
Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

Current Attempts at Aboveground 
Antineutrino Monitoring at the 

San Onofre Nuclear Generating Station 
(SONGS)

A Joint Project Between 

Sandia and Lawrence Livermore 

National Laboratories

David Reyna
Sandia National Laboratories, CA

SAND2010-5059C



Lawrence Livermore National Laboratory

D. Reyna3 August 2010 2

Acknowledgements and Project Team

David Reyna

Jim Lund

Belkis Cabrera-Palmer

Scott Kiff

Many thanks to the 
San Onofre Nuclear 
Generating Station

This Work is supported by DOE-NA22 
(Office of Nonproliferation Research and Development)

Nathaniel Bowden 

Adam Bernstein

Steven Dazeley

Greg Keefer

Lawrence Livermore 
National Laboratory



Lawrence Livermore National Laboratory

D. Reyna3 August 2010 3

R
e

a
c

to
r 

P
o

w
e

r 
(%

)

0

20

40

60

80

100

Date

06/2005  10/2005  02/2006  06/2006  10/2006  

D
e

te
c

te
d

 
 c

a
n

d
id

a
te

s
 p

e
r 

d
a

y

0

100

200

300

400

500

Predicted rate 

Reported power
Observed rate, 
30 day average

Fuel Cycle n+1Refueling
Outage

Fuel Cycle n

Isotopic evolution

SONGS extension

Timeline of LLNL/SNL Presence at SONGS  

Conceptual Paper, 
Detector Design

2002 20062004 2008

2003 2005 2007
Design Refinement, 
Deployment at SONGS

First  observation

Large efficiency gains

Power Monitoring

Detector Stabilisation 

R
e

a
c

to
r 

P
o

w
e

r 
(%

)

-20

0

20

40

60

80

100

Date

02/28/05  03/07/05  03/14/05  03/21/05  03/28/05  

C
o

u
n

ts
 p

e
r 

D
a

y

0

150

300

450

600

Predicted rate
Reported power

Observation, 24hr avg.

Deployable Detectors 
Designed, 
Constructed, Deployed 

Deployable Results

Detector Removal

P
o

w
e

r 
(%

)

-50

0

50

100

Date

Sep 17  Oct 01  Oct 15  Oct 29  Nov 12  Nov 26  

C
o

u
n

ts
 p

e
r 

d
a

y

0

50

100

150

200

250

300

Predicted

Observed

Reactor Power

2009
New Deployment In 
SONGS Unit-3



Lawrence Livermore National Laboratory

D. Reyna3 August 2010 4

 Tendon gallery is ideal location

• Rarely accessed for plant 
operation

• As close to reactor as you 
can get while being outside 
containment

• Provides ~20 mwe 
overburden

SONGS Unit 2 Tendon Gallery
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Interest Developing from Safeguards 
Agencies

 We are very pleased that as a result of our work, 
and other projects getting under way elsewhere, 
IAEA is considering this new tool

 Experts meeting (Vienna 2008)

• Assessing where it might fit

• Bulk accountancy mentioned

• Online refueled mentioned 

 Expecting an SP-1 (official IAEA request for 
further development and study)
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Aboveground Challenge: 
Increased backgrounds

 Without overburden, an 
aboveground detector is 
exposed to:
• An increased muon rate
• Hadronic showers
• Electromagnetic showers
• Secondary particles produced by 

all of the above in the detector and 
its surroundings

 Belowground (only a few meters) 
many of these cosmic backgrounds 
are significantly reduced

 We have deployed a suite of 
background detectors at various 
locations (above and below ground) 
to better assess the expected 
increase

D. Reyna
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Incoming muon

Need for Shielding and Muon Veto

 A shield can control backgrounds more simply 
than detector design

• Need to reduce neutron impact is severe

 Fast neutron calculation is sobering

• Proton recoils of >10 MeV will look like 
positron signal

• Calculation based on Hess Spectrum and 
differential n-p cross-section

 Expect 5x105 events per day (~6Hz) per 
ton of LS (unshielded)

 Neutron shielding and muon vetos can be 
improved from SONGS1

• Improved material choice can improve fast-
neutron moderation by ~25% and reduce 
thermal neutron flux

• Previous veto was only ~95% efficient
 allowed cosmogenic neutrons (produced in 

the shield) to contaminate the detector

D. Reyna

Incoming 
neutron
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A Water based Antineutrino Detector

 Water Cerenkov commonly used for 
neutrino detection

• deployability – fire safe and 
environmentally safe 

• Reduced sensitivity to fast neutron 
backgrounds 

 (Cerenkov threshold ~ 500 MeV )

• Poor energy resolution, due to:

 Directionality of photons

 Low number of photons

 Minimum electron/positron energy 
required to produce any photons 

 0.25 MeV kinetic energy

 Addition of a neutron capture agent 
(~0.2% GdCl3 ) allows for antineutrino 
detection via inverse beta decay

• known to be stable in water

• Does not affect light attenuation in 
small detectors
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Water Detector Construction

 Previous small-scale test showed 
promise so we have improved it

• 4 x larger volume

• Better light collection efficiency

 Use diffuse reflective walls (>98% 
reflectivity)

 Increased PMT coverage

• Using 12 Hamamatsu 10” PMTs

 Detector Details:

• Total Mass ~ 1 ton

• Total PMT Coverage 12%

• ~0.2% GdCl3 
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Containerized Shield

December 2009 February 2010

45 cm HDPE Neutron Shield 

1” Borated Poly with
Mu-metal Liner

2” Plastic Scintillator Muon Veto 

Central Water Detector 
+ secondary containment
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Next Stop….San Onofre
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Final Deployment at SONGS
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Operating Since End of May

 Continuous Monitoring of Environment (temperature and humidity)

 Continuous Monitoring of PMT triggers and High-Voltage

• Changes in PMT rates due to alterations in trigger threshold

 Preliminary Analysis based on data from July 1-5

Individual PMT Rates

PMT Multiplicity Trigger Rate
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Water Detector Performance

 Good Single PE resolution from 10” PMTs

 Added coverage makes separation of neutron capture on Gd

• Initial Candidate Selection [110 – 525 PE]

 Careful Calibrations have not yet been performed

• Data taking includes periodic LED runs and source calibrations
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Muon Veto Performance

 Clean muon/gamma separation

 Very good timing correlation 
between Veto and Water 
Detector

 Estimate Veto efficiency at 
98.2% by using high-energy 
depositions in the water as a 
definition of muons
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Preliminary Analysis

 100 μs veto around muon 
detection eliminates most 
cosmic induced showers
• Gives 21% deadtime

 Clean separation of 
correlated events from 
uncorrelated backgrounds
• Time constant of 27.5 μs for 

neutron capture on Gd

 Extracted Correlated Event 
Sample from a 4.5 day 
sample of data
• Without Muon Veto:

 800,000 events/day

• With Muon Veto
 14,000 events/day
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Soon to Come…

 Improvements in data analyis

• Better muon veto handling

• Better calibrations of water detector

• More complete optimizations of cuts

 Longer running

 Reactor Transition

• SONGS Unit-3 will begin a 3-month shutdown on October 10, 
2010

 Our goals are difficult, but not impossible

• Detection of a reactor transition (on/off) with 3σ precision in 
less than 7 days or 5σ precision in less than 30 days 

• We are not there yet, but look forward to the challenge


