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Problem description

A huge challenge in model based decision making is the quantification of uncertain-
ties. Once the most important sources of uncertainty are identified, the ideal process of
decison making could look like this:

Ideal decision making

UQ application Postprocessing Decision

Computational model

query very often
(1000–1 mill. times)

deliver output of interest

In this setting, the computational model has to be evaluated for lots of different param-
eters, and unless the problem is of very simple kind, the application will most likely
excess the available compuational capacities very quickly. Therefore, the slow compu-
tational model is usually substituted by faster reduced order models (ROMs).

Decision making with reduced order models

UQ application Postprocessing Decision

Reduced order model Computational model

query very often
(1000–1 mill. times)

deliver output of interest

query few times
(10–100 times)

train

Reduced order models . . .

• introduce ROM errors into the application, which need to be quantified.

• can usually be categorized as either

– interpolation (e.g. regression methods, kriging, . . . ) or
– projection (e.g. POD, reduced basis methods, balanced truncation, . . . ).

Projection methods. . . Interpolation methods. . .

+ retain physical dynamics, and

+ usually ship with (rigorous) error
bounds, that . . .

- often overestimate “true errors” sig-
nificantly or

- are very intrusive and slow.

+ are faster to compute,

+ are nonintrusive,

- need more training data,

- do not have rigorous error bounds.

ROM-ES method combines advantages!

UQ of ROM errors

We want to quantify the two following uncertain values:

• The error ‖δu‖ is the “true” error between the state solutions
of the full order model (FOM) and the ROM. Note: This is
usually unknown, as the FOM solution is not computed.

• The difference δs = sred − s is the bias for the quantity of
interest (QoI) s.

In order to quantify these errors, we consider three approaches:

1. Multifidelity analysis substitutes the bias with a surrogate
δ̃MF
s inferred from the mapping µ 7→ δs(µ).

2. Error bounds ∆u ≥ ‖δu‖, ∆s ≥ δs are intrusive, rigorous
bounds of the reduction errors that ship with most projection
ROMs.

3. The newly proposed ROM-ES (ROM error surro-
gates) combine both ideas, as they use stochastic
surrogates for ‖δu‖ and δs, but trained with cheap
error indicators as inputs.

ROM-ES Schema

Parameter µ ∈ P

ROM

QoI sred(µ)

Error indicators

stochastic error surrogates

error ‖̃δu‖(µ) or bias δ̃s(µ)

ROMs based on multifidelity ROM-ES

projection interpolation analysis

non–intrusive × X X X
bias correction × N/A X X
rigorous error bounds X × × (X)∗

tight error bounds (X)† × × X

* rigorous for x% of evaluations
† good effectivity can only be obtained with

very intrusive methods
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Test problem (thermal block from RBmatlab [RBM] toolbox):

• Parametrized heat equation:
4c(x;µ)u(x;µ) = 0 in Ω,
• nine parameters:
µ ∈ P := [0.1, 10]9.
•Output:
s(µ) = s(u(µ)) :=

∫
ΓN1

u(µ)dx

• Reduced basis [cite] ROM with N =

62 basis functions.

• compliant problem, i.e.
δs = s− sred = |||u− ured|||2µ > 0.

• error indicator: Residual R(u)

• tested surrogates: GP kernel [cite ras-
mussen] and RVM [cite Tipping] with
inferred constant variance

References

• [DC13] M. Drohmann, K. T. Carlberg Uncertainty quantification for+ surrogate models via error indicators with application to
reduced-basis methods to be submitted

• [PG06] A. Patera and G. Rozza. Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial
Differential Equations. Version 1.0, Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs
in Mechanical Engineering

• [RBM] RBMatlab toolbox. http://www.morepas.org/software

• [Tip01] M. E. Tipping. Sparse Bayesian learning and the Relevance Vector Machine. Journal of Machine Learning Research,
pp. 211–244 (1), 2001
• [RW06] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning The MIT Press, 2006

Results

•Mapping based on error indicators is far more structured compared to
parameter mapping.

10−4 10−3 10−2 10−1

10−4

10−3

10−2

error indicators

ou
tp

ut
bi

as

(i) Indicators mapped
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•Bias correction improves output by one order of magnitude, compared
to worsening for multifidelity approach.
improvement = E

(
sred+δ̃s
sred

)
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(i) Residual based GP
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(ii) Parameter based GP

mean ± std median minimum maximum

• Stochastic error estimates can compete with error bounds, but are far
less intrusive. Probability of rigorous error estimates (overestimation)
is controllable.
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•The assumption of a Gaussian process could be validated

• “Good convergence”: Only a few training samples are necessary to
obtain reliable error surrogates.

•Especially for non–linear problems: Error surrogates can be computed
non–intrusively.

Outlook:
• Integration into UQ application framework for performance evaluations

• Improvment of ROM generation with efficient ROM-ES error evalua-
tions
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