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(@) Introduction

Motivation for developing temp./ strain rate dependent BCC models

1000

£ 284104 Tungsten

s BCC metals are of scientific and engineering interest
o Refractories/ High energy applications: W, Mo, Ta
o Structural materials: Steel

*» Underrepresented in computational materials science studies
o Most models are phenomenological

o Complex response compared to FCC

- Ambiguity of slip systems, non-Schmid effects G0 005 ow om o020 0z o
Brunner & Glebovsky MatF.’ Sci. Lett. (2000)

- Temperature & strain rate dep. flow stress
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. % . [ Tantalyrﬁ Stain rate (s) |
T(T,'}/) =1 (T’Y) + Tobs , ! . ‘;12 1
Thermal  Athermal ] : |
k %"/ 100 - A“ 1 . B
In FCC metals, T =0 %
In BCC metals, 7~ >>0 (T << TC) | |
Need a model of the resistance to slip by lattice friction o= |

Temperature (K)

Werner, Phys. Stat. Sol. (a) (1987)
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[ .. Kink-Pair Theory

Regime | (High T / low o) Regime Il (Low T / High o) Peierls potential

a
¥ >
Elastic Interaction Model Line Tension Model
Ty =1 (1 T jz T 0 (4 [ T jl/z T ) 2H,
T =T - T =7 - — ¢ = .
gy 0 TC(}/) LT( ’7) LT TC(V) k, ln(}/0 /3/)
s00 - (Antiparabolic Peierls potential)
i Stain rate (s™) |
I o 1.7x10° |
400 B A 33x10° |
ol Regime Il (LD) " S0 Best-fit material parameters
§ ] Material Vo (s  2H (eV) 1Y (MPa) 1" (MPa)
" 200 | } Mo 3.75x10° 1.27 1156 835
: Regime | (El) Ta 2.99x106 0.85 406 320
100 7 ] W 3.71x101° 2.06 2035 1038
. | Mo (Hollang, 1997) " Nb 1.14x108 0.68 576 402
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Temperature (K)

- _________________________________________________________________________________________________________________
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(@) Measured and Fitted 7*
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= i < 100 | i
o 400 | . Z
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Measured 7" are accurately reproduced by the El and LT models




@ ﬁa?_dial .
Lazi):lurg?ories O u t I I n e

" |ntroduction

= Kink-Pair Theory

= CP-FEM Predictions

= Continuum-Scale Polycrystal Models

= Validation with Experiments

= Summary




Q=R BCC CP-FEM Formulation

FEM code developed at Sandia National Laboratories (JAS-3D)

« 24 {110}<111> slip systems

1/m
. O 4 Ta .
« Sliprate: ¥ =7, [—a] (Hutchinson, 1976)
8

+ Slip resistance: g” = min(TEf,TL?)+ T s

‘—) Obstacle stress
Lattice friction

NS
« Obstacle stress: 7, = Aub /Zpﬂ (Taylor, 1934)
B=1

NS
p = (Kl Zpﬁ —sz“)-|7“| (Kocks, 1976)
\/ =1




@&,  Single Crystal CP-FEM Predictions
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CP-FEM model accurately reproduced yield stresses of [149] single crystals
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BCC Polycrystals: Temperature Dependence
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Measured yield stresses of BCC polycrystals lie between the bounds predicted by

CP-FEM models on extreme single crystal orientation.
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@i, BCC polycrystals: Strain Rate Dependence
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Measured yield stresses of BCC polycrystals lie between the bounds predicted by

CP-FEM models on extreme single crystal orientation.
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@&, Continuum-Scale Polycrystal Models

« Johnson and Cook (JC) model (Johnson and Cook, 1983, 1985)
0 =A(l+Clné)(1-T™)

« Zerilli-Armstrong (ZA) model (Zerilli and Armstrong, 1987)

6 =C,+C exp(-C,T +C,T Iné)

« Mechanical Threshold Stress (MTS) model (Follansbee, 1988)

o7, V)
ayfsza()m[l—( : 1n?] )
GO 80
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Polycrystal Fitting: T dependence
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ME=.  Polycrystal Fitting: Rate dependence
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@) .. Polycrystal Fitting: Summary

-+ JCmodel: 6/ =A(1+Cln¢)(1-T"")

y

- ZAmodel: o2 =C,+C exp(-C,T +C,T In¢)

. \1l/g Up
« MTS model: GMTS=00+6(1—(kBT1n€] ]

’ GO 80

Standard deviations of yield stresses between CP-FEM predictions and continuum fits (unit: MPa)

JC model ZA model MTS model
Mo 165.4 48.9 2.1
Ta 78.3 28.2 10.2
w 242.1 82.0 14.2
Nb 78.7 30.4 6.0
Avg. 141.1 47 .4 8.1

MTS model most accurately reproduce temp./ rate dependent polycrystalline behavior

16
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@M.  Simulation of Tantalum Oligocrystals

/ Initial grain orientations \ /" In-situ tensile test inside SEM \
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@) . Strain Field Analysis

200 |

- D _.--- *

150 | 9________4
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(a) HR-DIC mesuremts (b) CP-FEM predictions
Measured and predicted strain fields agree well quantitatively.




@) & Texture Analysis

Initial

EBSD measurements [111] CP-FEM predictions [111]

[111]

Initial

001]

[001] [011] [001] ' [011]
Measured and predicted texture (¢ =6.8%)
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(@) Prediction of Failure Location

Ta oligocrystal specimen 2 at 19.2% deformation

(a) Surface image

(b) Simulated ¢,
Failure location agrees with the location of the highest ¢,, from the simulation




@ Eﬁfﬁ!ﬂes S u m m a ry

= Developed T and € dependent flow rule based on dislocation kink-pair
theory for Mo, Ta, W and Nb.

= Predicted T and € dependent o, using CP-FEM model agree well with
experimental data.

= MTS model accurately reproduced polycrystal behavior.

= CP-FEM predictions of Ta oligocrystals showed good agreement with
measured strain fields (HR-DIC) and deformed textures (EBSD).

= Proposed computational method provides a convenient and direct link from
the fundamental dislocation physics to the continuum-scale plastic
deformation of BCC metals at the grain scale.
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