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Two Problems of Current Interests

ELPASOLITES:
A2BLnX6: A, B: alkali; Ln: lanthanide; X: halogen. 
Cubic crystals have good properties and low cost. 
But how to design materials that have cubic 
crystals?

LANTHANIDE (e.g., LaBr3):
Extremely brittle, high cost, fracture in the field. 
What is the deformation mechanisms and can it be 
strengthened?
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Electronegativity Effect
Double Perovskite Cs2LiLaBr6

[1]. P. Yang, M. A. Rodriguez, F. P. Doty, X. Zhou, 
M. R. Sanchez, and K. S. Shah, submitted.

[2]. X. W. Zhou, and F. P. Doty, Phys. Rev. B, 78, 
224307 (2008).

Observations:

1. Lattice constant of Cs2LiLaBr6 is a = 2rLiLa

= 11.289 Å[1], i.e., rLaLa = 7.983 Å.

2. fcc La has a lattice constant a = 5.307 Å and 
a cohesive energy Ec = -4.446 eV/atom[2]. In 
fcc La, rLaLa = 3.753 Å.

3. It is difficult to for a potential to be 
transferrable to both Cs2LiLaBr6 and La.

The electronegativity difference-
induced ionization can increase 
the bond length and reduce the 
bond strength.

Solution:
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Embedded Ion Method (EIM)
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,*when ij(r) ~ r-1, the embedding energy reduces to 

Coulomb interactions between i and its neighbors:
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The 1st Problem: Crystal Prediction

A2BLnX6: A, B: alkali; Ln: lanthanide; X: halogen.

[1]. G. Meyer, Prog. Solid St. Chem., 14, 141 (1982).
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Two Notions

[1]. V. M. Goldschmidt, Geochemisce Verterlungsgesetze der Elemente. Norske Videnskap, Oslo, 1927;
[2]. L. Liang, L. Wencong, and C. Nianyi, J. Phys. Chem. Sol., 65, 855 (2004).

1.Goldschmidt criterion[1,2] (hard sphere 
model) constrains bond length r to ionic 
radii R: rAA = 2RA, rBB = 2RB, rAB = RA + 
RB, … Our model treats all bond lengths 
as independent parameters.

2.We model alkali halides as a first step 
because elpasolites are composed of alkali, 
halogen, and lanthanide elements. 
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EIM Potential Database

1.contains all nine alkali halide elements (Li, 
Na, K, Rb, Cs F, Cl, Br, I),

2.focuses on atomic size, but also considers 
electronegativity and bond energy effects,

3.uses elemental properties directly as model 
parameters without parameterization, and

4.gives good trend of charge, energy, and bond 
length predictions.
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Charge vs. Electronegativity
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Lattice Constant Prediction
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Cohesive Energy Prediction
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Structure Prediction
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Crystal Phase Diagram
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(a) c/a ~ 0.57; (b) rotated Br polyhedron; (c) two 
La-Br bond lengths; and (d) big lattice hollows 

The 2nd Problem: LaBr3 Fracture

Our LaBr3 EIM captures the structural properties!
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Tensile Fracture vs. Orientation
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Tensile Stress vs. Strain
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[0001] Edge Dislocation under 4GPa at 0 K
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[0001] screw dislocation under 3GPa at 0 K
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Slip Systems

•The only mobile dislocations in LaBr3 are on the 
prism planes.
•The material cannot be strain-hardened. 
Approaches that block dislocation motion on the 
prism planes must be sought.
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Conclusions
•New atomistic simulation methods enable crystal rules to be 
explored in atomic size-electronegativity-bond energy space.

•A new crystal rule beyond the hard sphere model was 
discovered for alkali halides.

•The critical stress for the {1120} cleavage is very low in LaBr3.

•The only mobile dislocations in LaBr3 are on the {1120} prism 
planes.

•LaBr3 cannot be strain-hardened. Approaches that block the 
dislocations (e.g., solid-solution strengthening) can be used.
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