Experimental Validation of Crystalsweeo:s- iossc
Plasticity Models

Jay D. Carroll?t Corbett C. Battaile!
Hojun Lim? Thomas E. Buchheit?
Brad L. Boyce! Christopher R. Weinberger?

1Sandia National Laboratories, Metallurgy & Materials Joining
2Sandia National Laboratories, Computational Materials & Data Science
3Drexel University, Department of Mechanical Engineering & Mechanics

International Symposium on Plasticity
1/3/2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.


http://www.sandia.gov/index.html

Outline

1. Background

2. Experimental setup

3. Model detalls

4. Model validation- strain fields

5. Model validation- crystal rotations

6. Conclusions



Outline

1. Background

2. Experimental setup

3. Model detalls

4. Model validation- strain fields

5. Model validation- crystal rotations

6. Conclusions



Relate variability in structural behavior to
microstructural variability

Task 4: Modeling Processing Effects on Microstructure

Task 3: Predict macroscale variability from microstructural
statistical models.

Task 2: Microscale effects on deformation behavior.
Task 1: Atomic/nanoscale defects and dislocation effects.
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Atoms-up: De’velop physics-based models to provide scientific insight

Continuum-down: Augment engineering-scale models to provide customer value




Local microstructure has significant effects on local
deformation.
Microstructure (EBSD) Effective Strain (%) (DIC)
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For small features, microstructure can be more
Important than the stress concentrator.

= Experimental measurements p _ Hole Size
~ Grain Size

Orientation

Misorientation
(=strain)

Carroll JD, Brewer LN, Battaile CC, Boyce BL, Emery JM, Int. J. Plasticity, v. 39 (2012).



Several important structural metals are BCC.
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http://en.wikipedia.org/wiki/Periodic_table_(crystal_structure)
http://www.science.uwaterloo.ca/~cchieh/cact/applychem/metals.html
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Images showing slip planes and directions in
FCC and BCC unit cells.
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An in situ load frame developed at Sandia allows
loading inside the SEM.

= Can make DIC and EBSD
measurements at load.

1.5 mm 1
(60 mils) 1 mm
(40 mils)

Tapered gage section is narrower at center.
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Our high resolution experimental technique relates
subgrain level strains to microstructure.
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= Carroll JD, Abuzaid W, Lambros J, Sehitoglu H, Int. J. Fatigue, v. 57 (2013).

= Carroll JD, Abuzaid W, Lambros J, Sehitoglu H, Int J. Fracture, v. 180 (2012).
= Carroll JD, Abuzaid W, Lambros J, Sehitoglu H, Rev. Sci Inst., v. 81 (2010).




Oligocrystals

Specimens where deformation is
controlled by a few grains (3-20).

= Ta oligocrystals were made by annealing.
= Mostly columnar, 2D grain structure.
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Grain structure in specimens iIs pseudo-2D.
Most grains are nearly columnar.
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—— Grain boundary (Front) —— Grain boundary (Back)



15

Outline

1. Background

2. Experimental setup

3. Model detalls

4. Model validation- strain fields

5. Model validation- crystal rotations

6. Conclusions



Crystal Plasticity Model Equations
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_ For more model details, see
24 {110}<111> slip systems Lim et al. “Temperature and
/ Strain Rate Effects on the
| N % o Dislocation Plasticity of BCC
Sliprate: ¥V =Y, g_cx (Hutchinson, 1976) | Transition Metals” in room
XX at time xx.

Slip resistance: g = min(TEf,TL?) +7,,
|—> Obstacle stress
Lattice friction

NS
Obstacle stress: 7% = Aub }2 p”  (Taylor, 1934)
B-1

NS
pé = [rcl /2 p? —sz“]-|7“| (Kocks, 1976)
p=1

Lim H, Battaile CC, Carroll JD, Boyce BL, Weinberger CR, “A physically based temperature and strain rate
dependent crystal plasticity model for BCC metals” (submitted).
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Crystal plasticity finite element model.
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From literature

From fits to single
crystal experiments

From literature

Fitting stress-strain data
for each specimen



Finite element meshes for each specimen cover most
of the gage section with pseudo-3d mesh.

FEM code (JAS-3D) developed at Sandia.
Dislocation density based hardening.
Hexahedral elements (8 nodes).

One orientation per element.

50 elements through specimen thickness.
— ~1.5 million total elements
— ~30,000 surface elements

Finite Element Mesh (coarse)
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Oligo 1 Strain fields agree in most places.

Experimental Strains (DIC)

Model only considers
slip on {110} planes.
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Out-of-plane strain fields agree within most grains.

Specimen 1 (6.8% applied strain)

Profilometry Measurements CP-FEM Predictions

= Many grain boundaries have large strains not captured by
model.



Mesh refinement has a slight affect on strain field. -
Including a pseudo-3d mesh has a significant effect.

Experiment

Medium Mesh
(1,664,150 elements)

Coarse Mesh
(207,200 elements.)

Medium Mesh
1 element through
thickness



Oligo 4 Strain fields agree in most places.

Experimental Strains (DIC)

Model Strains (CP-FEM)
= I

(10% global strain).

Model only considers
slip on {110} planes.
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Quantitative, pointwise comparison of
measured and predicted strains.

A& = Emeasured — Epredicted
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Oligo 4 Disagreement between measured and predicted
strain fields is explained by 3d effects.

(b) CP-FEM (Front side) (c) CP-FEM (Back side)

Model only considers
slip on {110} planes.




Oligo 2: Modeling with {110} and {112} slip planes
give different results, but with roughly the same

accuracy.
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Model predicts high strain at location of observed
crack initiation.

{110} slip
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Model predicts high strain at location of observed
crack initiation.

{112} slip
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In 3D, model predicts failure initiation on front
surface.

{110} slip

{112} slip
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Stress (MPa)

Oligo 1 grain rotation: model and experiment
show good qualitative agreement.
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Compare texture evolution.

e Simulated

A EBSD

Deformed

Initial (6=19%)

[001] 011 (001 — 011]

Medium mesh, orientation per element



Streaks in inverse pole figure (from
experiment) are at grain boundaries.

[-111]

Deformed Texture
(EBSD)

[001] [011]
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Defining orientations per element (instead of an orientation™
per grain) gives more realistic inverse pole figures.

Orientation per grain

[-111]

Initial

[001]

Deformed

Orientation per element

[-111]

Initial

[001]
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Oligo 4: Grain rotations
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Conclusions

= Strain predictions show good agreement with experiments.

— Quantitative pointwise agreement within ~3% strain.

— Results affected by 3d issues

— Fracture initiation observed at location of highest predicted strain.
= Grain rotations are more challenging.

— Improved grain boundary modeling has promise.
= Effects of model parameters

— Still unclear whether {110} or {112} (or combination) is better.

— Pseudo 3D model is much more accurate than 2D.

— Defining orientations element-wise makes grain rotations look more
realistic.

10111 [001]
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