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� Collisional-radiative models and synthetic spectra:

balancing detail, completeness, and tractability

� Hybrid-structure atomic models:
supplement fine structure data with 

configurations and superconfigurations 

� M-shell tungsten emission spectra 

and L-shell iron absorption spectra:

fine structure for spectroscopic accuracy,

supplemental levels for satellites and CSDs

black hole accretion disks

Z

ITER

stellar opacities



Collisional-radiative models: atomic levels (states) 
coupled by atomic processes (rates)

A variety of codes, (RATS, FAC, Cowan…) databases, (NIST, ATOMDB…), 

and approximations (screened hydrogenic, Lotz…) provide energy level structure 

and rate data – with various degrees of detail and accuracy.

Generally, only fine structure data includes the configuration interaction effects 

and detailed transition structure required for spectroscopic accuracy.

Example: He- and Li-like ions
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For complex ions, extensive 
fine structure models become intractable

While the number of singly-excited, 

“coronal” levels remains reasonable 

with increasing ion complexity, the 

number of levels required for an 

extensive model grows 

exponentially.

However, only “complete” models 

with extensive multiply-excited 

structure can accurately account 

for dielectronic recombination 

and satellite emission.
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Extensive level structure is critical 
for accurate modeling of dielectronic recombination

For coronal plasmas, global d.r. rates can be used (e.g. Mazotta [1], Bryans [2]), 

but these do not guarantee accurate satellite emission and are only valid at low densities.

Recent non-LTE workshop results illustrate the importance of d.r. 

– and the challenge of getting it right.

models without Auger/d.r.

models with Auger/d.r.

Charge state distributions at Te= 200 eV

Bryans et al.

Average ion charge of Argon at ne = 1012cm-3

[1] Mazotta et al., Astron. Astrophys. Supp 133, 403 (1998)

[2] Bryans et al. Ap J Supp 167, 343 (2006)



A hybrid-structure approach 
to collisional-radiative modeling

Coronal fine structure captures 
configuration interaction and 

metastables. 

Supplemental 
configurations/UTAs provide 

continuity at moderate densities.

Supplemental superconfigurations 
ensure statistical completeness 

and exhaustive d.r. channels

Hybrid-structure models are computationally tractable even for complex ions.
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Extend 

configuration 

interaction effects 

from fine structure 

transitions to 
UTAs & discard 

overlapping UTAs

~200 fine structure 
“coronal” levels (FAC) 

~14,000 (800) rel (non-rel) 
configurations (FAC)

~100 superconfigurations 
(screened hydrogenic/LIMBO)

Split SCs into nlj 

states for spectra; 
use LIMBO [1] 

transitions shifted 

according to FAC 

data and SC 

spectators

[1] Liberman, Albritton, Wilson, & Alley, Phys. Rev. A 50, 171 (1994)
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Fine-structure and UTA models 

have different strengths

Fine structure model with 

restricted (coronal) level 

structure generally has more 

accurate wavelengths and 

relative intensities.

[1] Pütterich et al. Plasma Phys. Control. Fusion 50, 085016 (2008)

UTA model with extensive 

level structure includes many 

doubly excited states; 

captures satellites and low-

level background emission.
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Hybrid-structure models 
combine those strengths

A comparison of the common 
transitions gives configuration 
interaction shifts and strength 

transfers for each nlj→(nlj)′
transition type in each ion:

Hybrid-structure models with 

CI corrections applied to 

excitation and decay rates 

seamlessly combine the 

accuracy of fine-structure 

models with the extensive 

level and line structure of 

UTA models.
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[1] Pütterich et al. Plasma Phys. Control. Fusion 50, 085016 (2008)

These corrections are 
applied to all UTAs, 

regardless of spectator.
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Supplemental superconfigurations 
ensure statistical completeness 

With supplemental SCs, 

hybrid-structure models 

give reliable charge state 

distributions at any density.
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Ni-like [1]

[1] Pütterich et al. Plasma Phys. Control. Fusion 50, 085016 (2008)

T ~ 4 keV

ne = 1014cm-3

Without extensive dielectronic 

recombination channels, 

collisional-radiative models 

tend to predict overionized

charge state distributions.
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Extensive level structure is critical 
for high-density absorption spectra  

[2] Bailey et al. PRL 99, 265002 (2007).

T ~ 150 keV

ne ~ 1022cm-3

[2]

[2]

doubly excited 
2s2 2p5 nl → 2s2 2p4 3d nl

2s2 2p6→

2s2 2p5 3d

UTA model with extensive structure reproduces overall absorption

but misses detailed features 



0.0

0.2

0.4

0.6

0.8

1.0

800 900 1000 1100 1200 1300

experiment

UTA without SCs

Ne-like

energy (eV)

T
ra

n
s
m

is
s
io

n

hybrid without SCs

0.0

0.2

0.4

0.6

0.8

1.0

800 900 1000 1100 1200 1300

experiment

UTA without SCs

Ne-like

energy (eV)

T
ra

n
s
m

is
s
io

n

hybrid without SCs

0.0

0.2

0.4

0.6

0.8

1.0

800 900 1000 1100 1200 1300

experiment

hybrid with SCs

Ne-like

energy (eV)

T
ra

n
s
m

is
s
io

n

Hybrid model with supplemental SCs 
describes experimental absorption data well  

[2] Bailey et al. PRL 99, 265002 (2007).

T ~ 150 keV

ne ~ 1022cm-3

[2]

[2]

Fine structure, UTAs, and supplemental SCs all contribute to good data fit 

with only ~105 lines (vs. ~ 107 for fully fine structure model) 



Summary

Hybrid structure models:

- highly accurate rates and wavelengths (configuration interaction)
- complete dielectronic recombination channels
- extensive energy level structure for satellite features
- computationally tractable even for complex ions

include all the lines; include all the channels

Useful for modeling spectra from the coronal to the LTE regime…
and everything in between

[2] Brown, Hansen et al. PRE 77, 066406 (2008) – CI shift and supplemental SCs

[3] Scott and Hansen, HEDP 6, 39 (2010) – SC models and nlj transitions

[4] Hansen, Bauche, and Bauche-Arnoult, to be published in HEDP – finite-width SCs in hybrid models

[1] Hansen, Bauche, Bauche-Arnoult, and Gu, HEDP 3, 109 (2007) – fine structure + UTA
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Extending configuration interaction (CI)
from fine structure transitions to UTAs is key

Each nlj – nlj transition in each ion has its own CI corrections

obtained from the overlapping sets of fine structure transitions and UTAs [1]

[1] Brown, Hansen et al. PRE 77, 066406 (2008)

[9] Scott and Hansen, HEDP 6, 39 (2010)
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Low-density “coronal” models 
generally use high-accuracy atomic data

Example: 

L-shell Au emission 

from LLNL EBIT [1]

Coronal atomic models are widely used for EBIT, tokamak, and astrophysical 

sources, where low densities ensure that population is concentrated in ground states

[1] Brown, Hansen et al. PRE 77, 066406 (2008)

Low-density emission spectra are well-modeled by fine-structure models with only 

singly excited (coronal) states. Less accurate models generally do not capture the 

effects of metastable levels or configuration interaction. 

metastable


