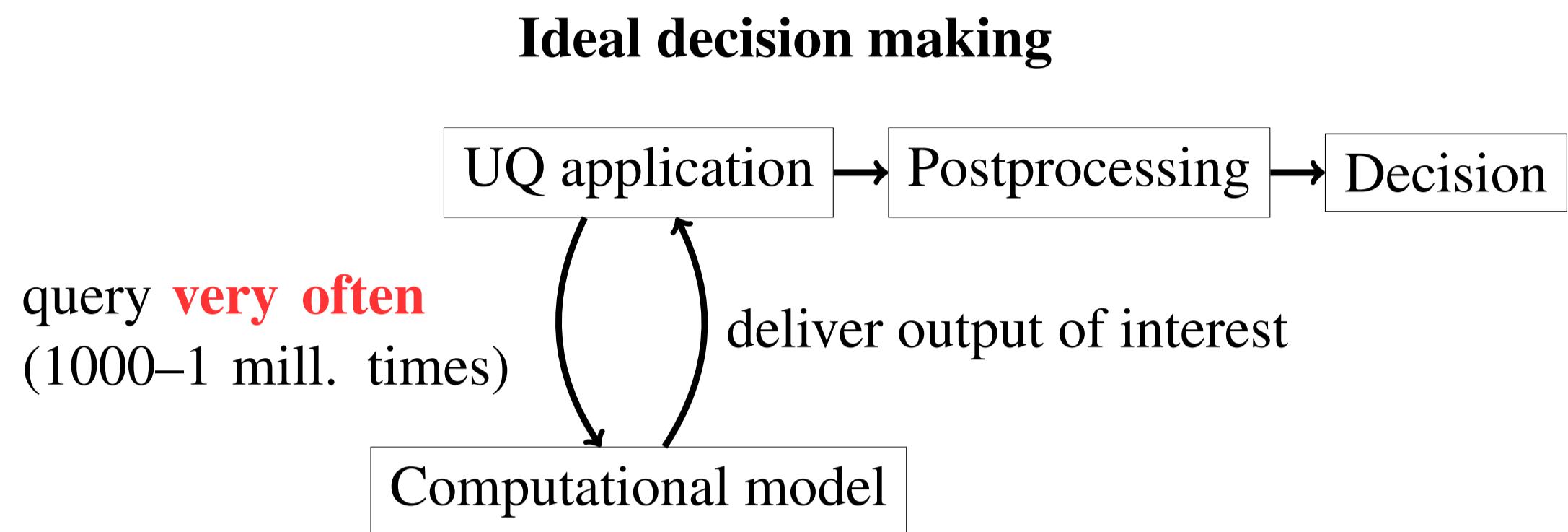


ROM-ES: Uncertainty quantification of reduced order model errors

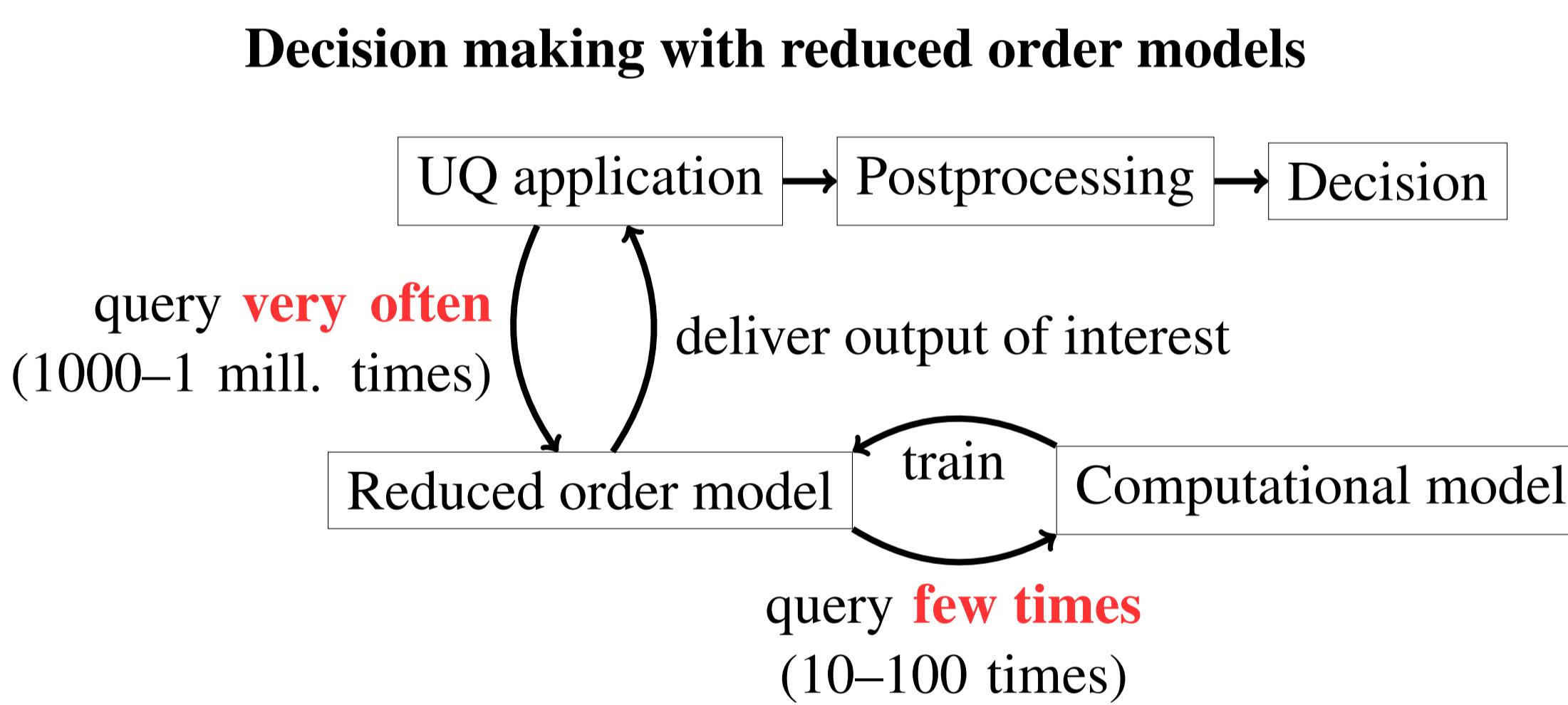
Martin Drohmann, Kevin Carlberg

Problem description

A huge challenge in model based decision making is the quantification of uncertainties. Once the most important sources of uncertainty are identified, the *ideal* process of decision making could look like this:



In this setting, the computational model has to be evaluated for lots of different parameters, and unless the problem is of very simple kind, the application will most likely exceed the available computational capacities very quickly. Therefore, the *slow* computational model is usually substituted by faster reduced order models (ROMs).



Reduced order models ...

- introduce **ROM errors** into the application, which need to be **quantified**.
- can usually be categorized as either
 - interpolation** (e.g. regression methods, kriging, ...) or
 - projection** (e.g. POD, reduced basis methods, balanced truncation, ...).

Projection methods...

- + retain physical dynamics, and
- + usually ship with (rigorous) error bounds, that ...
- often overestimate "true errors" significantly or
- are very intrusive and slow.

Interpolation methods...

- + are faster to compute,
- + are nonintrusive,
- need more training data,
- do not have rigorous error bounds.

ROM-ES method combines advantages!

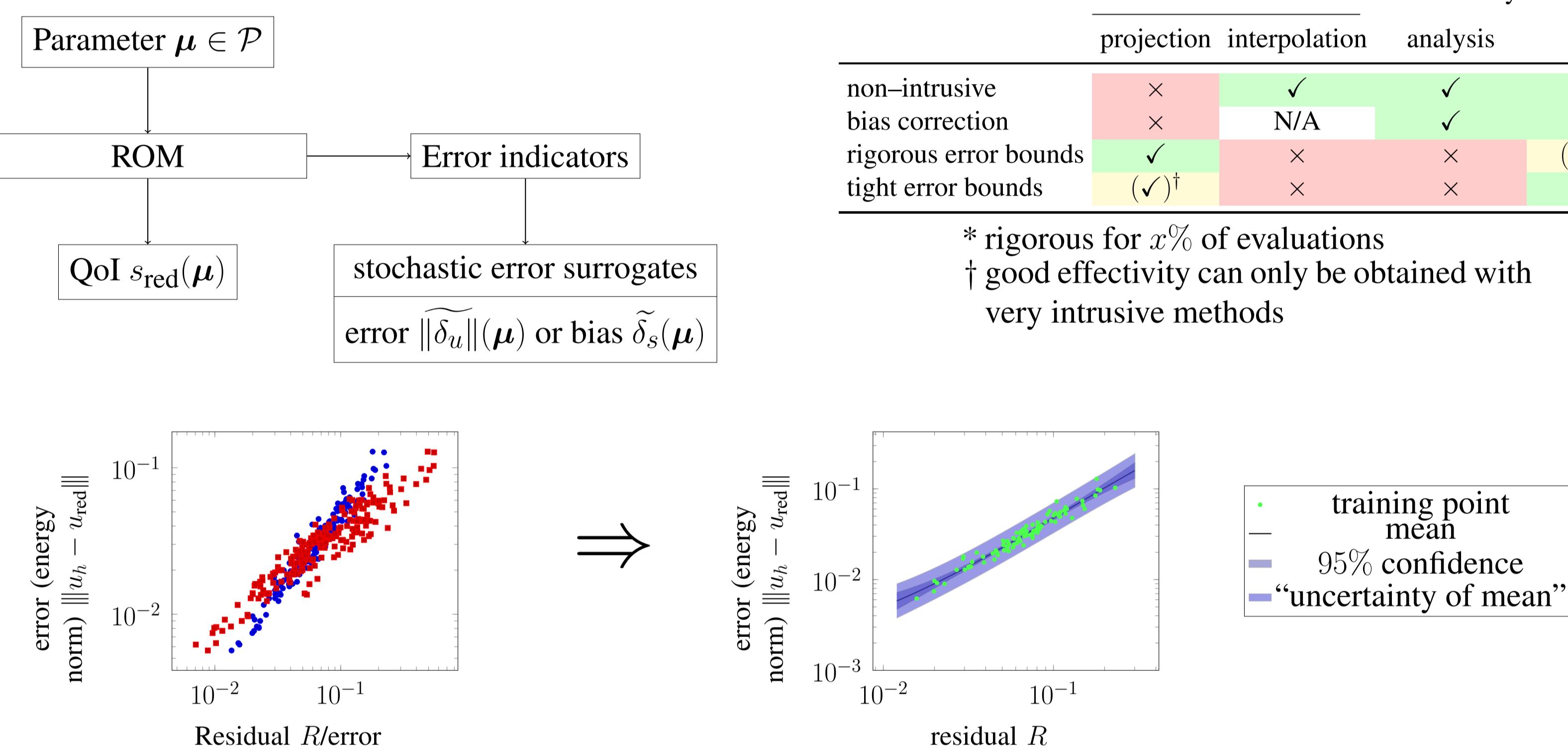
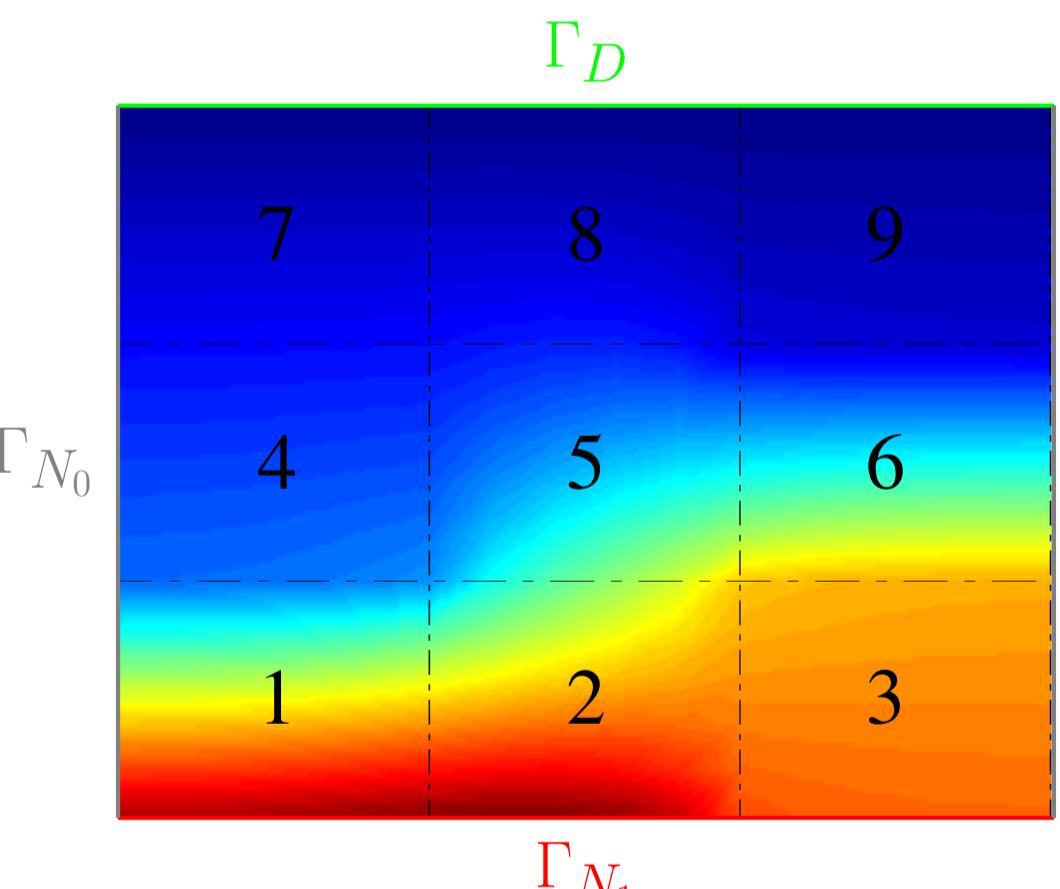
UQ of ROM errors

We want to quantify the two following uncertain values:

- The error $\|\delta_u\|$ is the **"true" error** between the state solutions of the full order model (FOM) and the ROM. **Note:** This is usually unknown, as the FOM solution is not computed.
- The difference $\delta_s = s_{\text{red}} - s$ is the **bias** for the quantity of interest (QoI) s .

In order to quantify these errors, we consider three approaches:

ROM-ES Schema



Test problem (thermal block from RBmatlab [RBM] toolbox):

- Parametrized heat equation: $\Delta c(x; \mu)u(x; \mu) = 0$ in Ω ,
- nine parameters: $\mu \in \mathcal{P} := [0, 1]^9$.
- Output: $s(\mu) = s(u(\mu)) := \int_{\Gamma_{N_1}} u(\mu) \mathrm{d}x$
- Reduced basis [cite] ROM with $N =$
- 62 basis functions.
- compliant problem, i.e. $\delta_s = s - s_{\text{red}} = \|u - u_{\text{red}}\|_{\mu}^2 > 0$.
- error indicator:** Residual $R(u)$
- tested surrogates: GP kernel [cite rasmussen] and RVM [cite Tipping] with inferred constant variance

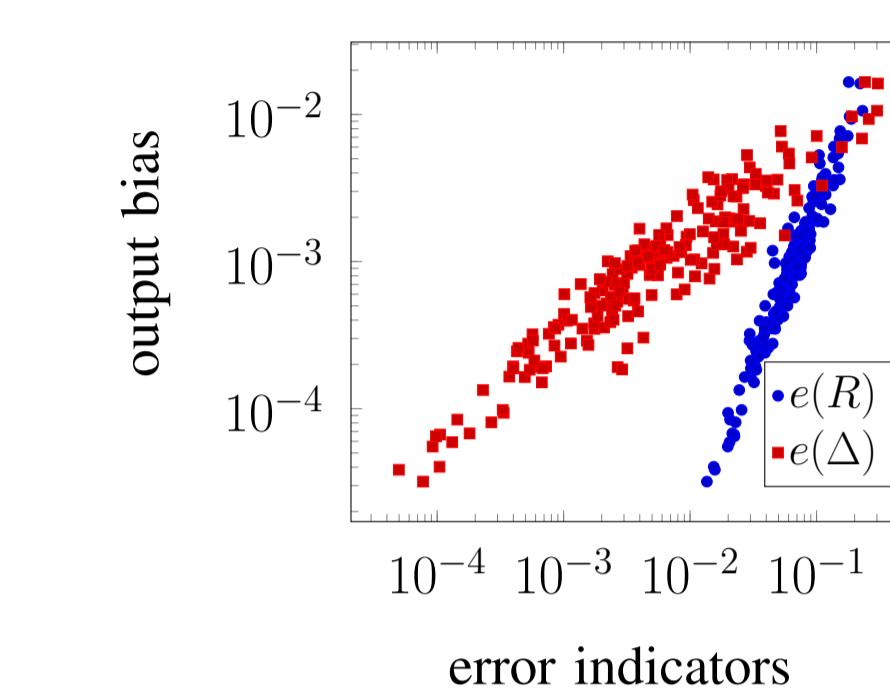
References

- [DC13] M. Drohmann, K. T. Carlberg. *Uncertainty quantification for+ surrogate models via error indicators with application to reduced-basis methods* to be submitted
- [PG06] A. Patera and G. Rozza. *Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations*. Version 1.0, Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering
- [RBM] RBMatlab toolbox. <http://www.morepas.org/software>
- [Tip01] M. E. Tipping. *Sparse Bayesian learning and the Relevance Vector Machine*. Journal of Machine Learning Research, pp. 211–244 (1), 2001
- [RW06] C. E. Rasmussen and C. K. I. Williams. *Gaussian Processes for Machine Learning*. The MIT Press, 2006

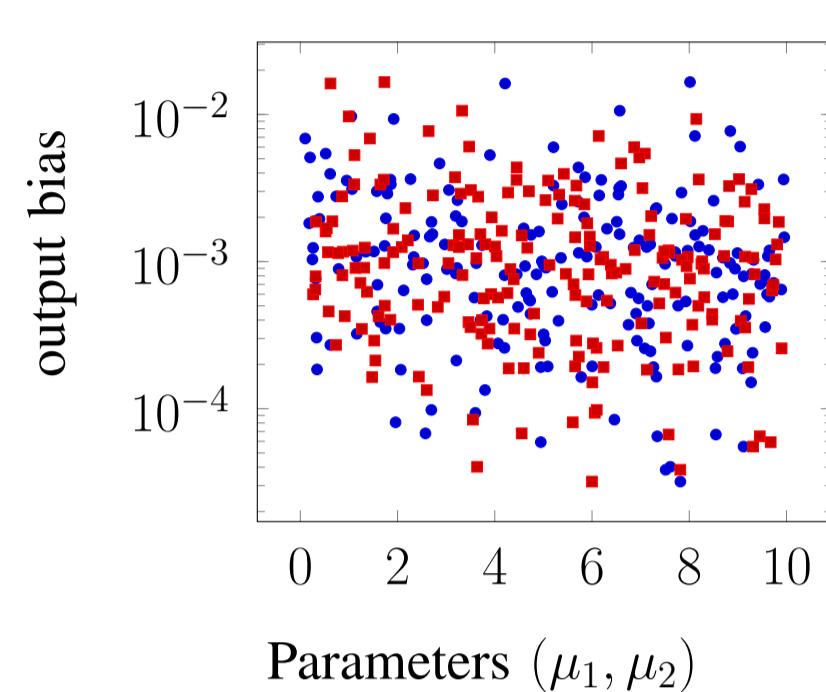
Results

- Mapping based on error indicators is far more structured compared to parameter mapping.

(i) Indicators mapped to output bias



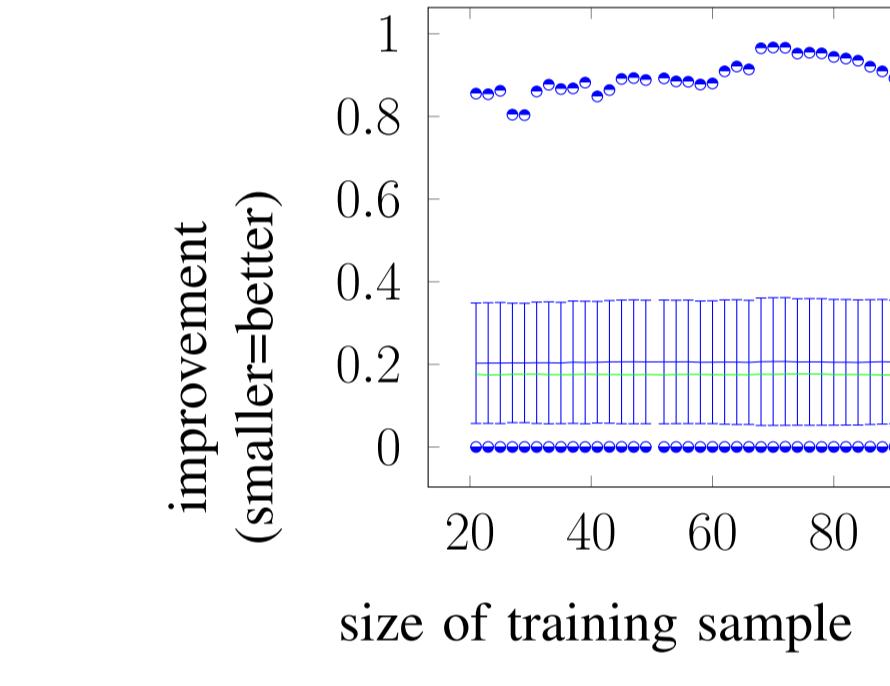
(ii) Parameters mapped to output bias



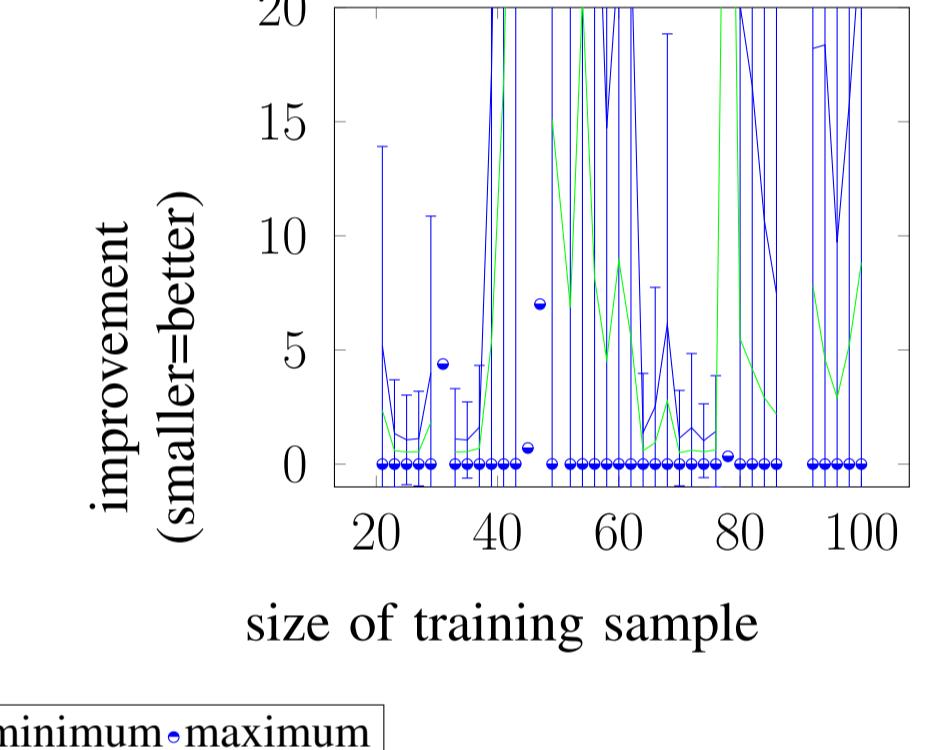
- Bias correction improves output by one order of magnitude, compared to worsening for multifidelity approach.

$$\text{improvement} = E \left(\frac{s_{\text{red}} + \tilde{\delta}_s}{s_{\text{red}}} \right)$$

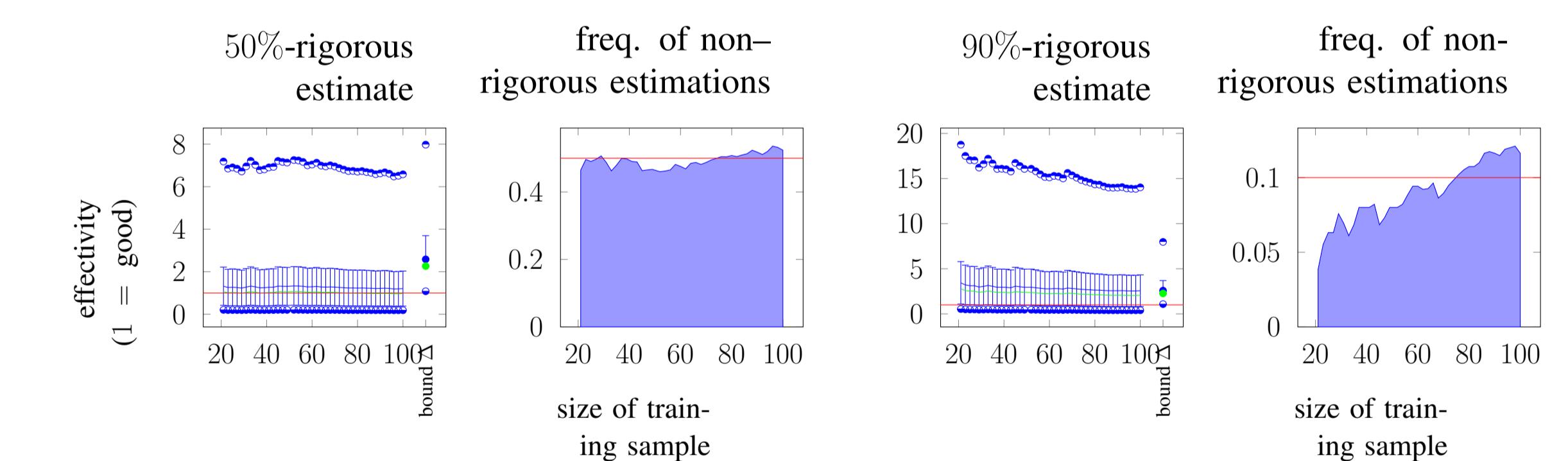
(i) Residual based GP



(ii) Parameter based GP



- Stochastic error estimates can compete with error bounds, but are far less intrusive. Probability of rigorous error estimates (overestimation) is controllable.



- The assumption of a Gaussian process could be validated

"Good convergence": Only a few training samples are necessary to obtain reliable error surrogates.

- Especially for **non-linear** problems: Error surrogates can be computed non-intrusively.

Outlook:

- Integration into UQ application framework for performance evaluations
- Improvement of ROM generation with efficient ROM-ES error evaluations