

A Criterion for Predicting Instabilities in Nanostructures

Jonathan A. Zimmerman

Mechanics of Materials Department

Sandia National Laboratories, Livermore, CA USA

Terry J. Delph

Department of Mechanical Engineering and Mechanics

Lehigh University, Bethlehem, PA USA

16th US National Congress of Theoretical and Applied Mechanics
July 1, 2010

Motivation

Many defect nucleation phenomena (dislocation nucleation, crack propagation, grain boundary sliding, etc.) have been characterized as atomic-scale instabilities in which atomic bonds break and reform, shifting the body into a lower-energy configuration.

Various instability criteria have been proposed to model this process: Albers *et al.* (1992), Van Vliet *et al.* (2003), Kitamura *et al.* (2004 a,b), Lu and Zhang (2006a, b), Miller and Rodney (2008), Pacheco and Batra (2008), Delph *et al.* (2009), Delph & Zimmerman (2010).

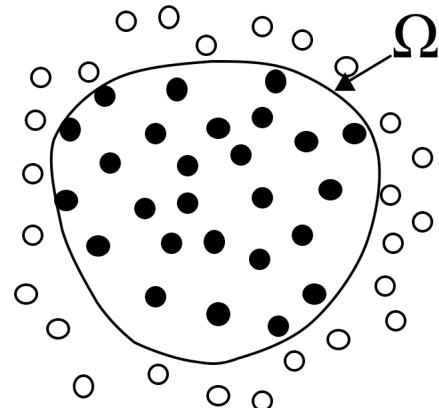
At least for the simple case of pair potentials, these may all be shown to be equivalent at a certain level to a criterion proposed by Wallace (1972).

Wallace's Instability Criterion

Wallace's criterion simply states that a given atomic configuration is stable if all possible infinitesimal atomic displacements from the equilibrium configuration lead to an increase in the system potential energy.

Basic idea: Wallace's method can be efficiently applied to atomistic simulations by examining the behavior of a small (but not too small!) subset of atoms (Miller & Rodney, 2008; Delph *et al.*, 2009; Delph & Zimmerman, 2010).

We define a region Ω containing N atoms whose stability we wish to examine. The N atoms are interior to a much larger body, and interact with M atoms in this larger body.



Analysis for pair and multi-body potentials

Assume that atom α , $\alpha = 1, \dots, N$, originally located at \mathbf{R}^α undergoes an infinitesimal displacement \mathbf{u}^α so that $\mathbf{r}^\alpha = \mathbf{R}^\alpha + \mathbf{u}^\alpha$. All atoms outside of Ω are held fixed.

The potential energy is expressed as: $\Psi = \Psi_2 + \Psi_N$

$$\Psi_2 = \frac{1}{2} \sum_{\alpha=1}^{N_A} \sum_{\gamma=1, \gamma \neq \alpha}^{N_A} \psi_2 \left(R^{\alpha\gamma^2} \right)$$

$$\Psi_N = \sum_{\delta=1}^{N_A} F \left(\rho^\delta \right)$$

Taylor expansion about the initial equilibrium state gives a quadratic form in the infinitesimal displacements, the linear terms vanishing due to equilibrium.

$$\rho^\delta = \sum_{\varepsilon=1, \varepsilon \neq \delta}^{N_A} f \left(R^{\delta\varepsilon^2} \right)$$

Taylor expansion of potential energy change

$$\Delta \Psi = \sum_{k=1}^{3N} \sum_{\ell=1}^{3N} A_{k\ell} v_k v_\ell \quad v_{3(\alpha-1)+i} = u_i^\alpha$$

$$\begin{aligned} A_{3(\alpha-1)+i, 3(\alpha-1)+j} &= \sum_{\beta=1, \beta \neq \alpha}^N X_{ij}^{\alpha\beta} + \sum_{\gamma=1}^M X_{ij}^{\alpha\gamma} \\ &+ \sum_{\beta=1, \beta \neq \alpha}^N \left[Y_{ij}^{\alpha\beta} + \frac{1}{2} (F''(\rho^\alpha) + F''(\rho^\beta)) U^{\alpha\beta} U^{\alpha\beta} R_i^{\alpha\beta} R_j^{\alpha\beta} + \right. \\ &\quad \left. \frac{1}{2} F''(\rho^\alpha) \sum_{\eta=1, \eta \neq \alpha, \beta}^N U^{\alpha\beta} U^{\alpha\eta} R_i^{\alpha\beta} R_j^{\alpha\eta} + F''(\rho^\alpha) \sum_{\gamma=1}^M U^{\alpha\beta} U^{\alpha\gamma} R_i^{\alpha\beta} R_j^{\alpha\gamma} \right] + \\ &\quad \sum_{\gamma=1}^M \left(Y_{ij}^{\alpha\gamma} + \frac{1}{2} F''(\rho^\gamma) U^{\alpha\gamma} U^{\alpha\gamma} R_i^{\alpha\gamma} R_j^{\alpha\gamma} \right) + \frac{1}{2} F''(\rho^\alpha) \sum_{\gamma=1}^M \sum_{\zeta=1}^M U^{\alpha\gamma} U^{\alpha\zeta} R_i^{\alpha\gamma} R_j^{\alpha\zeta} \end{aligned}$$

Taylor expansion - continued

$$\begin{aligned} A_{3(\alpha-1)+i, 3(\beta-1)+j} &= -X_{ij}^{\alpha\beta} - Y_{ij}^{\alpha\beta} - F''(\rho^\alpha) U^{\alpha\beta} U^{\alpha\beta} R_i^{\alpha\beta} R_j^{\alpha\beta} - \\ &\quad F''(\rho^\alpha) \sum_{\eta=1, \eta \neq \alpha, \beta}^N U^{\alpha\beta} U^{\alpha\eta} R_i^{\alpha\eta} R_j^{\alpha\beta} \\ &\quad + \frac{1}{2} \sum_{\eta=1, \eta \neq \alpha, \beta}^N F''(\rho^\eta) U^{\alpha\eta} U^{\beta\eta} R_i^{\alpha\eta} R_j^{\beta\eta} + \\ &\quad \sum_{\gamma=1}^M \left(-F''(\rho^\alpha) U^{\alpha\beta} U^{\alpha\gamma} R_i^{\alpha\gamma} R_j^{\alpha\beta} + \frac{1}{2} F''(\rho^\gamma) U^{\alpha\gamma} U^{\beta\gamma} R_i^{\alpha\gamma} R_j^{\beta\gamma} \right) \end{aligned}$$

$$X_{ij}^{\alpha\beta} = \frac{1}{2} \left(P^{\alpha\beta} \delta_{ij} + Q^{\alpha\beta} R_i^{\alpha\beta} R_j^{\alpha\beta} \right) \quad P^{\alpha\beta} = \frac{1}{R^{\alpha\beta}} \frac{\partial \hat{\psi}_2}{\partial R^{\alpha\beta}}$$

$$Q^{\alpha\beta} = \frac{1}{R^{\alpha\beta^2}} \left(\frac{\partial^2 \hat{\psi}_2}{\partial R^{\alpha\beta^2}} - \frac{1}{R^{\alpha\beta}} \frac{\partial \hat{\psi}_2}{\partial R^{\alpha\beta}} \right)$$

Taylor expansion - continued

$$Y_{ij}^{\alpha\gamma} = \frac{1}{2} \left[(F'(\rho^\alpha) + F'(\rho^\gamma)) (U^{\alpha\gamma} \delta_{ij} + W^{\alpha\gamma} R_i^{\alpha\gamma} R_j^{\alpha\gamma}) \right]$$

$$U^{\alpha\beta} = 2f' \left(R^{\alpha\beta 2} \right) \quad W^{\alpha\beta} = 4f'' \left(R^{\alpha\beta 2} \right)$$

Stability of the system of atoms contained within the volume Ω is assured if the quantity $\Delta\Psi$ is positive for any infinitesimal displacement.

This implies that the matrix $\text{sym}[\mathbf{A}]$ must be positive definite, and hence that all real eigenvalues must be positive.

Instability => the appearance of one or more negative real eigenvalues.

$$(\text{sym}[\mathbf{A}] - \theta \mathbf{I}) \mathbf{v} = 0$$

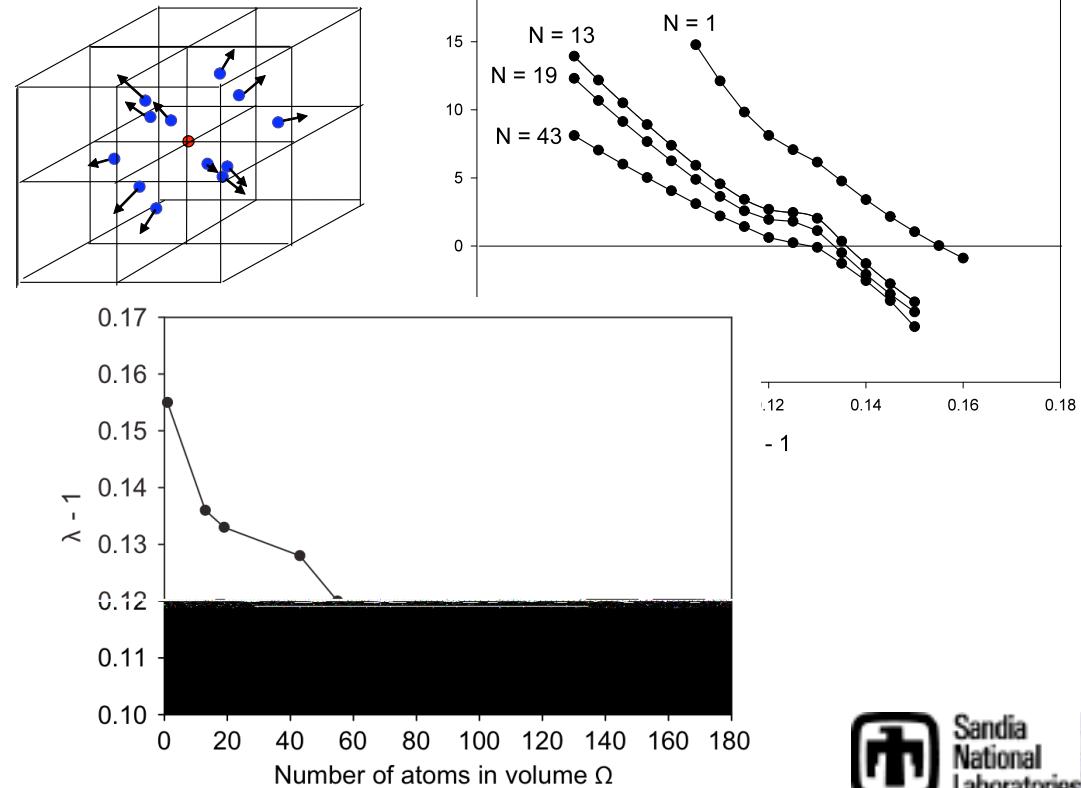
$$\Delta\Psi_{\min} = \theta_{\min}$$

Example: Cavitation in a triaxially stretched FCC crystal

A cavitation type of instability results when a solid is triaxially stretched in tension.

(1) Argon modeled by Lennard-Jones two-body potential by van der Eerden *et al.* (1992)

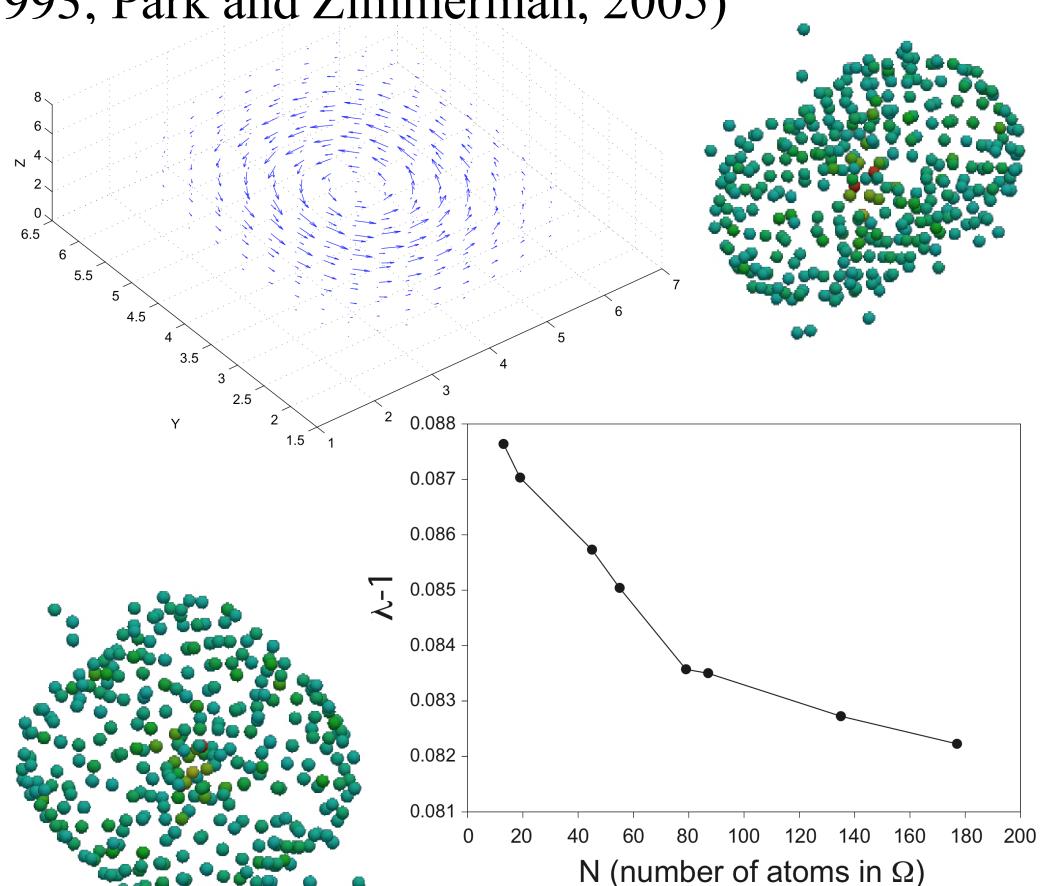
- Eigenvectors at instability are radially-outward from center atom.
- Stretch ratio at instability is dependent upon the number of atoms considered. The use of small values of N leads to inaccurate results.



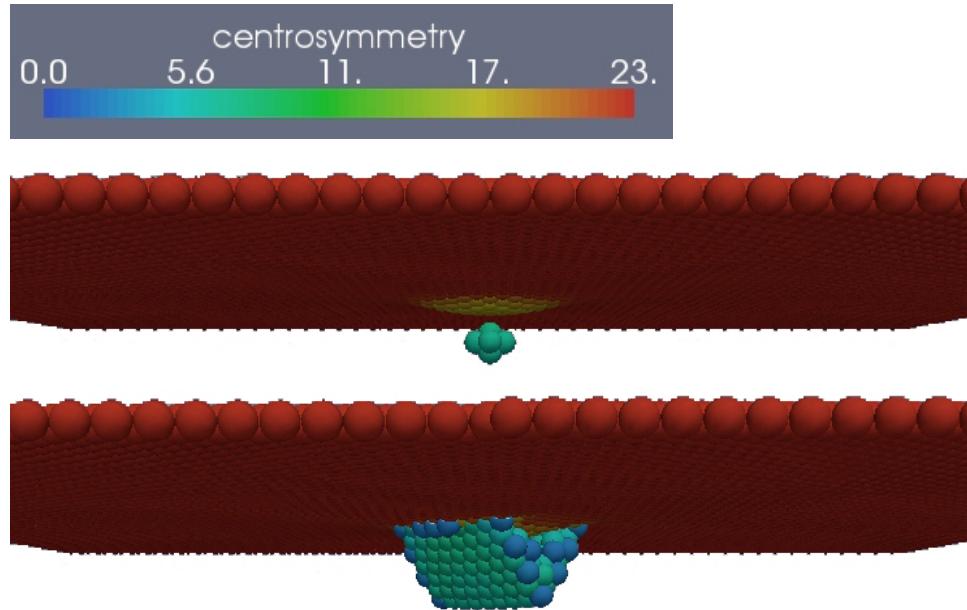
Example: Cavitation - continued

(2) Gold modeled by Embedded Atom Method potential by Foiles
(Voter and Chen, 1987; Voter 1993; Park and Zimmerman, 2005)

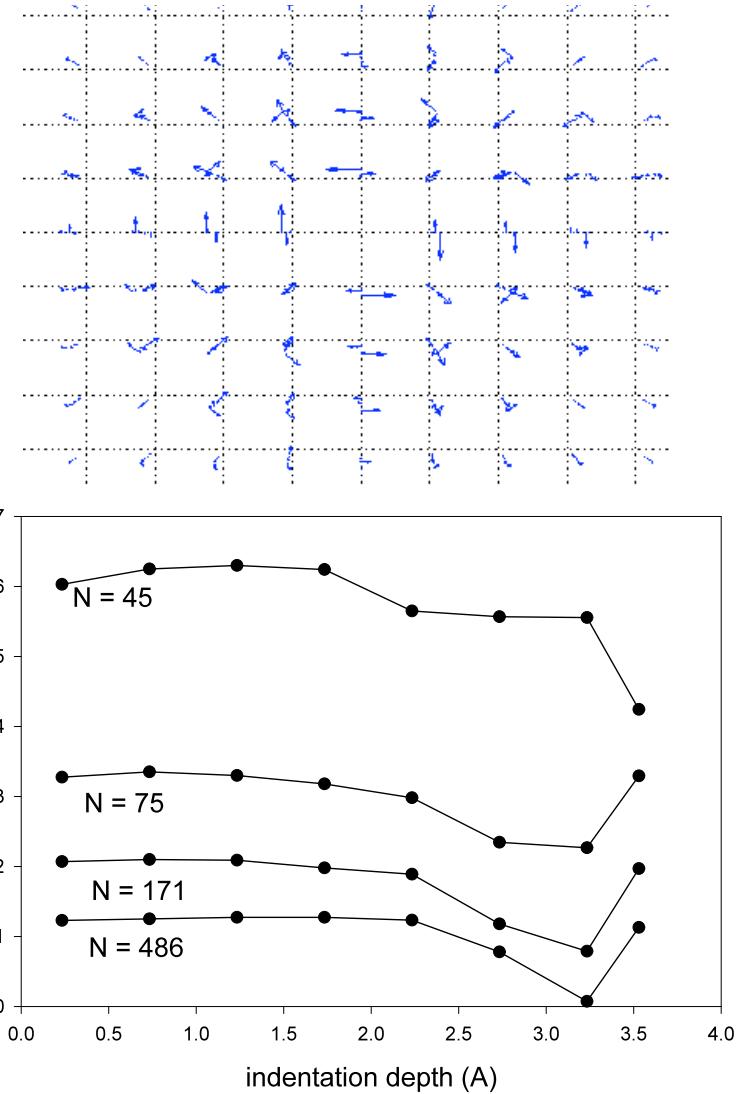
- A triple root is found for the lowest eigenvalue (Wang *et al.*, 1995); oriented cavitation is observed.
- Eigenvectors show isovolumetric motion.
- Independent LAMMPS simulations show an oriented, four-lobe type of cavitation.



Example: Nanoindentation of gold



- The eigenvectors for lowest eigenvalue indicate a pronounced shearing motion at a depth of 5 atomic layers.
- Dislocation nucleation occurs at this point in LAMMPS simulations.



Concluding Remarks

- We have demonstrated an atomic-scale instability criterion that
 - has a well-defined physical basis and is valid for groups of atoms (*e.g.*, extended defects)
 - makes no reference to continuum quantities
 - leads to accurate predictions of onset and mode of instability
 - is easily computable
 - has been extended to “complicated” inter-atomic potentials
- Future work
 - Develop less computationally expensive ways to generate atomic configurations: Cauchy-Born rule, lattice Green’s functions.
 - Use Wallace criterion within multi-scale methods, *e.g.* Surface Cauchy-Born by Park.
 - Examine stability at finite temperatures: free energy

Miscellanea

- Simulations performed using LAMMPS: <http://lammps.sandia.gov>
- Thank you to: Jeff Rickman, Joshua Kunz, Harold Park.
- References:
 - Delph *et al.* (*Journal of the Mechanics and Physics of Solids*, 2009)
 - Delph and Zimmerman (*MSMSE*, 2010)
- For more information: jzimmer@sandia.gov