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Digital in-line holography (DIH) is an optical technique for the measurement of three-
dimensional (3D) particle fields. Although DIH has many potential applications, widespread 
use of the technique is hindered by relatively high uncertainty in the measured particle 
depth. Here we present new experimental methods to quantify the depth uncertainty by 
comparing measured particle trajectories to predicted trajectories for a simple, rotational 
flow. When using the hybrid method of particle detection, the measured depth uncertainty is 
similar to previous results from stationary particles with uniform displacement. Here, the 
addition of relative particle motion provides further insight into experimental sources of 
depth uncertainty. 

Nomenclature 
d = particle diameter 
d̅ = mass median diameter 
E = complex amplitude of the numerically reconstructed wave 
Eo, Er = complex amplitude of the object wave and reference wave 
x, y = transverse spatial coordinates 
z = depth coordinate along the optical axis 
zc =  depth coordinate along the optical axis corrected for refractive interface effects 
 = recording wavelength 
, r = angular velocity and radius of the particle trajectory 
0, r0 = angular velocity and radius of the stir rod 
, =  transverse spatial coordinates in the hologram plane 

I. Introduction 
gital in-line holography (DIH) is an optical technique in which a collimated laser illuminates an object field. 
The resulting diffraction pattern is digitally recorded, and numerically refocused via solution of the diffraction 

equations.1,2 For example, Figure 1(a) shows experimental holograms of the impact of a water drop on a thin film.3 
In Figure 1(b), these holograms are numerically refocused to a distance of z = ### mm along the optical axis. In-
focus features of the secondary drops and the crown-morphology are revealed. Finally, by searching through a range 
of z-positions, algorithms can be defined to automatically extract the in-focus features at each z, resulting in the 
three-dimensional (3D) reconstruction of the particle field shown in Figure 1(c). Here, velocities are obtained by 
matching detected particle locations from two holograms recorded with short inter-frame time. Full details on these 
results can be found in Guildenbecher et al.3 
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(a) 

 
(c) 

 
(b) 

Figure 1. (a) Digital in-line holograms of the impact of a drop on a thin film, (b) the corresponding amplitude 
images when the holograms are numerically refocused to z = ### mm, and (c) the reconstructed 3D particle 
positions and velocities.3 

 
A major challenge in DIH is the depth of focus problem as discussed by Katz and Sheng.2 Due to the limited 

effective angular aperture from which individual particle images are reconstructed,4 the intensity within the 
reconstructed particle images varies slowly with respect to depth, z. Consequently, methods which search through 
the expected particle depths and apply focus metrics to extract in-focus particle images5-8 tend to suffer from high 
uncertainty in the measured particle z-locations. This is illustrated in Figure 1(c) where the measured z-velocity 
component shows significantly higher uncertainty compared to the in-plane velocity components (x-y velocities). 

For interpretation of DIH measurements, it is crucial that this z-uncertainty is well quantified. In our previous 
works, z-uncertainty has be quantified using simulated holograms and experiments applied to known particle 
fields.7,8 In the former, all aspects of the simulated particle(s) are known a-priori including the particle size, 
morphology, and x, y, z location. Consequently, reconstructions of simulated holograms can be used to estimate the 
uncertainty of all of these quantities. However, it is difficult, if not impossible, to construct simulations which 
incorporate all sources of experimental uncertainty, such as the effects of aberrations, particle overlap, particle 
motion, and noise introduced by dust on the optics, bad pixels, etc. For this reason, experimental quantification of 
uncertainty is also necessary. In our previous work, uncertainty has been experimentally quantified using nearly-
stationary particles immersed in viscous silicone oil. By recording multiple holograms after displacing the particle 
field by a known amount in the z-direction using a linear traverse, matching between reconstructed particle locations 
was used to quantify the uncertainty in the measured z-displacement (z). However, because the overall z-location 
of each particle was not known a-priori, these methods could not be used to experimentally validate the accuracy of 
the measured z-position. 

Here, new experimental methods are proposed which can be utilized to validate not only the measured z-
displacement but also estimate the accuracy of the overall measured z-position. The work begins with a discussion 
of the experimental configuration. Next the digital holographic processing methods are briefly reviewed. Finally, the 
results are applied to derive experimental estimates of z-uncertainty. 

II. Experimental Configuration 
The chosen experimental configuration for investigation of z-uncertainty in DIH is shown in Figure 2. Similar to 

our previous work,3,9 the output from a flash-lamp pumped, frequency-doubled Nd:YAG laser (Litron Nano S 65-15 
PIV, ~5ns pulse duration) is spatially filtered and collimated to a beam diameter of 50.8 mm. This collimated beam 
passes through a particle field consisting of polystyrene particles (particle density, p = 1050 kg/m3) immersed in 
clear, viscous silicone oil (fluid density, f = 971 kg/m3 and viscosity, f = 9.71 Pa·s), contained in a glass cuvette 
with inner dimensions of 50×50×50 mm (Hellma Analytics model 704.003-OG). Here, two particle fields are 
considered with mass median diameters of d̅ = 465 m and d̅ = 118 m, as measured with a Malvern Mastersizer 
2000. In both cases, a sparse particle field is considered with a concentration of approximately 3.3 particles/cm3 and 
2.9 particles/cm3 for the d̅ = 465 m and d̅ = 118 m cases, respectively. 
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Figure 2. Experimental configuration for the measurement of a swirling particle field using DIH. 

 
The particles are brought into motion by the rotating spindle of a Brookfield Viscometer placed into the center of 

the cuvette as illustrated in Figure 2. The chosen spindle (RV-7) consists of a stainless-steel rod with uniform radius 
r0 = 1.58 mm, as measured with precision calibers. The rod is rotated at a constant angular velocity of 0 = 100 rpm. 
This configuration results in a flow pattern which appears similar to the classic Taylor-Couette flow, with the 
exception that the outer walls are square, rather than cylindrical. As a consequence, secondary corner vortices are 
expected. To ensure the lateral extent of the secondary vortices did not cross into the experimental measurement 
volume, a computational fluid dynamics (CFD) simulation was completed using Sandia National Laboratories’ 
ARIA finite-element based multiphysics solver.10 The Stokes equations were solved on an unstructured, 3D grid 
consisting of approximately 1.2 million tetrahedral Q1Q1 elements with pressure stabilization. Figure 3 shows the 
computational results, along with the effective measurement volume of the holography system. From this result we 
conclude that within the experimental measurement volume, streamlines are nearly circular, which justifies the later 
use of circular trajectories to model the flow. The CFD computed horizontal extent of the secondary vortices is 
found to be ~5% of the width of the cuvette, which is consistent with the literature.11,12 

Gravitational settling and centripetal forces are expected to cause the motion of the embedded particles to 
deviate slightly from the fluid motion. For spherical particles, the Stokes flow terminal velocity in the y-direction 
can be estimated as vterm = g(p-f)d

2/18f, where g is the gravitational acceleration and d is the particle diameter. 
For the conditions considered here, vterm = 0.06 m/s and 1.0 m/s, for the d̅ = 118 m and d̅ = 465 m particles, 
respectively. Data acquisition requires 15.33 s; therefore, over the experimental duration, particles are expected to 
deviate from the fluid motion by at most 15 m in the y-direction. Further, along the circular path of the particle, 
viscous drag supplies the centripetal force such that the particle radial slip velocity is given by vslip = pd

2r2/18f, 
where r and  is the radius and angular velocity of the particle, respectively. The maximum vslip occurs at r = r0, 
 = 0 and is equal to 0.01 m/s and 0.2 m/s, for the d̅ = 118 m and d̅ = 465 m particles, respectively. 
Therefore, over the experimental duration particles are expected to deviate from the fluid motion by most 3 m in 
the radial-direction. As shown in the 
following sections, these deviations 
are significantly less than the 
observed measurement uncertainties, 
and therefore particles can be 
assumed to follow the flow within the 
precision of the measurement. 

220 hologram images are captured 
at 15 Hz with a LaVision Imager 
sCMOS (2560×2160 pixels, 6.5 m 
pixel pitch) placed at a z-distance of 
approximately 220 mm from the 
center of the cuvette. Figure 4 shows 
select hologram images for the case 
when d̅ = 465 m. The motions of 
individual particles are easily tracked, 
as illustrated by the particle selected 
in the white box in Figure 4. Note, 
images in Figure 4 are displayed at 
1/10th the actual recording rate. 

 

 
Figure 3. Predicted flow field, where white dotted lines show the 
effective measurement volume of DIH (16.64 mm in the x-direction, 
14.04 mm in the y-direction, 50 mm in the z-direction) and black lines 
show predicted streamlines which originate within the center x-z plane 
colored by total velocity. 
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(a) (b) (c) (d) 
Figure 4. Select experimental holograms for the case where d̅ = 465 m. Time between images is 0.67 s. White 
boxes highlight the motion of a single particle. 

III. Processing Methods 
A hologram, h, is formed from the interference between a collimated laser beam and the portion of the beam 

scattered by particles in its path, 

          2 22 * *, , , , ,r o r o o r r oh E E E E E E E E               . (1) 

Here, the complex amplitude of the scattered light is referred to as the object wave, Eo, while the portion of the beam 
which propagates through the particle field undisturbed is referred to as the reference wave, Er. Finally, (,) are the 
spatial coordinates in the hologram plane. 

In the numerical reconstruction, the hologram is multiplied by the complex conjugate of the reference wave, Er
*, 

resulting in an expression of complex amplitude, 

        22 2* * *2 *, , , ,r r o r r o r oh E E E E E E E E            
  . (2) 

This complex amplitude is numerically propagated to any distance, z, through solution of the diffraction equation, 

    
    

   

2 2 2

*

2 2 2

exp
1

, , , r

jk x y z
E x y z h E d d

j x y z

 
   

  

 

 

   
 

   
  . (3) 

Here, E(x,y,z) is the reconstructed complex amplitude at z;  is the wavelength; and k is the wavenumber, k = 2/. 
In Eq. (3) the diffraction equation is written using the Rayleigh-Sommerfeld diffraction kernel. In many situations 
the paraxial assumption can be applied to yield the somewhat simpler Kirchhoff-Fresnel form, 

          2 2*exp
, , , exp

2r

jkz jk
E x y z h E x y d d

j z z
     



 

 

           . (4) 

Equations (3) and (4) can be numerically solved as 

        1 *, , , rE x y z h x y E G z     , (5) 

where   and 1  denote the Fourier transform and inverse Fourier transform, respectively. These are typically 
numerically evaluated with the fast Fourier transform (FFT). G(z) is the analytic expression of the diffraction kernel. 
For example, for the Rayleigh-Sommerfeld kernel, 

       2 2
exp 1G z jkz m M n N        , (6) 

where (m,n) are the pixel coordinates. Finally, reconstructed images are visualized using the amplitude, A = |E| or 
intensity, I = |E|2. 

For example, Figure 5(a) show the reconstructed amplitude image when the hologram in Figure 4(b) is 
numerically refocused to z = 211.96 mm using Eq. (5). Interestingly, in this image, the particle appears aberrated 
with a noticeable astigmatism. The source of this aberration is still being investigated. Nevertheless, here the method 
proposed De Nicola et al.13 is used to compensate for the aberrations by introducing ad-hoc corrections to the spatial 
frequency terms in Eq. (6), 

          22 2 22exp x yG z jk z z z m M z z n N           
 

. (7) 

Here, zx and zy are focus corrections in the x- and y-directions, respectively. Trial and error is used to find the 
optimal as zx = -1 mm and zy = 1 mm, resulting in the corrected particle image shown in Figure 5(b). 
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(a) 

 
(b) 

Figure 5. Numerically refocused amplitude image (z = 211.96 mm) within the solid white box in Figure 4(b), 
(a) using the normal Rayleigh-Sommerfeld diffraction kernel, Eq. (6), and (b) an aberration compensated 
kernel, Eq. (7). 
 

In the hologram recording process, the light wave passes through oil-glass and glass-air refraction interfaces, 
whereas in the reconstruction process the numerical propagation is conducted in a uniform medium (air). This 
introduces a systematic error in locating the particle, which can be studied by analyzing the image of a point light 
source reconstructed from an in-line hologram. The modeled system is illustrated in Figure 6. A point light source 
located at (x0', y0') gives rise to an object wave, which is found from the Collins formula under paraxial 
approximation,14 

    2 2

0 0

exp( )
( , ) ( , )exp

2
axis

o

jkz jk
x x y y x y dx dy

j C C
E     



 

 

                   ,  (8) 

where C = z1/n1+z2/n2+z3/n3 is derived from the ray matrix of the system enclosed by the red dotted rectangle in 
Figure 6; and zaxis = n1z1+n2z2+n3z3 is the optical path along the optical axis. Given the property of the delta function, 
Eq. (8) can be written as 

    2 2

0 0

exp( )
( , ) exp

2
axis

o

jkz j
yE

k
x

j C C
   


         

. (9) 

In the reconstruction process, the fourth term in Eq. (2) produces a real image of the point light source. 
Propagation of that term via Eq (4) gives 

      2 2
0 0

2 23exp, , 2( ex
2

)
2

p
jk

P y
jkn

E x y z x x y
z

d d
C

      
 

 

     
              , (10) 

where E' denotes the complex amplitude propagated from the fourth term only, and P = n3|Er|
2exp{jk(n3z-zaxis-

(x0'
2+y0'

2)/2C)}/(2Cz). From Eq. (10), the real image of the point light source is in focus when z = n3C, and E' is 
reduced to a delta function, expressed as 

  
2 2 2 2
3 1 3 2

2
2

2

3 1 0 0
1

ex ( , )prE z n C E x x y y
n n n n

jk z z
n n


       
   

     . (11) 

Note, the lateral coordinates in the image (x0', y0') are identical to those of the point light source, while the in-focus 
z-position of the particle (distance from the hologram plane to the image plane) is related to the actual distances by 
 3 1 13 32 23z n C n z n n z n z    . (12) 
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Figure 6. Illustration of the simulated digital in-line hologram of a point light source used to investigate the 
systematic error of z-location measurement due to refraction interfaces. 
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Here, we further assume that the thickness of the glass, z2, is small and its effects can be ignored. Further, the index 
of refraction of air, n3 =1. With that, the corrected distance, zc, from the hologram to the particle becomes, 
  1 3 1 3 3cz z z n z z z     , (13) 

where n1 = 1.403 and is the index of refraction of the silicone oil. z3 ≈ 190 mm and is the distance from the hologram 
to the first surface of the cuvette. In the results that follow, all of the reconstructed z-positions have been corrected 
using Eq. (13). 

IV. Experimental Results and Discussion 
The literature contains a number of methods which search throughout the reconstructed z-location and 

automatically measure in-focus features.5-8 Here, we focus on one such method in order to illustrate the results 
which can be obtained from the proposed experimental configuration. In Guildenbecher et al.7 we outline a hybrid 
method of particle detection. In this method, in-focus features are located by searching throughout depth using 
Eq. (5). Features which show a simultaneous minimum of intensity within their interior and a maximum sharpness 
gradient along their outside edge are automatically extracted. Full details on the method implementation can be 
found in Guildenbecher et al.7 and Gao et al.8 The hybrid method has been applied to quantify the breakup of a drop 
in an aerodynamic flow9 and the impact of a drop on a thin film.3 

Here, the hybrid method is applied by reconstructing 2001 planes evenly spaced between z = 150 mm to 
z = 250 mm. For the case where d̅ = 465 m, valid features are extracted with an area equivalent diameter, d, 
300 ≤ d ≤ 1000 m. Likewise for the case where d̅ = 118 m, valid features are extracted with 50 ≤ d ≤ 400 m. 
These ranges are chosen to span the expected range of particle diameters while minimizing detection of false regions 
due to noise. Further, to eliminate particles which overlap in the x-y plane and are incorrectly detected as single large 
particles, no region is accepted with an eccentricity greater than 0.5. Finally, as described in Gao et al.8 the hybrid 
method is first applied using the minimum amplitude map and then refined using the local amplitude detected in the 
first iteration. 

Figure 7 shows the detected particle images from the holograms shown in Figure 4. Here, the shapes represent 
the particle morphologies measured in the x-y plane while the color gives the measured z-position, corrected for 
index of refraction using Eq. (13). From all hologram images, the measured mass median diameter is 457 m and 
128 m for the cases where d̅ = 465 m and d̅ = 118 m, respectively. This represents an error of -1.7% and 8%, 
respectively. Furthermore, the mean measured particle concentration is 3.0 particles/cm3 and 2.3 particles/cm3, for 
the cases where d̅ = 465 m and d̅ = 118 m, respectively. Recalling that the actual particle concentration is around 
3.3 particles/cm3 and 2.9 particles/cm3 for the d̅ = 465 m and d̅ = 118 m cases, respectively, these results give 
some indication of the percentage of the particles which have been invalidated due to overlap. 

Figure 7 also shows the measured x-y trajectory of the particle highlighted by the white boxes in Figure 3. 
Notice, as time progress from left to right, the particle first moves in the positive x-direction, reaches a maximum, 
and then traverses back in the negative x-direction. This is indicative of the expected circular motion about the stir 
rod. Assuming that the measured x-positions display minimal error, the x versus t results can be fit to the following 
expression in order to find the radius, r, and angular velocity, , of the selected particle. 
    0cosx t r t   . (14) 

 

 
(a) (b) (c) (d) 

Figure 7. Reconstructed particle images corresponding to the holograms shown in Figure 4. Circles 
connected by lines show the detected trajectory of the highlighted particle from all previous realizations. 



 
American Institute of Aeronautics and Astronautics 

 

 

7

Here, 0 is the initial angular position of the particle. Non-linear regression is used to find r, , and 0 from the 
measured x versus t. For the trajectory highlighted in Figure 7, this results in r = 5.04 mm and  = 9.414 rpm, with a 
goodness of fit quantified by R2 = 0.9996. Further, from the simulations in Figure 3, the angular velocity at this 
value of r is predicted to be 9.406 rpm. Good agreement between the curve fit value and the prediction indicates that 
the proposed method of fitting the measured x versus t trajectory to the predicted behavior results in an accurate 
measure of r and  for a given particle. 

This process is repeated for all measured 
particle trajectories, accepting any curve-fit 
with an R2 value greater than 0.99. For the case 
where d̅ = 465 mm, 36 particle trajectories are 
validated in this manner, and Figure 8 shows 
the measured r versus  compared with the 
prediction. Again, good agreement between 
measured and predicted values is observed. 
Finally, the process is repeated for the case 
where d̅ = 118 m, where 21 valid particle 
trajectories are found (not shown). 

With the estimates of r and  for a given 
particle, a theoretical relationship for the z-
position can now be obtained as 

Figure 8. Angular velocity versus radius from the curve fit of 
measured x versus t trajectories using Eq. (14) for the case 
where d̅ = 465 mm compared with the predicted values from 
simulation. 

 

    0sinz t r t   . (15) 

For example, Figure 9 compares the measured x-z positions of the particle highlighted in Figure 7 with the predicted 
values from the curve fit (Eqs. (14) and (15)). Notice, in addition to the trajectory measured to the right of the rod 
(as highlighted in Figure 7) Figure 9 shows a second trajectory of this same particle which has been measured at a 
later time when the particle is visible to the left of the rod. 

Figure 9 illustrates the advantages of the proposed experimental configuration. From experimental DIH 
measurements alone, it is possible to validate both the measured z-position as well as the measured z, where the 
theoretical z is given by 
    0cosz t r t t      . (16) 

Here t is the time between DIH measurements. For the trajectories shown in Figure 9 the mean error in z 
(measured - theoretical) is -0.0683 mm with a standard deviation of 0.3128 mm. Likewise, the mean error in z 
(measured – theoretical) is 0.0260 mm with a standard deviation of 0.2068 mm. 

Furthermore, comparison between the 
measured and predicted trajectories in 
Figure 9, gives some indication of the 
major sources of uncertainty which affect 
the positioning accuracy. For example, the 
larger deviation of the measured trajectory 
in the upper right in Figure 9 (x = 3 mm, 
z = 224 mm), corresponds to a time when 
the measured particle is in close proximity 
to other particles in the x-y plane (see 
Figure 7(a) and Figure 4(a)). This indicates 
that particle z-positions as measured by the 
hybrid method are susceptible to larger 
uncertainty when neighboring particles 
interfere with the diffraction field of the 
measured particle. While this conclusion is 
somewhat expected, in the future it may be 
possible to use the results to define 
alternative methods which are less 
susceptible to this error source. 

 

 
Figure 9. Measured x-z trajectory of the particle highlighted in 
Figure 7 along with predicted trajectory from the curve fit. 
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Finally, Table 1 summarizes the 
mean and standard deviation in the 
error in the measured z-positions 
and displacements for the two cases 
considered here. For all quantities, 
the mean error is small, signifying 
little bias in the measured quantities. 

Table 1. Mean ± standard deviation of the error in measured  
particle z positions and displacements. 

 d̅ = 118 m d̅ = 465 m 
positional error [mm] -0.0025 ± 0.3787  0.0405 ± 1.5050 

displacement error [mm] -0.0009 ± 0.3024 -0.0318 ± 1.0481 
 

This indicates that it should be possible to calculate accurate flow averages from multiple DIH realizations and the 
hybrid method. On the other hand, the z-uncertainty, as quantified by the standard deviation, is relatively high, as 
expected due to the aforementioned depth of focus problem.2 For this reason, higher order flow statistics as 
measured by DIH should be calculated and interpreted with great care. Finally, the uncertainty in measured z is on 
the order of 2.3-2.6 mean particle diameters. Our previous measurements using stationary particle fields with 
uniform displacements resulted in an estimated uncertainty on the order of 1.5-1.7 mean particle diameters. This 
indicates that the experiments performed here, which include relative motion between particles, incorporate 
additional sources of experimental uncertainty. 

V. Conclusion 
An experimental investigation of the depth (z-position) uncertainty in digital in-line holography (DIH) is 

presented. Experimental methods are proposed wherein a slowly rotating particle field with well-defined particle 
trajectories is used to derive the theoretical z-position of individual particles. This allows for quantification of z-
uncertainty directly from the measured results. Specific conclusions from the results reported here include: 

 
 Proposed corrections for the effects of refractive interfaces along the beam path result in measured z-positions 

with mean behavior matching the predicted trajectory. 
 For this flow configuration, a curve fit to the in-plane (x-y) displacements provides accurate estimates of the 

circular trajectories of individual particles. From this, a predicted value of out-of-plane z-position can be derived 
and compared to measurements. 

 Measurement of these flow conditions with DIH and the hybrid method of particle detection indicates accurate 
quantification of the mean z-positions and uncertainty on the order of 2.5 mean particle diameters. 
 
In the future, this work could be extended to compare the experimental accuracy of various particle detection 

methods. This would allow one to quantify those aspects of each method that are most susceptible to uncertainty and 
possibly derive new methods with reduced uncertainty. Finally, additional work should be undertaken to repeat these 
experiments with minimized aberrations, such that the ad-hoc corrections for the observed astigmatism can be 
eliminated. 
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