuity at moderate 
densities: N ~ 14,000 (800 non-rel)

Supplemental superconfigurations 
(screened hydrogenic) ensure 
statistical completeness and 

exhaustive d.r. channels: N ~ 80 

Hybrid-structure models are computationally 

tractable even for complex ions.
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Extending configuration interaction (CI)
from fine structure transitions to UTAs is key

Each nlj – nlj transition in each ion has its own CI corrections

obtained from the overlapping sets of fine structure transitions and UTAs [1]

[1] Brown, Hansen et al. PRE 77, 066406 (2008)

[9] Scott and Hansen, HEDP 6, 39 (2010)
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K-shell spectra are the traditional workhorses 
of spectroscopic plasma diagnostics

Changes in 

temperature and 

density have 

signature effects on 

K-shell emission 
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Reliable hybrid models offer new 
diagnostic opportunities with L-shell spectra

L-shell diagnostics have attractive features including unambiguous

temperature dependence and resolution-independent density sensitivity
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Temporally and spatially resolved spectra 
give information beyond temperature and density

SCRAM L-shell Cu

z1975 L-shell data, t ~ - 4 ns 

photons from shell edge 
are unshifted (v|| = 0)

plasma conditions:

nion = ion density

Te = electron temperature

photons from shell 
center are maximally 
shifted (v|| = v)

velocity

Radially resolved spectra from an imploding plasma yield 

information about implosion velocities and gradients

60 cm/µs, Te ~ 3 keV, ne ~1021cm-3

decreasing over ~ 5mm
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Self-consistent radiation transport is
important for optically thick plasmas

NRL C-R models with radiation transport have given 
excellent agreement with Z-pinch K-shell spectra

(Dasgupta, Apruzese, Thornhill et al.)

Opacity effects can lead to complex 
signatures in radially resolved spectral lines 

(c.f. Jones, Maron, et al.)

Cu 
2p-3d

red-shifted line from 

near-side plasma is 

absorbed by cool outer 
plasma region

blue-shifted line from 

far-side plasma is 

unattenuated
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Accurate non-LTE models benchmark the fast in-line 
models used in radiation-hydrodynamics simulations

Computational constraints in rad-hydro require runtimes ~ 1 second!

Most in-line radiation transport has 

limited spectral resolution 

(“groups”) so spectroscopic 

accuracy is not required. However, 

completeness is necessary for 

reliable <Z>, power losses, 

and opacities. 

Spectroscopic-quality hybrid 

models with ~ 3 - 60 min runtimes 

can be used to benchmark the 

faster models (e.g. DCA [9]) used 

in radiation-hydrodynamic codes.

[9] Scott and Hansen, HEDP (2010)
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Summary

� Low-density (coronal) plasmas require models that have:
- highly accurate rates and wavelengths (configuration interaction)
- complete dielectronic recombination channels
- limited atomic structure 

� At higher densities, collisional-radiative models must include:
- reasonably accurate radiative decay rates and wavelengths
- continuum lowering and line broadening
- extensive energy level structure

� Models for non-LTE plasmas at intermediate densities 
must have all of these qualities

- hybrid-structure models combine fine-structure “coronal” levels with 
configuration- and superconfiguration-averaged states

� Reliable non-LTE atomic models are critical for HEDLP 
- plasma diagnostics
- radiation hydrodynamics


