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ROM-ES: Uncertainty quantification of reduced order model errors

Martin Drohmann, Kevin Carlberg

Problem description UQ of ROM errors

A huge challenge 1n model based decision making i1s the quantification of uncertain- We want to quantify the two following uncertain values: 1. Multifidelity analysis substitutes the bias with a surrogate

ties. Once the most important sources of uncertainty are identified, the ideal process of e The error ||§, | is the “true” error between the state solutions OMF inferred from the mapping p > ds(pt).
decison making could look like this: of the full order model (FOM) and the ROM. Note: This is 2. Error bounds A, > [0y, Ay > 8, are intrusive, rigorous
usually unknown, as the FOM solution is not computed. bounds of the reduction errors that ship with most projection

o . e The difference s = sq — s is the bias for the quantity of =~ ROM:s.
Ideal decision making interest (Qol) s. 3. The newly proposed ROM-ES (ROM error surro-
gates) combine both ideas, as they use stochastic
UQ application — Postprocessing — Decision surrogates for ||d,|| and d,, but trained with cheap
In order to quantify these errors, we consider three approaches: error indicators as inputs.
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In this setting, the computational model has to be evaluated for lots of different param- tight error bounds (V) - - v
eters, and unle?ss the problerr.l 1s of very §1mple k1nq, the application will most likely | * rigorous for 2% of evaluations
excess the available compuational capacities very quickly. Therefore, the slow compu- Qol Speq(t) stochastic error surrogates + good effectivity can only be obtained with

tational model 1s usually substituted by faster reduced order models (ROMs). very intrusive methods
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query few times
(10-100 times) Test problem (thermal block from RBmatlab [RBM] toolbox):
e Parametrized heat equation: 62 basis functions.
Ac(z; p)u(x; ) =0 1n €, . :
Reduced order models . (2 pul; p) e compliant problem, i.e.
e nine parameters: 5 = & — Sraq = ||t — ured|”2 >0
e introduce ROM errors into the application, which need to be quantified. pe P =[0.1,10. | H
e can usually be categorized as either e Output: e error indicator: Residual 12(u)
— interpolation (e.g. regression methods, kriging, ...) or s(p) = s(u(p)) = Jr Ny u(p)dx e tested surrogates: GP. kerr.lel .[cite ras-
— projection (e.g. POD, reduced basis methods, balanced truncation, ...). o . plussen] and RVM [.01te Tipping] with
e Reduced basis [cite] ROM with N = inferred constant variance
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- are very intrusive and slow.
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e Mapping based on error indicators 1s far more structured compared to
parameter mapping.

(1) Indicators mapped (11) Parameters mapped
to output bias to output bias
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error indicators Parameters (yi1, o)

e Bias correction improves output by one order of magnitude, compared
to worsening for multifidelity approach.
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e Stochastic error estimates can compete with error bounds, but are far
less intrusive. Probability of rigorous error estimates (overestimation)
1s controllable.

50%-rigorous freq. of non— 90%-rigorous freq. of non-
estimate rigorous estimations estimate rigorous estimations
8 [ T T T T ; ] T T T T T 20 F ‘o T T T [ —
- %é%%
6 o4 | 2 s S
> = '
8 4| 1 10 | :
= i | 1005 |
K TID 2 | o || o | T 5
T o= = , ) | Skl : ,

20 40 60 80 1004 20 40 60 &0 100 20 40 60 80 1004 20 40 60 &0 100

boun
boun

size of train- size of train-
ing sample ing sample
e The assumption of a Gaussian process could be validated

e “Good convergence”’: Only a few training samples are necessary to
obtain reliable error surrogates.

e Especially for non—linear problems: Error surrogates can be computed
non—intrusively.

Outlook:

e Integration into UQ application framework for performance evaluations

e Improvment of ROM generation with efficient ROM-ES error evalua-
tions
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