

1 Designing Metal-Organic Frameworks for Radiation Detection**2 Patrick L. Feng, Janelle Branson, Khalid, Hattar, Gyorgy Vizkelethy, Mark D. Allendorf, F. Patrick Doty*****3**
4 Sandia National Laboratories, California
5 7011 East Ave
6 Livermore, CA 94550**7**
8 Sandia National Laboratories, New Mexico
9 PO Box 5800
10 Albuquerque, NM 87185**11 1. Introduction.**

12 The synthesis of improved materials for the detection and identification of subatomic particles is
13 vital for progress in nuclear nonproliferation, space exploration, nuclear power, and other critical
14 applications in the chemical, biological, and medical fields. A crucial requirement to this end is a
15 detailed physical understanding of the factors that affect the efficiency and timing of light output in
16 scintillating materials, including chemical composition, electronic structure, interchromophore
17 interactions, crystalline symmetry, and atomic density. Unfortunately, none of the material types
18 currently used in radiation detection (crystalline inorganic compounds, organic crystals, plastics, liquid
19 scintillators) possess the inherent synthetic flexibility that is necessary for the systematic control and
20 understanding of these factors. Here we investigate the structure-property relationships of five metal-
21 organic framework (MOF)-based scintillators, highlighting the unique advantages of these crystalline and
22 highly tailorable compounds as a platform upon which to design new materials for specific radiation
23 detection applications.

24 MOFs are periodic 1-D through 3-D crystalline materials comprised of metal clusters linked by
25 coordinating organic groups, whose structures may be predicted and designed through an
26 understanding of the geometric nets accessible for particular metal cluster/linker combinations.¹⁻³ This
27 extremely high degree of structural versatility, combined with the ability to independently modify the
28 identity of the linker group, further differentiates MOFs from other extended crystalline materials such
29 as zeolites and molecular solids. Thus, it is possible to obtain families of isostructural MOFs comprised
30 of a variety of linker groups, including a multitude of conjugated organic molecules that function as
31 scintillators. A subset of these linkers is depicted in figure 1, illustrating differences with respect to the
32 length and geometric orientation of these connecting groups. MOFs may also possess permanent
33 nanoporosities as a result of the self assembly between linker molecules and metal clusters, enabling
34 them to serve as hosts for wavelength shifters or other elements to improve the scintillating and
35 detection characteristics of the material (e.g. Li or B).

36 Our group recently reported the first two examples of MOF-based scintillators, both of which
37 are based upon the linker group 4,4'-trans-stilbenedicarboxylic acid (H₂SDC).⁴ Significant differences in
38 the photoluminescence and radioluminescence spectra are observed between each MOF structure and
39 single crystals of H₂SDC, including large radioluminescence Stokes' shifts for the MOF structures. These
40 observations were interpreted in terms of the crystal structures and extent of interchromophore
41 coupling, as mediated by pinning of the linker groups to the metal cluster nodes. Here we expand these
42 studies to a series of scintillating MOFs comprised of the linker groups 4,4'-biphenyldicarboxylic acid
43 (H₂BPDC) and 2,6-naphthalenedicarboxylic acid (H₂NDC), illustrating the origin of these large Stokes'
44 shifts and the ability to modify the luminescence via incorporation of extrinsic dopants within the MOF
45 pores.

46 2. Experimental.

49 Photoluminescence spectra were collected on single crystalline samples using a Horiba Jobin-
50 Yvon Fluorolog-3 fluorometer, whereas radioluminescence spectra were obtained at the Physical,
51 Chemical, and Nano Sciences Center at Sandia National Labs-New Mexico using a fiber-optic coupled
52 spectrometer and 2.5 MeV protons at a high current density of 500 nA/cm². No new radioluminescence
53 bands were observed for complexes **1-5** upon successive irradiation doses, indicating the damage
54 mechanism does not produce new luminescent species. Instead, the entire spectrum decreases
55 uniformly with dose, indicating the differences in ion-beam induced luminescence (IBIL) are intrinsic to
56 the MOF structures and not due to radiation damage.

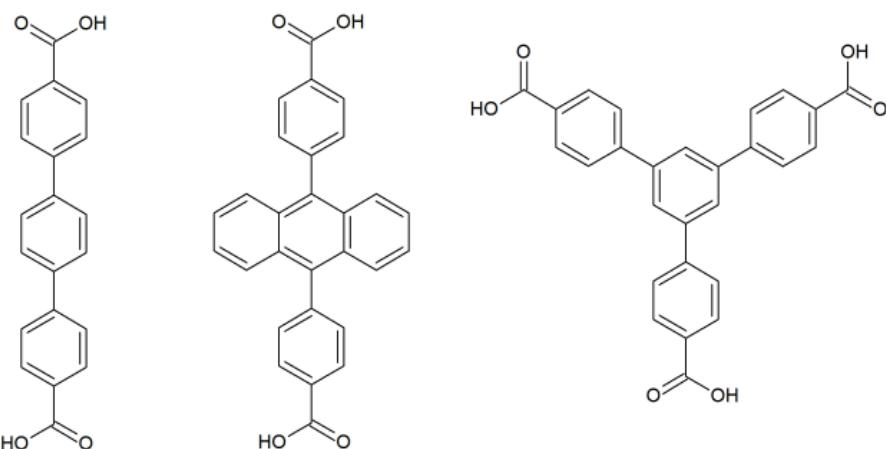
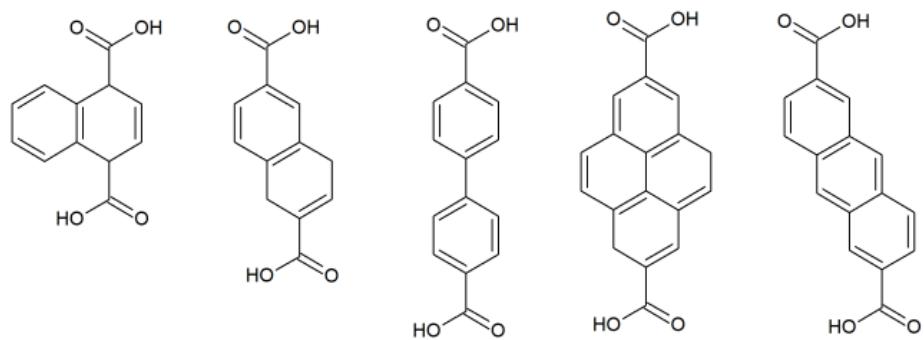
57
58 **3. Results and Discussion.**
59 Two classes of structures were chosen for the present study, the first group belonging to the so-
60 called ‘isoreticular’ MOF (IRMOF) family, named on the basis of their identical cubic framework
61 topologies.⁵ Complex **1** (IRMOF-10) is the first structure of this type, employing tetrahedral Zn₄O metal
62 cluster nodes and BPDC²⁻ linker groups, as shown in figure 2. This complex possesses large inter-linker
63 distances of 15.44 Å, leading to a low-density porous framework with minimal intermolecular
64 interactions. Complex **2** (IRMOF-8) is another member of this family, employing NDC²⁻ linker groups
65 (figure 3) in place of BPDC²⁻. A reduced inter-linker separation of 12.61 Å is observed in **2**, as expected
66 for the shorter NDC²⁻ struts. Complexes **3** and **4** belong to the MIL (Materials of Institut Lavoisier) family
67 of materials and are comprised of linear chains of Al(OH) metal clusters connected into a 3-D framework
68 by NDC²⁻ linkers, as shown in figure 4.^{6,7} These related structures are remarkable in that they undergo a
69 reversible structural transformation that is dependent upon activation conditions. The ‘open’ complex **3**
70 possesses removable guest CHCl₃ solvent molecules in the open 1-D channels, transforming to the
71 nonporous ‘closed’ complex **4** upon heating and evacuation. Dramatic structural changes are associated
72 with this accordion-like transformation, as described by reduced interchromophore distances and Al-Al-
73 Al angles (α) for **4** shown in figure 4 (bottom). Complex **5** is identical to **2**, with the exception of the
74 electron donor N,N-diethylaniline trapped within the pores.

75 Figure 5 shows the photoluminescence and IBIL spectra for complex **1**, revealing a large 65 nm
76 Stokes shift and nearly superimposable photoluminescence/IBIL emission spectra. The structureless
77 emission band at ~400nm is not surprising due to free rotation about the C_{phenyl}-C_{phenyl} bond in BPDC²⁻.
78 Photoluminescence decay measurements on **1** reveal a bi-exponential decay with decay times of
79 $\tau_1=5.4\text{ns}$ (58%) and $\tau_2=15.0\text{ns}$ (42%). Markedly different luminescence spectra were obtained for
80 complex **2** (figure 6), including the observation of vibronic structure in both photoluminescence and IBIL
81 spectra, as well as an intense new IBIL emission peak at 476nm. This feature is reminiscent of the
82 previously reported isostructural SDC-based MOF, and may be attributed to the formation of excimer
83 species upon ion-beam irradiation. These combined results for **1** and **2** may be rationalized by
84 considering the geometry of BPDC²⁻ and NDC²⁻ in their respective ground and excited states. BPDC²⁻
85 possesses a twisted orientation in the ground state and a planar geometry in the excited state, leading
86 to a low probability for the formation of excited state dimers.⁸ In contrast, SDC²⁻ and NDC²⁻ readily form
87 excimer species upon irradiation due to intermolecular π - π interactions in both the ground and excited
88 state.^{9,10} The photoluminescence decay for **2** was also measured, resulting in a biexponential decay
89 ($\lambda=383\text{nm}$) with $\tau_1=4.7\text{ns}$ (96%) and $\tau_2=16.9\text{ns}$ (4%), representing a remarkable rate enhancement
90 compared to naphthalene molecular crystals ($\tau_1=18\text{ns}$ (7%) and $\tau_2=82\text{ns}$ (93%)).¹¹

91 Complexes **3** and **4** were also studied via photo- and radioluminescence spectroscopy to confirm
92 the above assignment of the red-shifted IBIL peak. The open-framework complex **3** possesses minimal
93 intermolecular interactions, leading to photoluminescence spectra that are comparable to free H₂NDC
94 monomer in dilute solution. Significantly different spectral characteristics were observed upon
95 conversion to the nonporous closed complex **4**, as indicated by the single red-shifted
96 photoluminescence excimer emission (figure 7). No evidence for monomer emission is observed in

97 either the photoluminescence or IBIL spectra, suggesting efficient energy transfer between interacting
98 NDC²⁻ groups. Interestingly, the IBIL and photoluminescence emission spectra for **4** are nearly
99 superimposable, confirming the excimer assignment of this peak.

100 The infiltrated complex **5** was also synthesized to further demonstrate the ability to tune the
101 luminescence properties of MOF-based scintillators. The electron donor N,N-diethylaniline (DEA) was
102 chosen as an extrinsic dopant due to its ability to form strong charge-transfer complexes with aromatic
103 acceptor molecules. This intense and structureless photoluminescence charge-transfer (exciplex) band
104 is evident at 559 nm in figure 8, whose appearance is associated with a concomitant decrease in the
105 monomer emission at ~400nm. The very large 160nm exciplex Stokes shift attests to a large degree of
106 internal reorganization in the excited state, owing to the large geometrical changes that occur in DEA
107 upon conversion from a planar radical cation structure to a pyramidal neutral structure.¹² Furthermore,
108 the above observations indicate the efficient formation of a contact radical ion pair upon
109 photoirradiation, leading to fluorescence emission that represents a nonadiabatic back electron transfer
110 that regenerates the neutral NDC²⁻ and DEA starting materials. Inspection of the IBIL spectrum for **5**
111 reveals three unique spectral features, corresponding to monomer emission at 400nm, excimer
112 emission at 475nm, and exciplex emission at 545nm. This provides a vivid demonstration of how the
113 synthetic and structural flexibility of MOFs leads to new, tunable sources of emission.

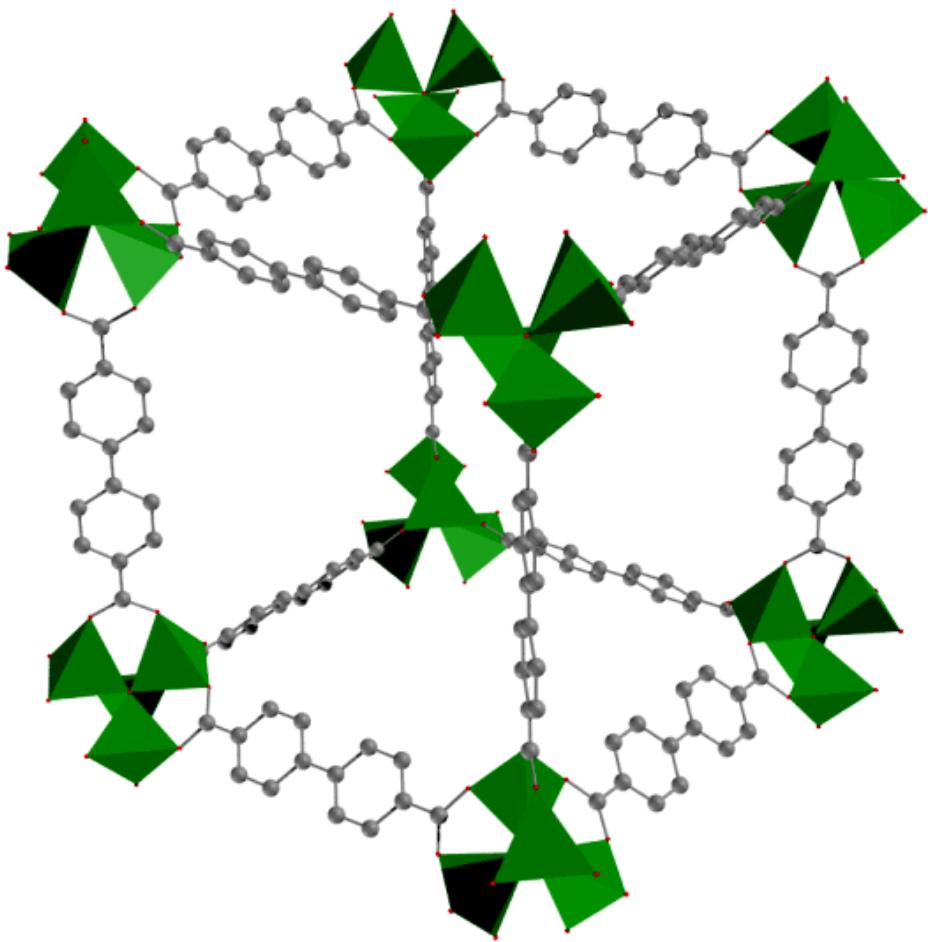


114 4. Conclusions.

115 The above studies are a part of ongoing efforts to understand the specific factors that control
116 the luminescence yield and timing of scintillators. MOFs have been chosen as a molecular-level
117 platform from which to study these phenomena due to a host of particularly attractive properties,
118 including: well-defined crystalline structures, high thermal and chemical stability, fast timing
119 characteristics, modular and controllable synthetic procedures, large permanent porosities for hosting
120 infiltrated materials, scintillation yields comparable to commercial plastic and organic scintillators, and a
121 high tolerance to radiation damage. We are developing practical materials and new methods for
122 particle discrimination, which will be published separately.

123 References:

- 124 1) Ockwig, N.W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O.M. *Acc. Chem. Res.* **2005**, 38, 176.
- 125 2) Yaghi, O.M.; O'Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. *Nature*, **2003**, 423, 705.
- 126 3) Surble, S.; Serre, C.; MellotDraznieks, C.; Millange, F.; Ferey, G. *Chem. Commun.* **2006**, 284.
- 127 4) Doty, F.P.; Bauer, C.A.; Skulan, A.J.; Grant, P.G.; Allendorf, M.D. *Adv. Mater.* **2009**, 21, 95.
- 128 5) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O.M. *Science* **2002**, 295, 469.
- 129 6) Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Ferey, G. *Chem. Eur. J.* **2004**, 10, 1373.
- 130 7) Senkovska, I.; Hoffmann, F.; Froba, M.; Getzschmann, J.; Bohlmann, W.; Kaskel, S. *Micropor. Mesopor. Mater.* **2009**, 122, 93.
- 131 8) Liu, X-H.; Satoh, N.; Kugo, G-I.; Abe, K.; Shigenari, T.; Narisawa, T. *J. Phys. Soc. Jpn.* **1999**, 68, 284.
- 132 9) Brocklehurst, B.; Bull, D.C.; Evans, M.; Scott, P.M.; Stanney, G. *J. Am. Chem. Soc.* **1974**, 97, 2977.
- 133 10) Azumi, T.; Azumi, H. *Bull. Chem. Soc. Jpn.* **1966**, 39, 2317.
- 134 11) Selvakumar, S.; Sivaji, K.; Arulchakkavarthi, A.; Balamurugan, N.; Sankar, S.; Ramasamy, P. *J. Cryst. Growth* **2005**, 282, 370.
- 135 12) Cosa, G.; Chesta, C.A. *J. Phys. Chem. A* **1997**, 101, 4922.

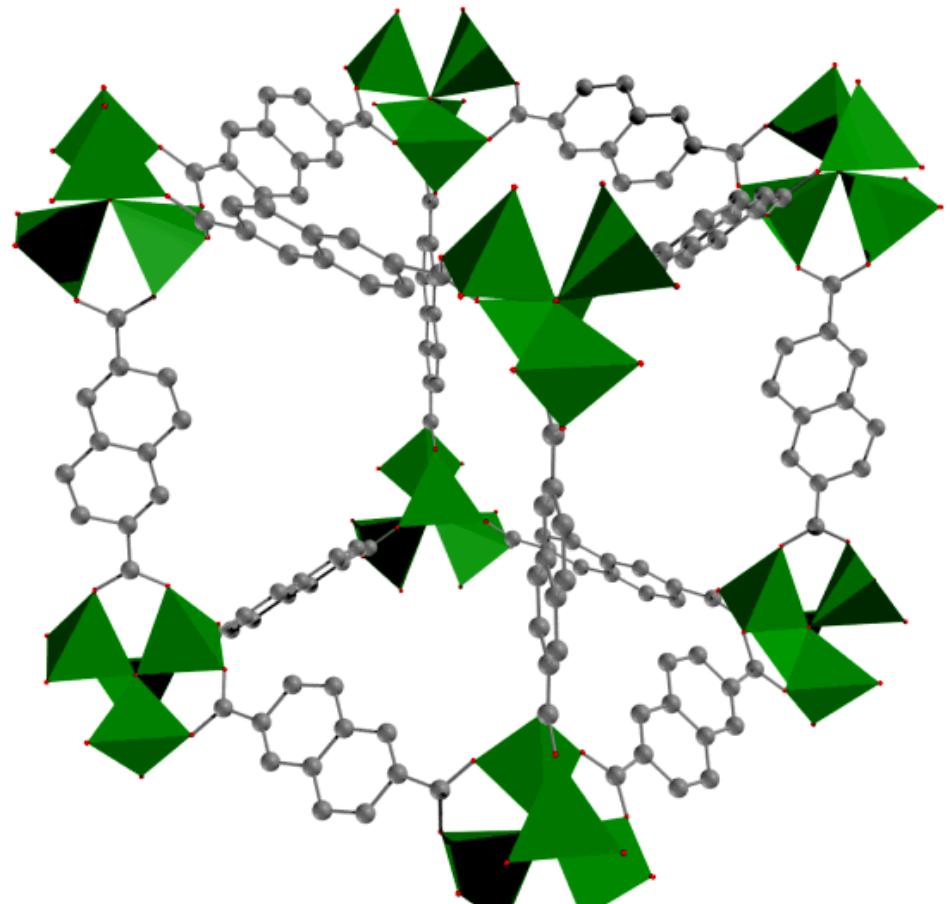
145



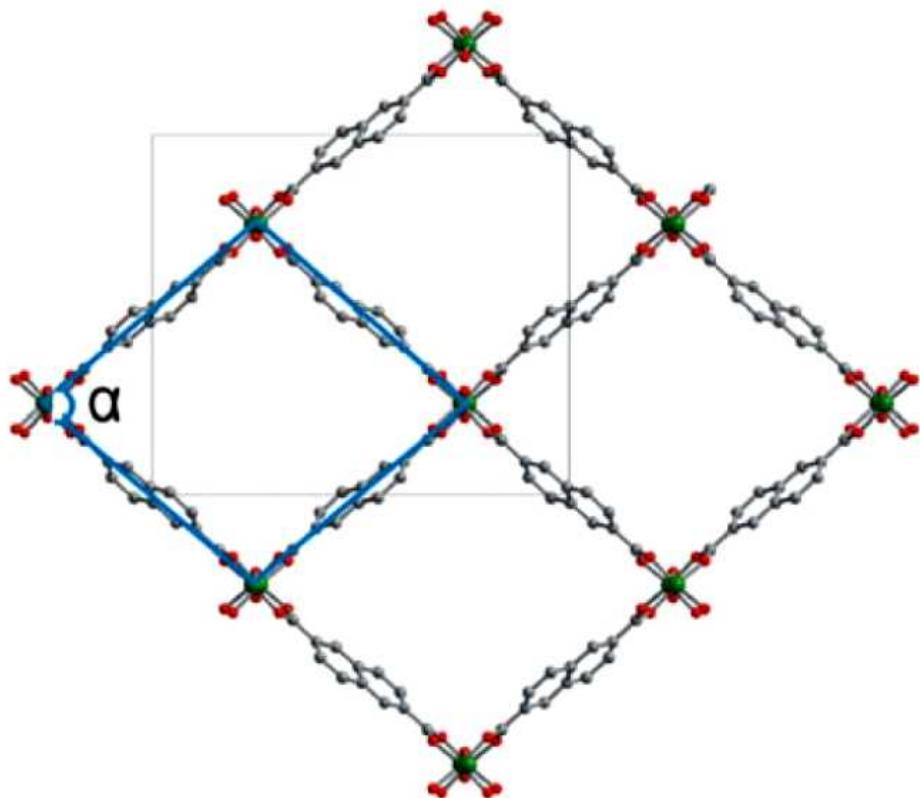
146

147

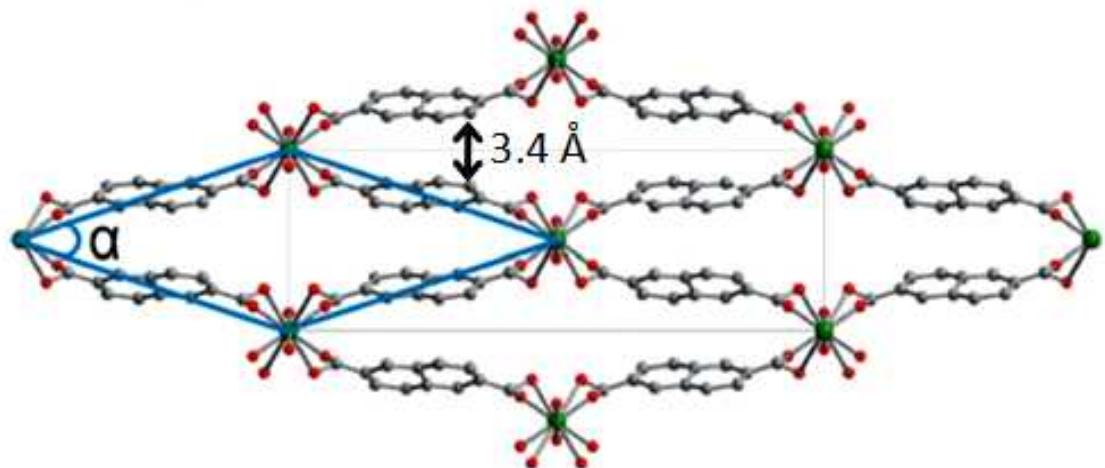
148 Figure 1. Representative sampling of scintillating linker groups used in MOF synthesis.


149

150

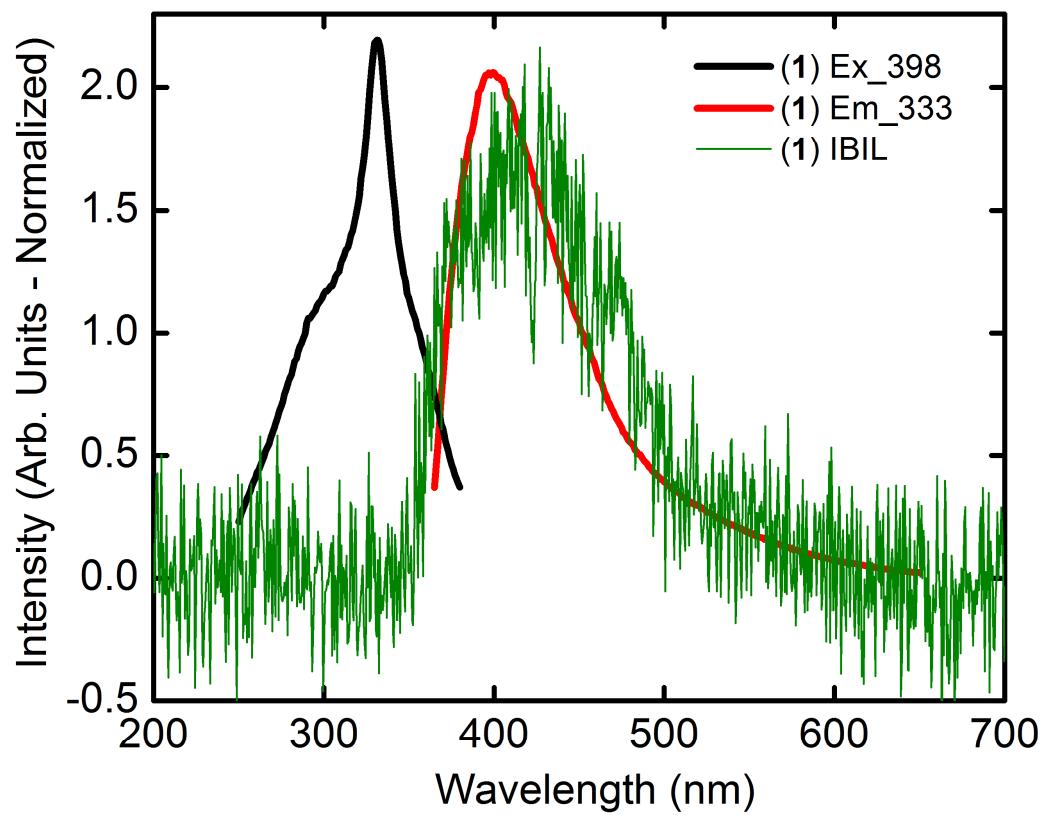

151

152 Figure 2. Molecular structure of a repeating structural subunit in complex 1.

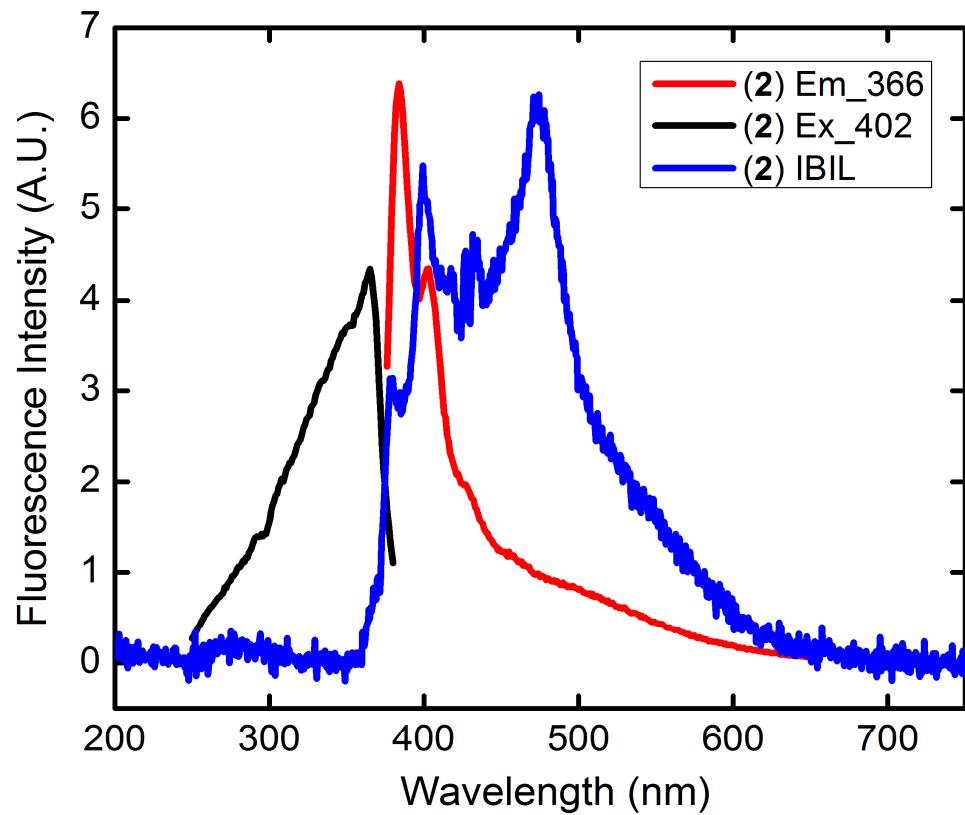


153
154

Figure 3. Molecular structure of a repeating structural subunit in complex **2**.


155
156

157
158


159 Figure 4. Molecular structures of complexex **3** (top) and **4** (bottom). The opening angles (α) are 87° and
160 34° for **3** and **4**, respectively.

161
162

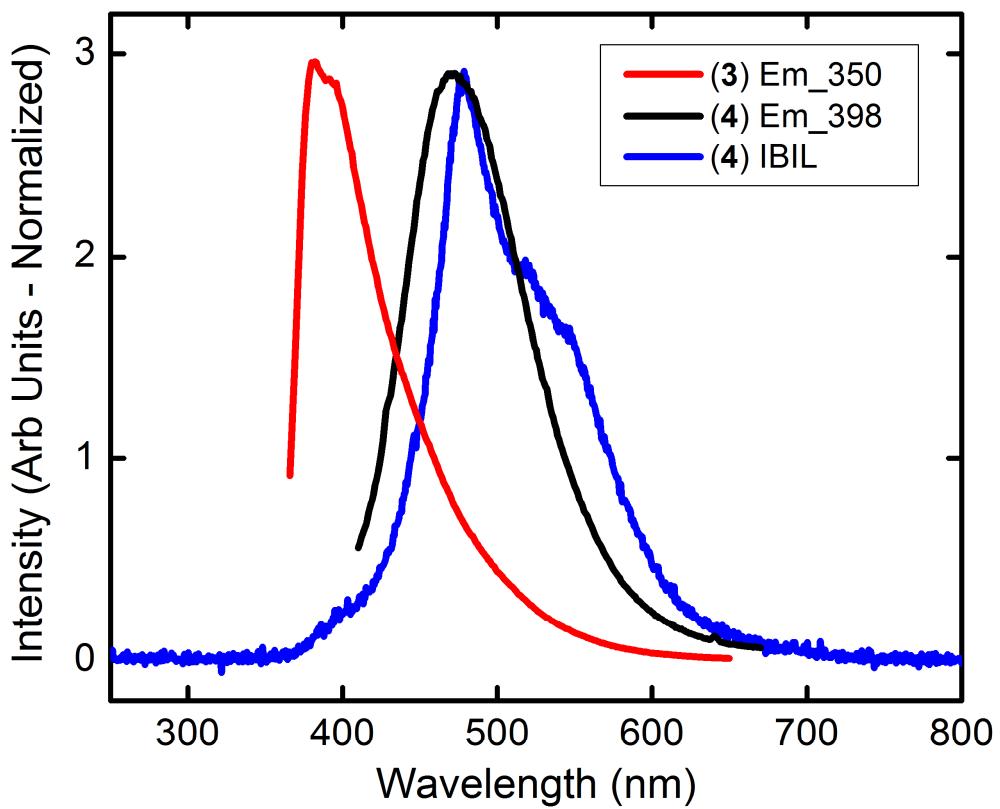
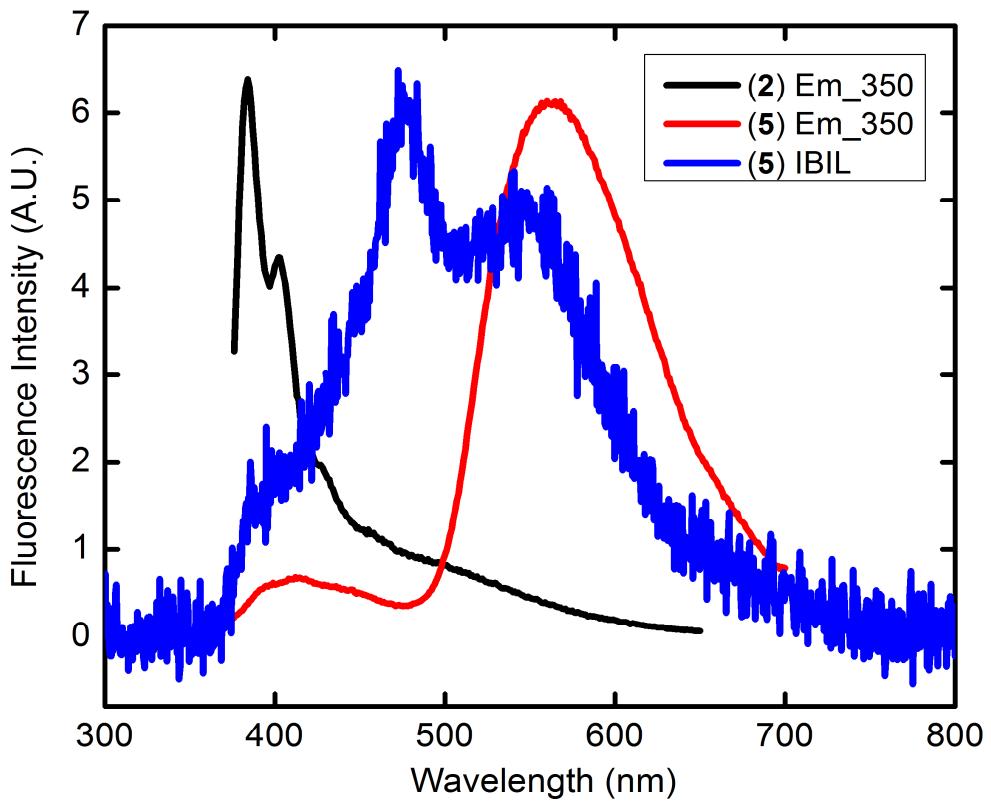

163
164

Figure 5. Photoluminescence and IBIL spectra for complex **1**.



165
166

Figure 6. Photoluminescence and IBIL spectra for complex **2**.

167
168 Figure 7. Photoluminescence and IBIL emission spectra for complex 4. The monomeric
169 photoluminescence emission for **3** is provided for comparison.

170
171 Figure 8. Photoluminescence and IBIL emission spectra for complex 5. The monomeric
172 photoluminescence emission for **2** is provided for comparison.
173
174
175
176
177
178