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} Common lon Detectors in Mass

Spectrometry

* An ion-neutralization electrode (Faraday cup)
followed by a current-to-voltage converter.

— Relatively poor ion sensitivity
— Requires 6000 ionic charges/s (1fA)

* An ion-to-electron converter followed by an
electron multiplier.

— lons require large kinetic energies to eject an electron
from the ion-to-electron conversion surface.

— Must be operated under vacuum
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ﬁiscrete Detectors in Mass Spectrometry

Mattauch-Herzog Geometry
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* Array Detector in Mass Spectrometry

Mattauch-Herzog Geometry
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Array Detector on
Focal Plane

Array detectors provide a multiplex advantage in
dispersive mass spectrometers.
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CTIA Array Detector

Top view of micro-Faraday finger
ion detector array (32 pixels)

Detector configured for magnetic
sector mass spectrometer
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Micro-Faraday Finger Array
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« ICP-MS with a 9600 pixel, monolithic,
“stitched” array T
« Continuous mass coverage from 0-250 m/z —

“‘ad 200ng/mL Merck VI + REE
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Faraday Plates as lon Detectors

Current-to-voltage converter

ions feedback resistor
—>
EEVAVAVAVANERE
© 3
S It
Q _§, voltage
@ ® | current -
L —  high impedance
amplifier

A Faraday plate uses a current-to-voltage
converter to measure the number of
incident ions.

A small ion flux requires high gain to
produce a detectable voltage. The gain
is determined by the magnitude of the
feedback resistor (V=1R)).
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Advantages
* Produces a 1:1 signal.
 Simple to build and operate.

* Rugged; not easily contaminated.

Disadvantages

« State-of-the-art Faraday plate requires a
minimum of 6,000 ions/s.

* Large feedback resistor introduces
substantial Johnson noise

= (4 kT R Af)1”2

Vims =
» Wire used to connect the Faraday plate to

the amplifier is inches long and acts as an
antenna and picks up noise.
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Capacitive Transimpedance Amplifier (CTIA)

L :
—T reset switch
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Output voltage is determined by the amount
of incident charge and the magnitude of the
feedback capacitor (Q=V C).

The output voltage is inversely proportional to
the feedback capacitor. Smaller capacitors
result in a larger signal.
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Advantages

* Integrating detector; total charge is quantified,
not current.

» Capable of detecting tens of ions.

* Readout is located millimeters away from
electrodes; low antenna noise.

« Johnson noise is insignificant compared to
Faraday plates.

» Uses double correlated sampling; no
switching noise.

Disadvantages

» As the electrode size increases, the
capacitance increases and the sensitivity
decreases.

» Micro-Faraday array is more complex than

Faraday plates.
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CTIA Performance Parameters®

High Gain Low Gain
Dark current (attoAmp) 200 1900
Transimpedance (uV/e") 16 0.16
Full well capacity (e) 1.8x104 1.8x10°
Linear dynamic range 10° 10°
Read noise (e7) 29 310
3o Detection limit (charges) 90 900

*Detector temperature = -40 °C




Modified ion
mobility
spectrometer

Mass
spectrometry

camera (CTIA
array detector)
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HMX Spectra - PCP 110 IMS/Faraday Plate
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» 200 scans averaged

* N, used as drift and carrier
gas

* CH,Cl, introduced via
permeation tube

* Operating in (-) mode

* Drift region kept at 80 °c

* 500 us pulse width at 10 Hz
« S/N 10:1
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Differential Capacitive

Transimpedance Amplifier

Faraday
Electrode

Q@ Signal + noise
0@ |A

Reset switch
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Reset switch

Complementary
outputs

Advantages

Outputs are the difference between
the signals on the Faraday and
reference electrodes.

Input noise is cancelled before high
amplification.

Reduces the influence of time-
correlated noise features.

— Environmental electromagnetic
interference (EMI)

— Power supply noise and ripple

— Common mode rejection ratio
(CMMR) = 30

Complementary outputs allow time-
correlated noise picked up by
transmission wires to be cancelled.

(+A-B) - (-A+B) = 2A-2B
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Differential Capacitive
Transimpedance Amplifier

+ 4 differential channels per device.

» Modern integrated circuit design and
fabrication techniques allow very
small feedback capacitances.

» The two integrators must have
identical responsively for perfect
external noise cancelation.

— Fully symmetric topology allows
FETs and capacitors to be
placed close together and

Bl !:ﬁ :r;'!] M\ }n i :
REESS fabricated under almost
identical conditions.
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Implementing the Differential CTIA in IMS

CTIA electrode positions

Faraday electrode in ion path

]

lon Flux oooooo>
Differential

CTIA

Drift tube electrode ~ Reference electrode shielded from ion path

Aperture grid

The CTIA is an integrating detector -

» Additional processing is required |I| y Derivative of IMS data

[ [ |} «=—Raw IMS data
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Comparison of Detector Technologies

OPA129 (Texas Instruments) Electrometer DMO04 Differential CTIA
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? University of Arizona Miniature

IMS Drift Tube Schematic

Pusher Gate Air and reactant
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241Am

Drift tube electrode
Sample and reactant Aperture grid

Same IMS miniature IMS instrument was used for detector comparisons.
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University of Arizona Miniature IMS
with Differential CTIA Detector
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Drift Tube
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Detector Comparison Results

Limit of Detection Relative
(3c/slope) Sensitivity
OP129A 1.5 ng 1
Single-ended CTIA 1.4 pg 1100
Differential CTIA 790 fg 1900
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Miniature IMS Plasmagrams
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Miniature IMS Plasmagrams
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Pocket IMS — Handheld Explosives
Detection System

Specifications

*Dimensions =3 32 12%in.
*Weight=2.81b

- Battery life = ~2.5 hr

* Desiccant life = 12+ hr
 Warm-up time < 15 min

« Sampling rate ~1 liter/min

Features

* Visible alarm
 Audible alarm option

» Single handed, one-button operation
» Custom software for OS and data interpretation

* Onboard desiccant, temperature, and battery-life sensors

» Metal foam preconcentrator for high-efficiency vapor sampling
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* Detection of Trace Explosives from

a Simulated Vehicle Bomb

« 200 Ib of TNT were loaded into the trunk of a car to simulate the
explosives contamination generated during the preparation of a
simulated vehicle-borne improvised explosive device (VBIED).

— TNT was in a cardboard box that was double-bagged in plastic.

» Opportunity to test Pocket IMS under “real-world” conditions.
— All sampling by the Pocket IMS was non-contact air sampling.
— Air samples were acquired for 15 seconds.
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Air in Middle of Trunk

Amplitude

T VAL =3
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« Sampling air in middle of trunk after TNT was removed.
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Near Trunk Wall
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« Sampling near carpeted trunk wall after TNT was removed.

Amplitude
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System
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Driver’s Side Interior Door Handle
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« Sampling near interior door handle on driver’s side after TNT had been
loaded into the trunk.

— Contact transfer from the explosive handler.
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Driver’s Seat Belt Buckle

Amplitude
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« Sampling near drivers seat belt buckle after TNT had been loaded into
the trunk.

— Contact transfer from the explosive handler.
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: i Conclusions

« A differential charge transimpedance amplifier (CTIA) as been
developed for ion detection in ion mobility spectrometry.

» The differential CTIA has demonstrated a ~2000-fold increase in
sensitivity compared with conventional electrometer-based Faraday
plate detectors.
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