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1.0 Executive Summary 
The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry 
and academic institutions that is developing and deploying state-of-the-art computational modeling and 
simulation tools to accelerate the commercialization of carbon capture technologies from discovery to 
development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The 
CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically 
validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making 
capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by 
industry and is also developing new software tools as necessary to fill technology gaps identified during 
execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more 
quickly identified through rapid computational screening of devices and processes; (2) reduce the time to 
design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology 
from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing 
some of the physical operational tests with virtual power plant simulations.  

CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of 
Energy (DOE) national laboratories’ core strengths in modeling and simulation, bringing together the best 
capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory 
(LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory 
(PNNL). The CCSI’s industrial partners provide representation from the power generation industry, 
equipment manufacturers, technology providers and engineering and construction firms. The CCSI’s 
academic participants (Carnegie Mellon University, Princeton University, West Virginia University, 
Boston University and the University of Texas at Austin) bring unparalleled expertise in multiphase flow 
reactors, combustion, process synthesis and optimization, planning and scheduling, and process control 
techniques for energy processes.  

During Fiscal Year (FY) 13, CCSI announced the initial release of its first set of computational tools and 
models during the October 2012 meeting of its Industry Advisory Board. This initial release led to five 
companies licensing the CCSI Toolset under a Test and Evaluation Agreement this year. 

By the end of FY13, the CCSI Technical Team had completed development of an updated suite of 
computational tools and models. The list below summarizes the new and enhanced toolset components 
that were released following comprehensive testing during October 2013. 

1. FOQUS. Framework for Optimization and Quantification of Uncertainty and Sensitivity. Package 
includes: FOQUS Graphic User Interface (GUI), simulation-based optimization engine, Turbine 
Client, and heat integration capabilities. There is also an updated simulation interface and new 
configuration GUI for connecting Aspen Plus or Aspen Custom Modeler (ACM) simulations to 
FOQUS and the Turbine Science Gateway.  

2. A new MFIX-based Computational Fluid Dynamics (CFD) model to predict particle attrition.  
3. A new dynamic reduced model (RM) builder, which generates computationally efficient RMs of 

the behavior of a dynamic system. 
4. A completely re-written version of the algebraic surrogate model builder for optimization 

(ALAMO). The new version is several orders of magnitude faster than the initial release and 
eliminates the MATLAB dependency.  

5. A new suite of high resolution filtered models for the hydrodynamics associated with horizontal 
cylindrical objects in a flow path.  

6. The new Turbine Science Gateway (Cluster), which supports FOQUS for running multiple 
simulations for optimization or UQ using a local computer or cluster. 

7. A new statistical tool (BSS-ANOVA-UQ) for calibration and validation of CFD models. 
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8. A new basic data submodel in Aspen Plus format for a representative high viscosity capture 
solvent, 2-MPZ system. 

9. An updated RM tool for CFD (REVEAL) that can create a RM from MFIX. A new lightweight, 
stand-alone version will be available in late 2013. 

10. An updated RM integration tool to convert the RM from REVEAL into a CAPE-OPEN or ACM 
model for use in a process simulator.  

11. An updated suite of unified steady-state and dynamic process models for solid sorbent carbon 
capture included bubbling fluidized bed and moving bed reactors. 

12. An updated and unified set of compressor models including steady-state design point model and 
dynamic model with surge detection.  

13. A new framework for the synthesis and optimization of coal oxycombustion power plants using 
advanced optimization algorithms. This release focuses on modeling and optimization of a 
cryogenic air separation unit (ASU). 

14. A new technical risk model in spreadsheet format. 
15. An updated version of the sorbent kinetic/equilibrium model for parameter estimation for the 1st 

generation sorbent model. 
16. An updated process synthesis superstructure model to determine optimal process configurations 

utilizing surrogate models from ALAMO for adsorption and regeneration in a solid sorbent 
process.  

17. Validation models for NETL Carbon Capture Unit utilizing sorbent AX. Additional validation 
models will be available for sorbent 32D in 2014. 

18. An updated hollow fiber membrane model and system example for carbon capture. 
19. An updated reference power plant model in Thermoflex that includes additional steam extraction 

and reinjection points to enable heat integration module. 
20. An updated financial risk model in spreadsheet format. 
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2.0 Technical Highlights and Key Results 
Figure 1 shows the 8 major product categories (Tasks) of the CCSI Toolset. These categories correspond 
with the activities involved with the development of a new chemical process, such as a carbon capture 
system. This includes the development of submodels for basic data, such as thermodynamics and kinetics, 
and using those submodels within process models to synthesize and optimize a process design. The next 
major activity is identifying promising device configurations to serve as the basis for more detailed CFD 
simulations, then pulling all the information together to assess project risk and determine whether or how 
to proceed. Unique within CCSI is the integration of uncertainty quantification among the simulation 
scales. To effectively design a new process with new technology, each of these blocks is important and 
must interact to achieve an efficient, cost effective system. 

 

Figure 1: The 8 Product Categories of the CCSI Toolset 

 

Scope of Project 

Solid-sorbent-based post-combustion capture technology served as the initial demonstration technology 
for CCSI. Beginning with this project year, we will begin to wrap up the development of solid sorbent 
specific models and expand the demonstration capture technology to solvent systems. The project’s task 
structure is organized around the 8 product categories: basic data submodels, high resolution filtered 
submodels, validated high-fidelity CFD models & UQ, steady-state and dynamic process models, process 
optimization & UQ, integrated framework for dynamics & control, risk analysis & decision making, and 
crosscutting integration tools, each as a major technical task in addition to Project Management (Task 1). 
The work in this project represents the combined work across five national labs and five universities. 
Table 1 shows the contribution, by lab, to each Task in this project. 
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Table 1: Contribution to Each Task by Lab 

Task  NETL LANL LBNL LLNL PNNL 
1: Project management  Lead     
2: Basic data submodels  Lead    
3: High resolution filtered submodels Lead    Co-Lead 

4: Validated high-fidelity CFD models & UQ  Co-Lead   Lead 

5: Process Models Lead     
6: Process optimization & UQ Lead   Co-Lead  
7: Integrated framework for dynamics & control Lead     
8: Risk analysis & decision making  Lead   Co-Lead 

9: Crosscutting integration tools    Lead   

Task 1: Project Management and Industry Advisory Board 

The technical team updated its Year 3 activities and developed a new organizational structure. This new 
organizational structure responds to feedback from its Industry Advisory Board (IAB) and DOE 
Headquarters (HQ). In addition, it incorporates new opportunities that were identified during the initial 
two years of the project (February 2011 through January 2012 under American Recovery and 
Reinvestment Act of 2009 (ARRA) funding and February 2012 through January 2013 under Advanced 
Research funding). The new features of CCSI that were initiated this year include (1) the launch of 
modeling activities related to solvent based CO2 capture, (2) the integration of UQ activities coupled 
directly with three types of modeling activities, and (3) the introduction of a new approach for developing 
and applying dynamic process simulation. 

 

Industry Advisory Board (IAB). Two meetings of the IAB were conducted. The first in October 2012 
focused on the initial release of the CCSI Toolset. The second, in April 2013, introduced the new CCSI 
organizational structure and new solvent component of the program. 

In October 2012, the CCSI Technical Team met with representatives from the 19 companies currently 
participating in its IAB to present its first set of computational tools and models. This pre-release, a year 
ahead of the originally planned first release, was the result of intense industry interest in getting early 
access to the tools and the rapid progress of the CCSI technical team. These initial components of the 
CCSI Toolset provided new models and computational capabilities that will accelerate the commercial 
development of carbon capture technologies and a broad range of technology development in general 
(power, refining, chemicals production, gas production, etc.). Following the industry advisory board 
workshop, Dr. John Shinn, the CCSI IAB coordinator, reported that “IAB members found the program 
progress impressive, well beyond what they might have expected at this point in the program, and that the 
program continues to be very well coordinated...the CCSI tool set pre-release of 21 technology 
deployment support tools, which appeared well ahead of original schedule, was very well received by the 
member companies with multiple members making immediate plans for adoption of the tools. The toolset 
is seen as being highly applicable for the CCSI core objectives (accelerating carbon capture deployment) 
as well as a broad range of other industry technology development and deployment applications.” 

In April 2013, the CCSI Technical Team conducted its bi-annual program review meeting to highlight 
continued progress on the development of the CCSI Toolset, preview new capabilities that will be 
available in the next release, and assist companies seeking to adopt tools to accelerate their own 
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development projects. Several companies sent large contingents to this meeting, including potential users 
of the tools, in addition to senior management.  

Following the April IAB meeting, two companies invited a subset of the CCSI Technical Team to visit 
their R&D centers to discuss capabilities of the CCSI Toolset and pave the way for them to license the 
tools, to introduce the capabilities of the tools to a broader cross section of its personnel, and also to 
explore ways they could collaborate more closely with the CCSI team. A visit was also made to the 
National Carbon Capture Center to discuss validation data for solvent systems, which is a new priority 
within CCSI. In several discussions with the CCSI Technical Team, one company has indicated that they 
have dedicated resources to utilize several components of the CCSI Toolset within their organization over 
the next 18 months. A CRADA with another has been finalized, which will provide CCSI access to 
detailed larger scale validation data and provide an opportunity for the toolset to be used to help scale up 
and further develop the process.  

 

Task 2.0 Basic Data Submodels and UQ  

Task 2 continued the development of submodels for solid sorbent carbon capture materials and initiated 
efforts in the development of appropriate submodels for solvent-based carbon capture as well. Major 
accomplishments related to solid sorbents include the development of an approach to statistically account 
for model discrepancy and incorporate it into process models. The accomplishments related to solvents 
include the development of a benchmark MEA model and the development of a submodel for a 
representative high viscosity solvent (2-MPZ).  

Solid sorbent model development: Development focused on incorporating model discrepancy into the 1st 
generation lumped kinetic model with ideal, 1st-order kinetics: 

 
The discrepancy is an advanced uncertainty quantification approach that will enable the submodel to be 
used more effectively for process scale up. A rate-based discrepancy solver was implemented and tested 
on a simple test problem. The test problem consisted of a very simple version of the 1st gen model, with a 
simulated “reality” that was effectively a two-step chemical rate expression. The model for this “reality” 
was then a single-step rate expression plus a Bayesian Smoothing Spline-Analysis of Variance (BSS-
ANOVA) discrepancy term.  

Following this initial demonstration, chemical models with discrepancy have been incorporated into 
process models of a bubbling fluidized bed adsorber. These efforts are ongoing, but have shown 
significant progress on two fronts: (1) a hypothetical simple model used to test the discrepancy modeling 
and iteration concepts, and (2) the full first-generation sorbent model. 

In the simple model case, the two-step “reality” function (corresponding to a two-step adsorption process 
involving equilibrated formation of a zwitterion intermediate) was used to generate an initial set of 
hypothetical TGA data. A simpler, one-step model (direct formation of carbamate from the gas) plus 
discrepancy was then calibrated to this model, yielding a set of plausible model functions that reproduce 
the data to a reasonable extent (see Figure 2).  
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Figure 2: Calibration of the Simple Model with Discrepancy (Green Curves) to the “Reality” 
Function (Black Curve). 

These functions were then incorporated into the bubbling fluidized bed model, yielding a set of curves 
that diverged widely as shown in Figure 3. These pressure and temperature profiles were then used to 
produce a second set of hypothetical TGA data by applying the “reality” function to a number of 
temperature and pressure profiles. As shown in Figure 4, the resulting profiles converge. Additional work 
is ongoing to reconcile inconsistencies in the converged model with discrepancy and the reality function. 

 
Figure 3: Temperature and Pressure Profiles for the Simple Model at the First Iteration. 

 

 
Figure 4: Temperature and Pressure Profiles for the Simple Model at the Second Iteration. 
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MEA solvent model for benchmarking: Basic data submodels for a number of physical properties in the 
MEA solvent model were updated and re-calibrated with experimental data. This updated and validated 
model will ultimately be incorporated into a benchmark MEA process model, which will be validated 
against pilot scale data from the National Carbon Capture Center (NCCC). The specific physical property 
submodels for which updated parameters have been determined include viscosity, density, and surface 
tension. Each of these physical properties strongly affects other models, which are used to calculate the 
rate at which CO2 is absorbed.  

 

High viscosity solvent model: A thermodynamic and kinetic model for the high viscosity CO2 capture 
solvent, 2-MPZ was developed. This model will serve as a framework for future high viscosity solvent-
based capture systems. Currently, accurate models for such carbon capture solvents do not exist, but they 
are of interest to industry since many new classes of potential carbon capture solvents have higher 
viscosities. 

The thermodynamic model is based off the work of Chen (2011). The kinetics were regressed using a 
wetted wall column (WWC) Aspen Plus® simulation to adjust reaction rate constants, activation energies, 
and diffusion parameters to match experimental flux values within 20% (Plaza, 2011). The complete 
reaction set used is shown in Table 2.  

Table 2: Reaction set for 2MPZ. Dicarbamate 2 orders slower than for PZ. 

Reaction ko (kmol/s-m3) EA (kJ/mol) 

2MPZCOO- + H2O + CO2  H2MPZCOO  +  HCO3
- 2.62E6 98.0 

2 2MPZ + CO2    2MPZH+ + 2MPZCOO- 1.45E10 21.9 
2 2MPZCOO- + CO2   2MPZ(COO-)2 + H2MPZCOO 1.28E10 21.9 
H2MPZCOO + HCO3

-    2MPZCOO- + H2O + CO2 3.67E5 174 
2MPZH+ + 2MPZCOO  2 2MPZ + CO2 3.96E4 97.8 
2MPZ(COO-)2 + H2MPZCOO  2 2MPZCOO- + CO2 2.71E8 129 

 
The diffusivity parameters of Equation 3 were also regressed. 
 
 

 (3) 

 

Table 3: Diffusivity parameters for 2MPZ. 

Diffusivity Parameter 8 m 2MPZ value 
Do 4.4E-11 m2/s 
α -1.50 
β -11.5 

Tref 373.15 K 
 
 

αβ
µ



















=

0465.0ref
o T

TDD
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In order to isolate the effect of steric hindrance in 2MPZ from the effect of viscosity, the viscosity 
subroutine for 2MPZ was replaced with that of PZ. The set of WWC experimental data for 8 m 2MPZ 
was used as a basis for comparison of 8 m PZ and 8 m 2MPZ. This removes the confounding variable of 
viscosity, leaving the effect of steric hindrance. A comparison of the viscosity of the two systems is 
shown in Figure 5. With both systems having the same viscosity, the remaining kinetic differences are 
attributable to steric hindrance. Steric hindrance has the largest impact at high loading and low 
temperature. At low temperature, the rate of reaction is more controlling than at high temperature, so the 
slowing effect of steric hindrance is more pronounced. Similarly, at high loading most of the unhindered 
amine group has been made into carbamate and so the decreased stability of the dicarbamate results in 
lower rates.  

 
Figure 5: Comparison of Viscosity of 8 m 2MPZ and 8 m PZ. 

Finally, empirical mass transfer models were developed using data collected at the Separations Research 
Program (SRP) at the University of Texas at Austin. The results of the regression for the Liquid-Side 
Mass Transfer Coefficient (kL) are summarized in Figure 6. All regressed parameters (A, x1, x2) were 
statistically significant within their 95% confidence intervals. 

 

 

Figure 6: Model Predictions of Liquid Film Mass Transfer Coefficient Compared to Experimental 
Data Measured on Pilot Scale Air-Water Column. Value of 1 on the Ordinate Indicates a Model 

Prediction Consistent with Experimental Measurements. 
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Task 3.0 High Resolution Filtered Submodels 
The major activities in this task involve the development of detailed models to support more detailed and 
accurate device scale modeling. Three types of models are under development: (1) filtered particle 
models, (2) filtered solvent models, and (3) a model of particle attrition. Accomplishments for each area 
are described below. 

Filtered Particle Models: The particle submodels developed this year focus on hydrodynamic models for 
heat transfer tubes and related heat transfer models that are a function of particle size, and 
hydrodynamics. Gas-particle flow simulations (using MFIX) were performed in 2D periodic cells with 
horizontal immersed cylinder arrays for several different cylinder diameters, cylinder spacings, 
gas/particle velocities, and particle fractions as shown in Figure 7. The simulation results were then 
analyzed to derive filtered models for sub-grid drag. A complete 2D model for the sub-grid drag is now 
available.  

 

 
Figure 7: Simulation snapshot for average particle fraction of 0.40 (red=solids, blue= gas). 

Model parameters for the hydrodynamic filtered models were computed using inherently fluctuating 
velocities and forces. Therefore, they have associated uncertainties, which must be quantified. A Bayesian 
UQ analysis was developed to compute the uncertainty associated with the filtered drag models, 
represented as a joint probability plot of the principal parameters β and γ (which appear in the filtered 
drag model3) in Figure 8(a). The uncertainty in the model parameters lead to an uncertainty in the 
predicted filtered drag force for given flow conditions. The 50% and 95% confidence intervals of the 
filtered drag force predictions are shown in Figure 8(b). The model uncertainty is quantified for varying 
velocity, solid fraction, and cylinder configuration.  
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(a) (b)  

Figure 8: (a) Uncertainty in filtered drag model parameters β and γ, represented as a posterior 
probability distribution. (b) The 50% and 95% confidence intervals in predicted filtered drag force 

based on uncertainty in β and γ.  

Coarse-grid predictions obtained using the filtered drag models were compared against a highly-resolved 
simulation, treated as the ‘exact’ solution, of a medium-sized (0.9 m × 1.8 m) turbulent fluidized bed. 
Comparisons of the sorbents solid fraction distribution and pressure drop with height from coarse-grid 
simulations show good agreement with the ‘exact’ solution in the lower regions of the bed (Figure 9). 
However, oscillations in the solid fraction above and below each row of tubes, observed in the ‘exact’ 
solution, were not resolved in the coarse-grid simulations (as expected) as the grid sizes are large 
compared to the tube diameter (Dcyl) and spacing (acyl). The filter size (i.e., the coarse-grid length) was 
found to have little influence on the predicted bed solid fraction.  

        
 (a)  (b) (c) (d) 

Figure 9: Coarse-Grid Filtered Model Predictions vs. ‘Exact’ Solution (Red Lines) for (a) Solid 
Fraction and (b) Pressure Drop. Legends Denote the Ratio of Coarse Grid Size to Cylinder Spacing 

.  
coarse
grid cyla∆
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Preliminary results (Figure 10) show the effects of resolution on global heat transfer predictions such as 
overall heat transfer coefficient and temperature distribution.  

 

(a)  

(b)  

Figure 10: (a) Temperature distribution around a heated tube at several resolutions, expressed in 
terms of particle diameter, dp.  (b) Numerical simulations of the local heat transfer coefficient (at a 

particular angular location) at different resolutions vs. the experimental data from Kim et al1. 

 

In addition, a periodic unit cell consisting of two heat transfer tubes has been setup (Figure 11) and 
research has focused on appropriate boundary conditions for the unit cell. Setting up the heat transfer unit 
cell is more complicated than a pure hydrodynamics unit cell due to the variation in temperatures 
throughout the cell. With hydrodynamics, the overall mixture momentum is conserved and a statistically 
steady velocity field will develop in the unit cell. In heat transfer calculations, however, a hot two-phase 
flow enters along the bottom boundary of the cell and is cooled by the heat transfer tubes. If purely 
periodic conditions were applied in the flow direction the unit cell would eventually reach thermal 
equilibrium with the two-phase flow at the cool temperature of the heat transfer tubes. To avoid this 
scenario, boundary conditions must be applied to the cell to mimic a hot flow coming in.  
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Figure 11: Temperature Profiles in the Heat Transfer Unit Cell. 

The filtered heat transfer model research has also investigated appropriate modifications to the energy 
conservation equations. The “detailed” energy conservation equation is solved for both the gas (g) and 
solids (s) phase using the basic conservation equation with the addition of an interphase heat transfer term 
(Hgs), and the heat transfer tubes appear as boundary conditions. In the filtered model, the heat gained 
from the heat transfer tubes will appear as volumetric sources (Hgc, Hsc); further, the effective rate of 
heat exchange between the gas and particles in the bed will be modified to represent an “average” over 
the filtering space. These modifications will result in the following energy conservation equations, 

 

 (2) 

 

Filtered Models for Solvent Systems: A detailed literature review on CFD modeling of solvent absorption 
revealed a lack of fundamental large-scale CFD model studies for solvent absorption. The closest related 
literature concerned trickle bed applications and the associated CFD models employ primitive closures. A 
few publications present multi-scale approaches for solvent modeling, but these resulted in either large-
scale mechanistic models with limited flexibility or large-scale pseudo-single phase CFD models that may 
be inappropriate for modeling the fully reactive two-phase flow system.  

Based on techniques published in the literature, an approach was formulated to develop a large-scale CFD 
model with improved sub-model closures. The approach consists of two parallel CFD activities: 1) 
simulations based on an Eulerian-Eulerian (E-E) model implemented in MFIX where the packing is to be 
treated as porous medium and using available closure models, and 2) simulations based on a Volume-of 
Fluid (VOF) approach to two-phase flow through a representative packing geometry. The former can be 
used to conduct exploratory simulations to better understand the types of flow and absorption behavior 
that are predicted and to give insights on the relative importance of various terms. The purpose of the 
latter is to deduce more accurate closure models (for example, the interfacial interaction forces) for the 
former. Development of these detailed submodels for both packing/solvent interaction and for solvent/gas 
distribution in a large scale solvent-based capture system will be useful for both CFD device-scale 
simulations and process models. 
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Attrition Model: The attrition model will enable the prediction and tracking of changing particle size 
within device-scale CFD simulations. Two technical approaches, a discrete element method and an 
Eulerian-Eulerian method, have been adopted. The first describes the gas flow in the Eulerian system but 
explicitly resolves the motion of particles in the Lagrangian framework, while the latter considers both 
phases through the Eulerian approach. Using the first method, particulate attrition within a jet cup has 
been numerically studied. The predicted effects of particle size on the attrition propensity are shown in 
Figure 12, where monodispersed particles with diameters equal to 0.02, 0.03, 0.05, and 0.06 cm at the jet 
velocity of 150 m/s were simulated.  

 

Figure 12: Predicted effects of particle size on the attrition propensity 

The dependence appears to be rather nonlinear, which might result from combining effects of two 
counteracting mechanisms underpinning the attrition process: larger particle size reduces the fluidization 
but increases the external surface area and amplifies the colliding chance. For substantially smaller 
particles, the ones with diameter between 0.02-0.04 cm in the current work, attrition primarily relies on 
the velocity of the particles mobilized by the air jet. However, when particles become comparatively 
large, the collision rate becomes dominant. Further increases in the particle size causes the influence of 
limited carrying capacity of the air jet to gradually prevail and starts to hinder the attrition process.  

It has also been found that the resistance to particulate attrition depends on the design of the testing 
apparatus. Figure 13(a) shows that compared to the baseline rectangular jet cup, a trapezoidal cup tends to 
yield lower attrited mass loss, which is primarily due to the more stagnant bed materials in the flow field 
as indicated in Figure 13(b).  

 

 
(a)       (b) 

Figure 13: Comparison of (a) the attrited mass loss  
(b) the particle velocity distribution between different jet cups 

Additionally, in order to address the respective contributions of particle-wall and particle-particle 
interactions to the generation of fines, the DEM model has been extended to analyze these sources of 
particulate attrition. Figure 14 shows an example of the elutriation attributed to different mechanisms in 
volume percentages. It can be seen that impact induced erosive chipping is clearly the dominant 
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mechanism over the abrasive mechanism, and the influence of particle-wall and particle-particle 
interactions of the chipping mechanism appears to be slightly biased toward particle-wall collisions.  

 

 

Figure 14: Elutriated Fines Due to Different Mechanisms  
with Jet Velocity of 100 m/s 

 

In addition, we implemented a new attrition module in the direct quadrature method of moments 
(DQMOM) population balance model. This incorporates the mechanistic fragmentation capabilities of the 
previous discrete element model (DEM) into the E-E framework of MFIX. The DQMOM based attrition 
module has been successfully implemented in both serial and parallel versions of MFIX and is currently 
being calibrated and verified against the DEM model as shown in Figure 15. Compared to the Eulerian-
Lagrangian (E-L) coupled DEM model, the current E-E based DQMOM model has a significant increase 
in computational efficiency: using 16 processors it takes less than ½ hour to complete 1-second 
simulation, compared to the 1.5 days needed by the DEM model. Therefore, the DQMOM model is 
particularly useful for large-scale system simulations with chemical reactions involved. 

  

   
                 (a)                    (b)  

Figure 15: Predicted Solid Fraction Contour of Post-Attrited Jet-Cup System by 
(a) E-L Based DEM Attrition Model (b) E-E based DQMOM Attrition Model. 
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Task 4.0 Validated High-fidelity CFD Models and UQ 

The emphasis of this task is the development of high-fidelity CFD models and the UQ tools to enable 
their calibration and validation. We employ a hierarchical validation process according to the CCSI 
validation plan by validating and calibrating the different modules of the CFD models for the overall 
reactive multi-phase simulations into including hydrodynamics, coupled hydrodynamics and heat transfer, 
and coupled hydrodynamics, heat transfer and adsorption/desorption simulations with increasing levels of 
complexity.  

Modeling efforts have focused on the validation and calibration of high fidelity CFD models through 
comparison with experimental data from NETL’s Carbon Capture Unit (C2U) The following bubbling 
fluidized bed cases have been investigated: AX cold flow, 32D cold-flow, 32D hot non-reacting flow, and 
32D reacting flow.  

Figure 16 illustrates the experiment setup for AX cold flow and 32D flow. Experiments for AX and 32D 
shared the same basic configuration, but more quantity of interest (QOI) measurements have been 
collected for 32D, especially for the reacting flow. 

 
(a)                         (b)                         (c) 

Figure 16: Illustration of Experiment Setup for AX and 32D Flow 

 

Multiphase CFD Modeling of AX Cold Flow in C2U Batch Unit. Simulation results for the 2D 
axisymmetric MFIX model for the AX cold flow in a batch unit have been completed. A total of 120 
cases of this simulation with 6 UQ parameters have been run and the result data post-processed and 
provided to the UQ team. Figure 17 shows the comparison of simulation results and the experiment 
measurements. Two apparent discrepancies can be observed: 

1. While the experiment data show pressure drop PDT3820 decreases with increasing flow rate, 
CFD predictions with constant particle size of 115μm (Sauter mean diameter) do not show such 
trend. 

2. The predicted pressure drops are higher than the experimental values, particularly at higher flow 
rates. 
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Figure 17: Pressure Drop PDT3820 vs. Flow Rate 

 

Additional AX cold flow simulations were then carried out to identify the source of the discrepancies 
mentioned above. Since the sorbent particle size follows a distribution, with some particles smaller than 
SMD and some larger than SMD, simulations with bi-modal particle sizes were next performed to study 
the effect of particle size on pressure drop in the fluidized bed. Results in Figure 18 indicate that 
simulations with two particle sizes with a bi-modal distribution generate the desired trend of pressure 
drop vs. flow rate, but the MFIX simulation with a bi-modal particle size requires about three times the 
Central Processing Unit (CPU) time for a single particle size.  

The above results indicate that an effective particle size, not SDM, must be used to accurately capture the 
hydrodynamics of the fluidized bed should a single particle size be required due to computational 
constraints. This finding led us to add the particle size as an additional calibration parameter. 
Subsequently, a total of 60 refined cases with 6 UQ parameters have been run and the result data post-
processed and provided to the UQ team. Figure 19 shows the comparison of simulation results with C2U 
experimental measurements. A similar trend of pressure drop vs. flow rate is observed in this new batch of 
simulations.  

 

 

Figure 18: Pressure Drop PDT3820 vs. Flow Rate,  
with Different Particle Sizes 
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Figure 19: Pressure Drop PDT3820 vs. Flow Rate,  

with 7 UQ Parameters Including Particle Size 

In summary, the sorbent particle size plays a significant role on pressure drop, and its calibration is crucial 
in achieving the high fidelity CFD simulation results on the hydrodynamics of the fluidized bed. Similar 
particle size effect will be discussed in the following 32D cold flow, hot non-reacting flow, and the 
reacting flow. 

 

Multiphase CFD Modeling of 32D Cold and Hot Non-reacting Flow in C2U Batch Unit. The model setup 
is similar to what has been developed for AX cold flow, as described above, but replacing the particle 
properties with those of 32D, including particle size, density and total mass. Coils act as no slip BCs for 
hydrodynamics and heating boundaries for thermal kinetics. All temperature setting information were 
extracted from the experiment data and input into the MFIX model accordingly. In the experiment, the 
temperatures were measured by thermal couples TE3962A and TE3965, and their time averaged values 
are used as a QOI for validation and calibration. In the C2U experiment, the pressure drops were 
measured by pressure transducer PDT3820 for cold flow, and by both PDT3820 and PDT3860 for hot 
flow. Eight sets of experimental data were selected, covering the whole range of flow rates (15- 60 slpm) 
and temperatures (40-800 ºC). The steady state of hydrodynamics is reached after 100s; however, the 
thermal kinetics reaches its steady state after 700s. The validation of steady-state temperatures in different 
cases is summarized in Figure 20, while pressure drop over the whole reactor height is shown in Figure 
21. Two different particle sizes are considered to address the effect of particle size on hydrodynamics. 
Three findings are summarized as below: 

1. Simulation results show good agreement with the experimental data; 
2. Particle size has a significant effect on pressure drop, and due to its uncertainty in experimental 

measurements, a calibration procedure including particle size is essential in our high fidelity CFD 
validation; 

3. The thermal boundary condition imposed on coils accurately captures the thermal kinetics.  
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Figure 20: Validation of Steady-State Temperature in 32D Hot Non-Reacting Flow. 

 

 
Figure 21: Validation of Pressure Drop in 32D Cold Flow 

 and Hot Non-Reacting Flow. 

 
The effect of transient boundary conditions were also studied using MFIX simulations. A series of 32D 
hot, non-reacting batch runs with transient boundary conditions was carried out. The gas inlet 
temperature, gas inlet flow rate and coil temperature all vary with time according to the recorded 
experimental data. The predicted temperature transients in the bed follow the experimental data closely, 
within a couple of degrees accuracy, at three locations in the bed (below coils, mid bed and top of the 
bed), as illustrated in Figure 22 to Figure 24. 
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Figure 22: Bed Temperature Below Coils, for First 15 Flow Conditions. 

 

 
Figure 23: Bed Temperature at Mid-Bed Location, for First 15 Flow Conditions. 
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Figure 24: Bed Temperature at Top Of Bed, for First 15 Flow Conditions. 

 

UQ Tool for CFD & Hierarchical Validation Methodology The general Bayesian calibration and model 
assessment methodology using a Bayesian BSS-ANOVA emulator (i.e., reduced model) was developed 
into a computational tool. The BSS-ANOVA-UQ tool takes as input experimental results in the form of 
input settings and resulting output(s), along with simulation results in the form of parameter and input 
settings and resulting output(s). It then performs a Bayesian calibration to find a posterior distribution of 
parameter settings for the simulator that allows it to best reproduce the experimental data. There is also a 
model form discrepancy function that is estimated in the calibration to allow for the fact that for 
reasonable parameter settings it is not always possible for the simulations to perfectly mimic reality. 
Implicit in the calibration routine is an emulator to allow the procedure to explore the parameter space at 
locations where the simulator was not evaluated. The emulator is a fast statistical approximation of the 
simulator that admits uncertainty about its predictions of what the simulator would say at untried 
locations. 

The tool release includes with two detailed example use cases:  
1. The literature based bubbling fluidized bed example. Here there are two correlated outputs.  
2. The cold flow case of the C2U with AX sorbent. Here there is one output that is a time series of 

values once in steady state. 

This tool has been also been used to calibrate the C2U cold flow case with AX that was re-run in order to 
allow the “effective” particle size to be a calibration parameter. In principle the particle size distribution is 
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known, but only one value can be specified in MFIX due to computational time constraints. The 
realization that we made was that the effective particle size to use should be close to the Sauter Mean 
Diameter, but not necessarily equal to it. The resulting posterior distribution for the AX cold flow case is 
provided in Figure 25. The posterior distributions are shown as histograms of the MCMC sample along 
with the assumed prior distributions (blue curves). None of the model parameters (except particle size) 
exhibited significant changes from the prior, indicating pressure drop is not sensitive to any of these other 
model parameters. The SMD is approximately 115 microns, and the most appropriate size to use in MFIX 
is 117 micron (with very little variability). The MFIX output pressure drop is very insensitive to the other 
five parameters involved in the calibration, within their respective ranges. 

We have also calibrated the same C2U cold flow case with the 32D sorbent (including particle size as a 
parameter). In this case there is a bimodal distribution of the 32D particles. That is, there is really a 
mixture of two component distributions. Therefore, the SMD should be calculated for each of the 
components, and in principle two particle sizes could be used in MFIX. However, after some pilot runs it 
was clear that using one particle size near SMD of the larger component distribution was sufficient. The 
calibrated posterior distributions are provided in Figure 20. We are in the process of performing a similar 
calibration, including sorbent kinetics parameters, using C2U reactive case data. 

 

 

Figure 25: Marginal Posterior Distributions of the Six Model Parameters for MFIX 

 

Development of an Advanced UQ Methodology for CFD Models. Full scale CFD models of multi-phase 
reactive flow simulations for CCSI applications may take several days to even weeks to run, making brute 
force parametric studies infeasible when reaction kinetics and heat transfer are included in the model-
simulations. Therefore, it is important to develop time efficient surrogate models derived from a finite 
number of simulations. We developed a novel Bayesian treed multivariate Gaussian process (BTMGP) to 
model the uncertainty of multivariate simulation experiments, which can also handle discontinuities and 
localized features. In addition, we developed sequential sampling techniques to sequentially sample 
multivariate output in the most informative input with the help of the proposed BTMGP and expert prior 
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knowledge. In a Bayesian formulation, prior distribution of the computer experiment output is updated in 
light of the new observation and is conditional on various hyper-parameters. We utilize this model to 
sequentially sample the input space for the most informative values, taking into account model 
uncertainty and expertise gained. The simultaneous BTMGP fitting and sequential adaptive sampling 
gives a better prediction fit than other well known RMs.  

 

Development of REVEAL Framework for RMs and Data Management. The REVEAL framework now 
automatically generates RM for multi-species MFIX model, by building in support for appropriate 
conversions between species mass fractions and individual mass flow rates at each inlet and outlet ports. 
MFIX models provide species data in form of mass fractions. When sampling mass fraction, the sum of 
the mass fractions must equal 1 to enforce constraints on the material balances. 

To provide users the maximum flexibility with sampling of species data while conforming to composition 
requirements, REVEAL converts species mass fractions to individual mass flow rates and makes them 
available to users for sampling. The flow rates can be sampled independently of each other and are 
converted back to species mass fractions by normalizing with total flow rate. REVEAL then 
automatically performs conversions to generate appropriate MFIX input files (with mass fraction data) 
and runs the MFIX models. The data gathered can be analyzed using the integrated graphical tools for 
sensitivity and error analysis. The tool was also extended to supports the export of multi-species MFIX 
model data for ACM or CAPE OPEN simulations. 

We also extended the REVEAL framework for working with any generic data server, setup on any Linux 
system. REVEAL uses a data server to support user level data management, data provenance, data sharing 
across multiple users as well as data persistence over multiple sessions. Prior to this release, it came pre-
configured with a data server setup at PNNL. We generalize the data server setup process, provide 
REVEAL server side installers, a server set up guide and generalize the server configuration options in 
the REVEAL client. This will allow REVEAL users to work with any data server. This is important for 
deployment of this toolset component to industry so that they can directly control access to any 
proprietary data. 

Work has also begun on the design and development of REVEAL-lite, a standalone toolset to create RMs 
with CFD results enabling its incorporation in process simulations. REVEAL-lite will run on a Windows 
host and will not require any other system to function. REVEAL-lite will facilitate automated creation of 
simulation input files and RM creation given the simulation sampled and output data. The RM can be 
created as a CAPE OPEN compliant module or as an ACM model file. The system will have support for 
Barracuda and MFIX CFD models. 

 

Task 5.0 Process Models 

This task includes the development of steady state and dynamic process models necessary for process 
synthesis, design, and simulation. Specific models developed during FY13 include a (1) bubbling 
fluidized bed reactor model, (2) moving bed reactor model, (3) CO2 compression system model, (4) 
baseline MEA model, and (5) high viscosity solvent model. 

Bubbling Fluidized Bed (BFB) model. A number of BFB models with different configurations were 
completed as shown in Figure 26. For each configuration, a converged model is part of the upcoming 
toolset release. Users can test the model by running the existing model or can provide their inputs. 
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Figure 26: BFB Model Configurations. 

 

A number of plots were developed to show the profile of the key transport variables. Figure 27 shows the 
concentration profiles of CO2 and H2O for the underflow type configuration. Figure 28 shows the 
temperature profiles of the lower stage in two-stage underflow type configuration, and Figure 29 shows 
the transients in CO2 capture under open loop condition due to 10% step change in the flue gas flowrate.  

 

 

 

Figure 27: Gas Concentration Profile Plot for Underflow Type Configuration. 
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Figure 28: Temperature Profile Plot of Lower Stage Adsorber in 2-stage Underflow Type 

Configuration. 

 

 

Figure 29: Dynamics of Overall CO2 Capture for a Disturbance of 10% Step Change in Flue Gas 
Flowrate. 

 

The BFB models can also be used to simulate the regenerator. Figure 30 shows the temperature profile for 
the overflow-type configuration, and Figure 31 shows the temperature profile in the lower stage of a two-
stage regenerator with underflow-type configuration.  
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Figure 30: Temperature Profile Plot for Overflow Type Configuration. 

 

 
Figure 31: Temperature Profile Plot of Lower Stage Regenerator in 2-stage Underflow Type 

Configuration. 

 

Moving bed model. The updated moving bed model has been completed and includes dynamic simulation 
capability. The features of the updated model are: 

• External mass transfer resistance has been taken into account while calculating the surface 
concentration of reactants/products 

• Heat exchanger model has been modified by considering packet-renewal theory  
• Pre- and post-heat exchangers have been integrated within the bed 
• Mass transfer and reaction kinetics were also modeled in addition to heat transfer in both pre- 

and post-heat exchangers. 
• Solids temperature at any location in the bed is less than 130°C. 
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The pre- and post-heat exchangers integrated with the regenerator are used for heat recovery from the hot 
solid sorbent leaving the bed. Additional steam is used in the bed for heating. The inlet conditions of tube 
side fluid are designed such that the solids temperature at any location in the bed does not exceed 130°C 
which is the maximum operating temperature for avoiding material degradation. The heat transfer 
coefficients between the heat exchanging medium and the solid sorbent/ gas are modeled by using the 
packet-renewal theory. This theory results in a higher accuracy of the heat transfer coefficients. The 
profiles of solids temperature and solids loading are shown in Figure 32 and Figure 33, respectively.  

 

Figure 32: Solids temperature profile in the regenerator 

A steep increase in the solids temperature at the top of the bed (right side boundary) is due to the pre-heat 
exchanger design and high driving force. A drop in the solids temperature at the bottom of the bed (left 
side boundary) is mainly due to the post heat exchanger. It can be noted that while it is possible to design 
the pre-heat exchanger for slow rise in temperature, undesired adsorption of water takes place below 
certain temperature as shown in Figure 33. 

 

Figure 33: Molar loading of the ions in the regenerator 
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Figure 33 shows that in both the pre- and post-heat exchangers, the forward reaction i.e. adsorption takes 
place for both H2O and bicarbonate. The rate of adsorption is significant for water in the post heat 
exchanger due to presence of steam. Adsorption rate of bicarbonate is very small. These phenomena were 
not observed in the earlier model, as the mass transfer/reactions were neglected in pre- and post-heat 
exchangers. This would be expected due to low temperature of the solids based on the current kinetics.  

The results of the updated MB model are compared with the previous MB and current BFB models under 
similar inlet conditions and stream locations. With the decreased inlet temperature in all the models, the 
solids temperature profiles for all the models are shown in Figure 34. The solids temperatures are almost 
similar in the bed. A steep increase in the solids temperatures are observed in the case of MB. A drop in 
the solids temperature at the bottom of the bed (left side boundary) in the current MB model is mainly due 
to the post-heat exchanger in the latest MB model. The solids exit conditions from all the models are 
shown in Table 4. 

 

 

Figure 34: Comparison of solids temperature profiles in all the models 

 

Table 4: Solids exit conditions from the bed 

Species 
(mol/kg solid) 

Current MB 
model with pre 

and post HE 
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model 

Current Bubbling 
fluidized bed 

model 
Carbamate 0.874677 0.903943 0.902894 

Bicarbonate 0.258409 0.267146 0.366067 

Water 1.53518 1.22684 1.05588 
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Figure 35 shows the transient response in the solids loading as the inlet steam flowrate to the bed is 
increased. An increase in the steam flowrate results in an overall increase in the partial pressure of steam 
in the bed and as a result bicarbonate and carbamate loading decreases, but loading of physisorbed water 
increases.  

 
Figure 35: Transients in Solids Loading as a Result of a Ramp Increase in the Steam Flowrate to 

the Regenerator. 

 

Model of the Steam-BFW System. The pressure-driven steam/boiler feed water (BFW) model shown in 
Figure 36 was developed to enable dynamic modeling of a potential heat recovery system for a solid 
sorbent system. A pressure network was developed between pre- and post- heat exchangers along with 
level and temperature controllers. During plant operation, the amount of steam condensed in the pre-heat 
exchanger may not match with the amount of BFW required in the post-heat exchanger. Hence, inlet and 
outlet control valves have been designed to supply the additional BFW for removal of excess water, 
respectively.  

 

Figure 36: ACM Flowsheet of the Moving Bed Regenerator along with the Steam/BFW System. 
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A split range controller has been designed for manipulating both the inlet and outlet valves to maintain 
the required level. In addition, a control valve and a level controller have been designed to maintain the 
required water level in the post heat exchanger by manipulating the flow of BFW.  

 

Model of the Pneumatic Transport System: Models of the pneumatic transport system for transporting 
solids from the adsorber to the regenerator and from the regenerator to the adsorber were developed. The 
transport medium was determined by comparing the power required by various options four possible 
mediums were considered. These mediums are the flue gas at the inlet of the adsorber, clean flue gas from 
the outlet of the adsorber, a recycling transport medium with makeup from the clean gas, and CO2 from 
the outlet of the regenerator. If a portion of the inlet flue gas that enters the adsorber is considered for 
solids transport, a minimum of 8% and 7% of the total flue gas would be needed for transporting the 
solids from the adsorber to the regenerator and for transporting the solids from the regenerator to the 
adsorber, respectively. This means that flue gas used for transport must be recycled to the adsorber to 
achieve the overall target of 90% CO2 capture. If a portion of the clean flue gas from the outlet of the 
adsorber is used, it should be compressed for transportation. The compression power is less in this case in 
comparison to the inlet flue gas as the molecular weight of the clean flue gas is lower and the flow 
required in both the cases is similar. The third option that has been considered is a recycling transport gas. 
In this case, the transport gas is separated from the solid sorbent in the feed hopper at the end of transport 
and then compressed, cooled, and recycled back again for transportation. When a recycling transport 
medium is considered, the advantage is that compression power is required only to compensate for the 
pressure drop in the lift pipe. Considering the clean gas as the recycling transport medium, the recycling 
option was found to be the optimal option. When CO2 from the outlet of the regenerator was considered, a 
higher compression cost was required mainly due to its higher molecular weight. Therefore, the final 
pneumatic model was developed by considering the recycling option.  

 

CO2 Compression System Model. The steady-state models of both integral-gear and in-line compressors 
developed in FY12 have been extended to dynamic models. In addition, a pressure-driven model of the 
entire compression system with an eight stage compression system integrated with inter-stage coolers, 
flash vessels and a TEG water absorption system was developed. Commercial performance curves were 
used to develop a generalized set of coefficients that enable off-design characteristics to be predicted for 
compressors operating under a wide range of conditions. The resulting model includes a surge detection 
algorithm. In addition, a gain-scheduling controller has been developed for surge control. 

 

AspenPlus MEA Solvent System Model. The model of the pilot plant at UT, Austin has been completed 
and used to simulate the operating conditions for which experimental data are available. In addition, a 
preliminary model of the National Carbon Capture Center (NCCC) solvent pilot plant has been 
developed. These models will be validated following a planned MEA campaign in the NCCC in March of 
2014.  

 

AspenPlus High Viscosity Solvent System Model. Thermodynamic and kinetic models for 8 m 2MPZ 
have been developed and validated with experimental data and a preliminary system model was 
completed and documented. In addition, a preliminary model for predicting heat exchanger area as a 
function of viscosity and pressure drop was developed in Aspen Plus and incorporated into an Aspen 
Plus® HEATX block in the heat transfer coefficient subroutine.  
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Task 6.0 Process Optimization & UQ 

This task focuses on developing and demonstrating optimization and UQ tools that can be used to design 
and optimize an entire process, while concurrently quantifying the error associated with model 
predictions. These tools fall into three major categories: (1) development of algebraic surrogate models 
that can be used in a superstructure formulation, (2) a framework for the direct optimization and UQ of 
complex simulations, and (3) an alternative equation-based framework for oxycombustion process 
synthesis. 

 

Algebraic Surrogate Model Builder for Optimization. The primary accomplishment of our efforts in this 
context is the development of the ALAMO code for the Automated Learning of Algebraic Models for 
Optimization, which allows detailed process, such as those developed under Task 5, to be used within 
rigorous, derivative-based optimization codes. These codes enable the optimization algorithms to 
determine optimal process configurations. 

A considerable amount of effort was put in the development of a Fortran implementation of ALAMO. 
While developing this implementation, memory- and CPU-efficient data structures were invented that 
facilitate the application of ALAMO to industrial-scale problems. In addition progress was made on the 
development of a web interface for ALAMO in order to facilitate end-user applications of ALAMO.  

ALAMO builds a surrogate using a best subset technique that leverages an integer programming 
formulation to allow for the efficient consideration of a large number of possible functional components 
in the model. The model is then improved systematically through the use of derivative-free optimization 
solvers to adaptively sample new simulation or experimental points. Comparing ALAMO and a variety of 
machine learning techniques, including simple least squares regression, and the lasso, ALAMO provides 
simpler models. Figure 37 shows the difference between the number of terms in the model provided by 
the three different modeling techniques and the number of terms in the simulated systems used for the 
comparison. An ideal modeling technique would result in zero or negative differences. As seen in this 
graph, the models obtained by the lasso are simpler than those obtained by least squares, while the models 
obtained by ALAMO are even simpler. 

 

Figure 37: Comparison of Different Surrogate Modeling Techniques  

 

Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS). The FOQUS 
tool combines the capabilities of the simulation based optimization framework and the uncertainty 
quantification framework into a single workflow and user interface. The tool connects to a simulation 
gateway (Task 9) for running large-scale parallel simulations.  
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The optimization component of the framework is based on a meta-flowsheet, which provides connectivity 
between process models. Each model potentially uses different modeling software, and recycle streams 
are often present. Improvements have been made to the optimization framework to better handle finding 
and solving tear streams in the meta-flowsheet. The framework has also been updated to run all 
simulations through the Turbine Gateway, and improvements have been made that increase the number of 
simulations, which can be run in parallel while using Turbine with optimization and UQ methods. 

A generic system for connecting derivative free optimization (DFO) solvers for simulation-based 
optimization has been developed. Depending on the solver and the implementation, some solvers may be 
more parallelizable than others. Currently CMA-ES (https://www.lri.fr/~hansen/) is fully implemented 
while others are in early development and have been partially tested. A goal for the near future is to 
implement a wider variety of solvers, and begin work on optimization under uncertainty. 

A heat integration module has been developed and integrated with the optimization capability to obtain 
the best performance of the process, as shown in Figure 38. Within each iteration of optimization, the 
process simulator takes process inputs (including initial inputs and intermediate results from the 
optimizer), performs function evaluations, and returns production information, such as raw material 
consumption rates, production rates and equipment sizes, to the optimizer; the heat integration tool 
receives information about process streams, such as flow rates and temperatures, from the results of the 
process simulator, and calculates the minimum utility consumption and number of heat exchangers; the 
optimizer minimizes the total cost, which is calculated from results of the process simulator and heat 
integration, and optimizes decision variables (part of simulation inputs) by derivative-free optimization 
methods. The heat integration tool is based on the transshipment model. 

 

 

Figure 38 Simulation based optimization framework with heat integration 

 

To demonstrate the importance of incorporating heat integration when optimizing a carbon capture 
process, a example case was run utilizing the CCSI base case solid sorbent process. When heat integrating 
with the steam cycle, the net efficiency of the power plant (with capture) was increased from 35.1% to 
37.1%. 

The first version of the Windows-based UQ GUI includes four categories of UQ capabilities. The first is a 
suite of computational tools for parameter screening, the purpose of which is to down-select the 
potentially large set of uncertain parameters via low-cost qualitative screening. The second category 
comprises a suite of methods for analyzing uncertainties and sensitivities (first, second, or total order), a 
screen shot of which is given below. Again, the first step is to select which set of runs to analyze from the 
top part of the screen. In addition to displaying the uncertainty and sensitivity results, there are also 
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options to visualize the sample data. The third category consists of methods for generating, validating, 
and visualizing response surfaces (or surrogates) given a sample (with inputs and model outputs); as well 
as uncertainty and sensitivity analysis based on the validated response surface. A number of response 
surface types are available from the underlying UQ computational engine. The validated response surface 
can then be analyzed for output uncertainties and parameter sensitivities. The fourth category comprises 
inverse UQ methods, that is, to recover true input parameter uncertainties given observations (with 
uncertainties) on the output. This inversion process is performed using Bayesian analysis with the Markov 
Chain Monte Carlo algorithms.  

 

GAMS modular oxycombustion optimization framework. An ASU superstructure enables to optimizer to 
consider many different ASU configuration, resulting in optimization of both the ASU connectivity and 
operating conditions. The superstructure (Figure 39) allows for vapor and or liquid to be feed to the top, a 
middle and/or the bottom tray of the distillation column. Using the superstructure, an ASU design without 
a top condenser was selected; the nitrogen rich recycle from the high pressure column is instead used to 
provide reflux, a common configuration for many ASU systems. 

 
Figure 39: ASU Superstructure. 
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The thermodynamics module was extended to support any general cubic equation state. It was originally 
restricted to the SRK model. In addition binary interaction parameters from literature were added for the 
SRK and PR models as defaults to the framework. 

A new model for distillation optimization was developed. The new model maintains the rigorous of tray-
by-tray models while avoiding integer variables – greatly improving optimizer performance. This is done 
by adding bypass streams to each tray in the standard Mass, Equilibrium, Summation and Heat (MESH) 
equation model. The new model, coupled with the custom multistart initialization algorithm, was used to 
identify ASU designs competitive with other DOE reports. 

The ASU results obtained with GAMS were validated against Aspen Plus simulations. This was done by 
simulating the second reboiler in Aspen Plus. The reboiler feed conditions and outlet vapor fraction are 
set to match the GAMS results. Agreement between the two programs in excellent, as shown below in the 
table and figure (Figure 40). 

 

 

 

 

Figure 40: Comparison of GAMS and AspenPlus Results for Reboiler 2. 

 

The best ASU results obtained with the superstructure, MESH with bypass model and multistart 
initialization procedure were compared with literature. The GAMS optimized specific energy is 0.174 
kWh/kg of O2 (assuming 86% eff. compression, ΔTmin = 1.25K) for 95% purity O2. This corresponds very 
well with the specific energy of 0.179 kWh/kg O2 reported in Cost and Performance for Low-Rank 
Pulverized Coal Oxycombustion Energy Plants by the DOE (2010). The DOE reported ASU specific 
energy is an estimate from a vendor after some optimization. 

The framework includes optimal design of the multistream heat exchanger, which enables easy future 
extension to consider heat integration between the ASU and other parts of the power plant (such as the 
CO2 processing unit). This capability is unique to the framework. Most other studies consider the ASU as 
a black-box provided by a vendor, which prevents integration strategies from being fully studied. 

Stream Prop GAMS Aspen 

S18 
(vapor) 

N2 11.03% 11.05% 

O2 86.33% 86.31% 

Ar 2.64% 2.64% 

S15 
(liquid) 

N2 3.07% 3.09% 

O2 95.00% 94.96% 

Ar 1.93% 1.95% 

 
Temp. 89.42 K 89.39 K 
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Task 7.0 Integrated Framework for Dynamics & Control 
The primary focus of this task is the development and application of new, advanced process control 
techniques, that address specific dynamic operational challenges associated with integrating CO2 capture 
and compression systems with coal fired power plants. Dynamic reduced models (D-RMs) enable faster 
computation of system responses enabling the development of an advanced process control framework 
and the integration of the dynamic models within a larger dynamic simulation. Two D-RM approaches are 
being pursued: data-driven D-RMs and reduced-order D-RMs.  

Data-driven D-RMs use pre-computed results from repeated simulations of high-fidelity dynamic models 
over a range of input/output variable values and are suitable for offline dynamic simulations, as well as 
real-time simulations and online control applications due to the short CPU time required. However, data-
driven D-RMs generally have limited accuracy and are valid only in the operating conditions that are 
sampled during the D-RM generation process. D-RM Builder is utilizing the data-driven approach. 

Reduced-order D-RMs are more rigorous and developed from the underlying differential and algebraic 
equations in the high-fidelity models. Reduced state space models are not as fast as data-driven D-RMs in 
term of CPU time required but are valid over a wider range of operating conditions and are suitable for 
offline dynamic simulations and, in some cases, model-based real-time applications, such as advanced 
process control. 

 

Dynamic Reduced Model Builder (D-RM Builder). D-RM Builder is a new software tool for automatic 
generation of data-driven D-RMs. It includes the Decoupled AB Network (DABNet) model for multiple-
input-multiple-output (MIMO) systems. The original research paper (Sentoni et al., 1998) on the DABNet 
model was for multiple-input-single-output (MISO) systems. For a system with multiple outputs, we 
generate multiple DABNet models, one for each output variable. The advantage of this approach is that 
we can use different pole values and system matrices (A and B matrices) for different outputs in case the 
time constants for different output variables with respect to input variables are quite different. In other 
words, this approach is very flexible to model a complicated system with some output variables that 
respond very quickly while others very slowly, thereby leading to an accurate D-RM. One disadvantage is 
that multiple system matrices and neural networks need to be calculated and trained, respectively, during 
the D-RM building stage and used during the prediction stage. D-RM Builder also includes the nonlinear 
autoregressive moving average (NARMA) model as an alternative data-driven D-RM model.  

To handle cases where the high-fidelity dynamic models may be difficult to converge, the D-RM Builder 
user can use ramp changes to replace step changes of input variables for the simulations. Due to the 
stiffness of the differential equations inherent in a hard-to-solve model, a large step change could cause 
the solver to fail. However, small step changes that mimic a ramp change can be used to approximate a 
large step change and avoid the solver failure. The revised D-RM Builder allows the user to turn on this 
option and specify the ramp rate for an input variable that is susceptible to the solver failure. 

D-RMs generated by D-RM Builder are in MATLAB script format. To use them for dynamic simulation 
or for model predictive control, three MATLAB classes were developed to work with the exported D-
RMs. The MATLAB class files are packed as a part of D-RM Builder installation. An example driver 
code in MATLAB was also developed that can run the script file of a generated D-RM and construct a D-
RM object based on the type of D-RM (DABNet or NARMA) and the variables assigned in the D-RM 
file. The member functions of the MATLAB D-RM classes were developed to initialize the input, output, 
and state variables and to update them one step at a time to simulate a dynamic process. The driver code 
is also included in the D-RM Builder installation. 
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Reduced-Order D-RMs. Spatially distributed first-principle dynamic process models give an accurate 
physical description of chemical processes, but lead to large-scale models whose numerical solution is 
challenging and computationally expensive. Thus, fast dynamic reduced-order models (ROM) are 
required for model-based real-time applications, such as advanced process control.  

In this work, we have developed a computationally efficient and accurate dynamic ROM for a BFB 
adsorber. The ROM is generated by a quasi-steady state approximation for the fast states. An eigenvalue 
analysis technique is utilized to locate fast and slow dynamic modes and a spectral association method is 
applied to associate states with eigenvalues. From Figure 41, we can see a clear separation of two distinct 
eigenvalue groups in the original system. By analyzing the unit perturbation spectral resolution (UPSR) 
matrix, the ten eigenvalues in the fast mode are associated with nine gas phase mass balance states in all 
three regions and one gas phase energy balance state in the emulsion region, which are converted to 
algebraic equations in the ROM. By comparing the curves shown in Figure 41, we can tell that, in the 
reduced-order system, all the eigenvalues in fast mode are removed, which proves our eigenvalue-to-state 
association correct. 

 
Figure 41: Eigenvalue Variation during the Transient Response of the Full and Reduced System. 

 

Neglecting the axial variations in temperature and pressure, the time scale decomposition result of the 
single tray model is applied to the full BFB model. After removing the fast states, half of the differential 
equations are converted into algebraic equations. A case study is conducted to validate the ROM, in which 
a ±25% step change in the flue gas flow rate is introduced at t=0s and t=200s, respectively. The CO2 
capture fraction and sorbent loading are key outputs, which indicate the efficiency of the adsorber. The 
dynamic behavior of these two outputs predicted by both the reduced-order and the full BFB model have 
nearly the same dynamic behavior. The detailed simulation data are listed in Table 5. The computational 
cost is reduced by 33.02% in the ROM.  

 

Table 5: Simulation Results, 1-CO2 Removal Fraction, 2-Sorbent Loading 

 Simulation 
time(s) MRE1 MSE1 MRE2 MSE2 

Full model 427 - - - - 
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ROM 286 7.2% 2.98E-6 1.2% 2.02E-6 

Based on simulation test and physical analysis, we can conclude that the ROM generated by eigenvalue 
analysis and time scale decomposition can greatly reduce the computational cost with very small errors in 
predicting the model’s key outputs. Moreover, this systematic approach could also be applied to other 
systems apart from the BFB adsorber. 

 

Advanced Process Control (APC) Framework. Significant progress was made towards development of an 
APC framework based on data-driven D-RMs. Constrained dynamic-matrix-control (DMC) was 
developed corresponding to the transition function (input-to-state mapping) within the DABNet D-RMs 
based on Laguerre networks for controlling Laguerre states (i.e., assumed observable). In addition, the 
neural-network mapping portion of the D-RM, alongside the transition function, was used as a ‘control-
model’ to predict and control measured outputs. With the nonlinear prediction methodology in place for 
both the transition and observation function, an unconstrained “black-box” nonlinear model predictive 
controller (NMPC) was coded with rate of input change and deviation from set point included within the 
cost-function. The control algorithm was implemented and tested on a BFB D-RM as the ‘real-plant’ and 
a less accurate D-RM, generated by significantly less training data, as a ‘control-model’. The control 
responses were very promising compared to linear model predictive control (MPC) using linear models 
obtained directly using MATLAB’s System Identification Toolbox. 
 

 

Task 8.0 Risk Analysis & Decision Making 

This task focuses on the development of tools to assess risk based on the state of technology 
development, technical risk associated with a given design, and financial risk. The major accomplishment 
was the development of an initial version of the technical risk model and the development of prototype 
technology readiness level (TRL) tools. 

 

TRL-based risk tools. The TRL tools include (1) a TRL likelihood model (TRL-LM), which is a wiki-
based expert elicitation system to compile information and estimate the likelihood (probability) that each 
technology/process has matured through each maturity level, (2) a TRL-uncertainty model (TRL-UM), 
which estimates (based on previous industry experience) the “true” uncertainty for a given simulation 
based on the current TRL level. A beta version of the current TRL model has been developed. This model 
enhances the capabilities of the likelihood model (TRL-LM) and implements our uncertainty modeling 
methodology (TRL-UM). A fully functional, tested, and documented version is expected to be completed 
in January 2014.  

 

Technical Risk Model. A spreadsheet for Technical Risk was completed. Commercialization of new CCSI 
technology will include two key elements of risk management, namely, technical risk (will the process 
and plant performance be effective, safe, and reliable?) and enterprise risk (can project losses and costs be 
controlled within the constraints of market demand to maintain profitability and investor confidence?). 
Both of these elements of risk are incorporated into our risk analysis products. A prototype Technical Risk 
Model (TRM) has been developed that quantifies risk and system reliability based on the expected 
equipment component mechanical and electrical/control failure rates and mean down times (MDT) for a 
theoretical carbon capture system retrofitted to a 650 MWelectric pulverized coal electric power generator.  
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Microsoft Excel has been used to assemble the technical risk model input data and calculate initial system 
reliability information based on discrete values for component failure rates and MDTs. This segment of 
the TRM is called the Technical Risk Input for Carbon Capture Simulation (TRICCS) workbook. A 
sample session of this workbook is shown in Figure 42. 

 
Figure 42: Example Screen Shot from the Input System Worksheet 

 of TRICCS. 

The prototype TRICCS workbook is based on the selection of specific system design components and 
technical factors believed to be important determinants of the expected performance of the carbon capture 
system, subject to uncertainty. The uncertainty surrounding the selected technical performance variables 
is propagated in a model that calculates the expected failure rate, system unavailability, and system 
reliability for each of the sub-systems and the total carbon capture system. The model measures risk in 
terms of the contributions to system reliability of various components and sub-systems. The results are 
presented in both tabular and graphical formats. Results of an initial (example) analysis are shown in 
Figure 43. 

 
Figure 43: Example Screen Shots from the Summary & Aggregation Worksheet  

of TRICCS. 
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The TRICCS workbook is designed to allow flexible definition of systems and subsystems, while tying 
them to real-world component identification and failure rate data. Part of the flexibility provided allows 
the user to insert plant-specific component failure rate and repair time data in place of the built-in data. 
After gaining experience using the TRICCS workbook, multiple instances of this workbook can be used 
to develop subsystem data that can then be used in place of components to build a more complicated 
system model.  

 

 

Task 9.0 Crosscutting Integration Tools 

Data Management System. A comprehensive technology survey resulted in identifying Alfresco as the 
preferred data storage engine for the data management framework. It supports rich web client access, 
numerous file system access methods, and methods for programs to interact with the system. In addition, 
it is supported by both a large open source community and a commercial entity. For programs that do not 
already have a data format for their large-scale data, HDF5 is the recommended file format for data 
storage. For configuration files, we recommend adopting JSON.  

 

Turbine Science Gateway. This server and gateway architecture enables remote execution of a series of 
simulations to enable parameter sweeps and a series of simulations in support of optimization and 
uncertainty quantification. The gateway supports execution on cloud compute resources, clusters and 
local machines. An "Excel" web application was added to Turbine to enable the running of the 
optimization team use-case, where a spreadsheet is run after each set of simulation runs to perform a 
variety of additional calculations. Support for gPROMS simulations was also added to complement the 
previous support for Aspen Plus and Aspen Custom Modeler. 

In order to support the use case where the user does not have ready access to an Amazon Cloud Service, a 
simpler Turbine Science Gateway installer "TurbineClusterGateway" was developed for installing the 
gateway on single machines or on clusters. This installer lacks all Amazon Web Services specific 
functionality and simplifies installation.  

 

Product Deployment. This task focused on preparing for and packaging the upcoming release of the CCSI 
Toolset. This release will provide major functionality to industry users and has many significant tools that 
are being released. Managing the release process, particularly extensive testing, is a critical aspect of 
CCSI. Because the tools being developed among the various tasks are intended for use by industry, it is 
essential that each component of the CCSI Toolset can be accessed, installed and utilized as intended. A 
continuous build and integration system was developed, which provides automated nightly builds of the 
software products in the CCSI Toolset. This will ultimately enable continuous integration and testing of 
code to ensure that issues introduced by new code are recognized quickly. 
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3.0 Conclusion 
During FY13, CCSI announced the initial release of its first set of computational tools and models during 
the October 2012 meeting of its Industry Advisory Board. This initial release led to five companies 
licensing the CCSI Toolset under a Test and Evaluation Agreement this year. By the end of FY13, the 
CCSI Technical Team had completed development of an updated suite of computational tools and models, 
which includes 12 new products and significant updates to 11 products from the previous release to 
provide new capabilities and improved usability. The new tools include an integrated Framework for 
Optimization and Quantification of Uncertainty and Sensitivity (FOQUS), a validated CFD model to 
predict particle attrition, and a new tool to create RMs of dynamic simulations to enable more effective 
study of the operational characteristics of potential carbon capture systems. Another new tool enables the 
use of advanced Bayesian statistical methods for calibration and validation of models. Finally, a new 
basic data submodel for a high-viscosity carbon capture solvent was developed following CCSI’s recent 
expansion into this area. 

The goals for CCSI are to continue the development of the computational tools, models, methodologies 
and infrastructure that will ultimately become the CCSI Toolset. This development will proceed in 
parallel with the demonstration of these tools for specific capture technologies. The demonstrations will 
highlight the new capabilities that the CCSI Toolset will ultimately provide for facilitating the scale up 
and commercialization of new carbon capture technology. Additional releases of the CCSI Toolset are 
planned for Fall 2014 and Fall 2015, with a final release in January 2016.  
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