

Fuel Cycle Research and Development

Used Fuel Storage Security

Felicia A. Durán
Sandia National Laboratories

Albert G. Garrett and Sherri L. Garrett
Pacific Northwest National Laboratory

Institute of Nuclear Materials Management
51st Annual Meeting • Baltimore MD
July 11-15, 2010

Used Fuel Disposition Campaign

■ U.S. Department of Energy Office of Nuclear Energy

- Fuel Cycle Research and Development Program

■ Used Fuel Disposition Campaign

- Identify alternatives and conduct scientific research and technology development to enable storage and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles

■ Used Fuel Storage

- R&D Opportunities
- Security
- Concepts Evaluation

■ Near-term focus is on dry storage of commercial LWR fuel

Used Fuel Storage Context

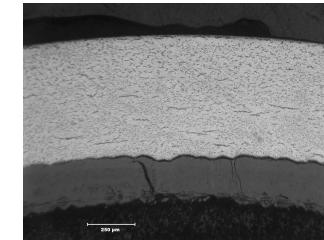
■ Policy

- Decision to cancel Yucca Mountain
- Need to store used fuel for the foreseeable future (300 years)

■ Issues

- Long-term dry storage of used fuel can be certified only up to 60 years
- Transport of used fuel after long term storage
- Storage and transportation of high burn-up fuel (> 45 GWD/MTU)
- Long-term security

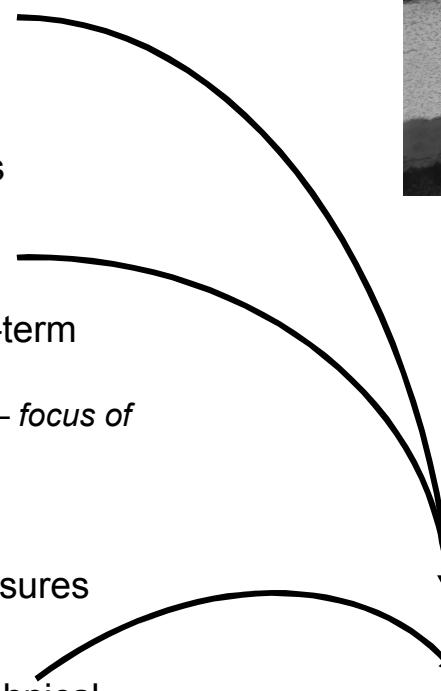
■ Consequences


- Technical bases needed for licensing very long-term storage and transportation
 - *Used fuel dry storage beyond 60 years*
 - *Transport of used fuel after long-term storage*
 - *Storage and transport of high burn-up fuel*

Addressing Consequences

■ R&D Opportunities

- Data gap analysis
- Plan to address gaps
- Development of technical basis


■ Security

- Regulatory analysis
- Identify issues relevant to long-term storage
 - e.g., self-protection attribute – focus of this presentation
- Assessments of gaps and improvements
- Recommended protection measures

■ Conceptual Evaluations

- Process for development of technical basis
- Evaluation of scenarios for decision makers

UFD Storage Implementation Plan Goals

- 1 yr: Develop project implementation process
- 5 yr: Project Implementation Plan & Development of Technical Basis
- 10 yr: Field used fuel storage system project

Self-protection for Spent Fuel

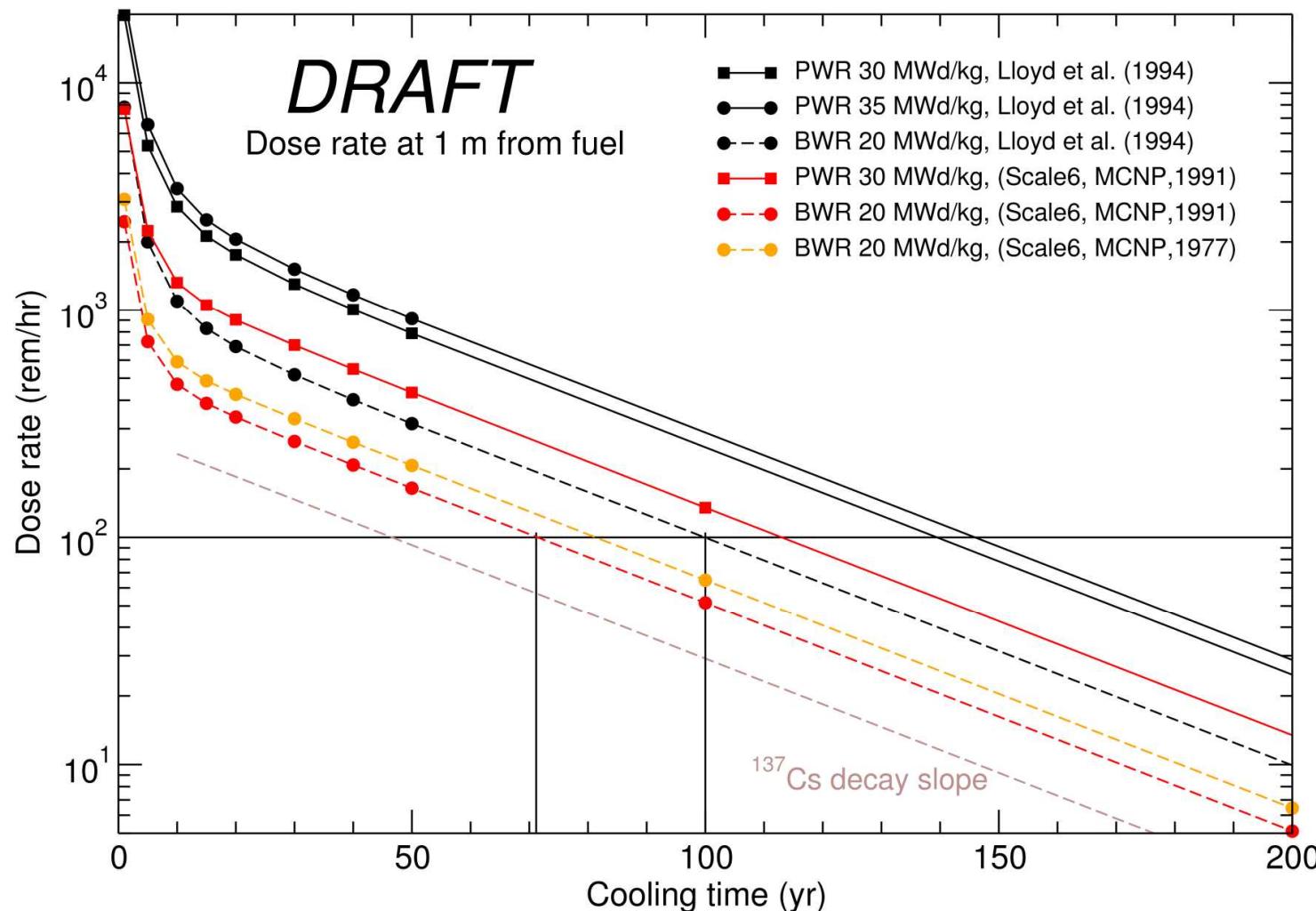
- **Within the Nuclear Regulatory Commission (NRC) regulations for Physical Protection of Plants and Materials (10 CFR 73), “self-protection” is a characteristic attributed to Special Nuclear Material (SNM)**
 - “which is not readily separable from other radioactive material and which has a total external radiation dose rate in excess of 100 rems per hour at a distance of 3 feet from any accessible surface without intervening shielding”
- **DOE material types have similar attribute for highly radioactive SNM**
 - “unshielded, emit a radiation dose measured at 1 meter that exceeds 100 rem/hour”
 - DOE material categorization for commercial used fuel would be Attractiveness Level E (all other materials – highly irradiated forms), Category IV

Self-protection for Spent Fuel

- **Most commercial spent nuclear fuel (SNF) is considered self-protecting**
 - High radioactivity makes it extremely dangerous to handle
 - For fuel that has cooled for 15 years, a lethal dose (LD50/30) of 450 rem would be received at 3 feet after about several minutes (Lloyd et al., 1994)
 - More recent ORNL study (Coates et al., 2005) for research and test reactor spent fuel looks at radiation effects on personnel performance capability – incapacitation that prevents exposed individual from completing intended task
 - *“a dose rate of 10,000 rad/hr (100 Gy/hr) at 1 m was determined to be the level that significantly affected performance of the perpetrator and offered limited self-protection (in the range of minutes)”*

Self-protection of Used Fuel

■ Dose rate calculations


- Previous calculations extended to 200 years – dose falls below 100 rem/hr at about 100 years for BWR fuel and between 120 to 150 years for PWR fuel
- New calculations indicate used fuel falls below current threshold after about 70 years
- Increases with increasing burn-up
- After about 20-30 years, tracks with Cs-137 decay

■ “Self-Protection” in today’s world

- Regulations were written prior to 9/11 events
- NRC is engaged in discussions looking at the validity of the current thresholds and is considering raising the standard.
- Used fuel stored for extended periods of time will go below the higher thresholds earlier

Preliminary Results - Dose Rates for PWR/BWR Low Burn-up Fuels

Dose calculations by Richard Wittman, Brady Hanson, and Amy Cassellas, Pacific Northwest National Laboratory

Issues for Self-protection for Very Long-Term Storage

■ Issues for current level for self-protection

- Because of self-protection, only radiological sabotage is a concern
 - *Protection goal for physical protection is to protect against loss of control of the facility that could be sufficient to cause radiation exposure in excess of specified dose limits*
- Is 100 rem/hr [equivalent to 100 rad/hr (1 Gy/hr) absorbed dose] the level of self-protection that is needed for VLTS of used fuel?
 - *ORNL Study concludes “that for research reactor spent fuel, self-protection from a committed terrorist does not exist” at the current level*
 - *Early onset (within minutes) of incapacitation appears to occur in all exposed individuals at levels of 2500 rad (25 Gy) and above*
 - *Follow-up study (Coates and Broadhead, 2007) on power reactor spent fuel (PWR, BWR, MOX PWR, and VVER) indicates activity stays near 10,000 rad/hr (100 Gy/hr) at 0.2 m for a period of 10 years*

Ongoing Used Fuel Storage Security Activities

- **Comparison of NRC and DOE regulations applicable to very long term storage of used fuel**
 - Material categorization
 - Type of security area
- **Regulatory framework for different options of used fuel storage system project**
 - NRC and/or DOE sites
 - Security criteria for concepts evaluation
 - Possible impacts of current NRC rulemaking
- **Security assessment methodologies**
 - Identify and address gaps
 - Opportunity to improve performance
 - Recommended protection measures