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4 Relate variability in structural behavior to 
microstructural variability 
 Task 4: Modeling Processing Effects on Microstructure 
 Task 3: Predict macroscale variability from microstructural 

statistical models. 
 Task 2: Microscale effects on deformation behavior. 
 Task 1: Atomic/nanoscale defects and dislocation effects. 



5 Local microstructure has significant effects on local 
deformation.  
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6 For small features, microstructure can be more 
important than the stress concentrator. 
 Experimental measurements 
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7 Several important structural metals are BCC. 

http://en.wikipedia.org/wiki/Periodic_table_(crystal_structure) 
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BCC FCC HCP 

 

 

      

http://en.wikipedia.org/wiki/Periodic_table_(crystal_structure)
http://www.science.uwaterloo.ca/~cchieh/cact/applychem/metals.html
http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Lecture1/Lec1.html


8 Images showing slip planes and directions in 
FCC and BCC unit cells. 

12 Slip systems: 
Four {111} Planes each with  
three <110> Slip directions 

12 {110} slip systems 
6 Planes each with 
two <111> Directions 

12 {112} slip systems 
12 Planes each with 
one <111> Direction 

24 {123} slip systems 
24 Planes each with  
one <111> Direction 
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Specimen Load cell 

LVDT 

Motor 

3.5 in 

An in situ load frame developed at Sandia allows 
loading inside the SEM. 

 Can make DIC and EBSD 
measurements at load. 
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Tapered gage section is narrower at center. 



11 Our high resolution experimental technique relates 
subgrain level strains to microstructure. 
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Carroll JD, Abuzaid W, Lambros J, Sehitoglu H, Int J. Fracture, v. 180 (2012). 
Carroll JD, Abuzaid W, Lambros J, Sehitoglu H, Rev. Sci Inst., v. 81 (2010). 

 



12 

Oligocrystals 
Specimens where deformation is 
controlled by a few grains (3–20). 

 Ta oligocrystals were made by annealing.  
 Mostly columnar, 2D grain structure. 
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Loaded three oligocrystal specimens 
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14 Grain structure in specimens is pseudo-2D. 
Most grains are nearly columnar. 
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16 Crystal Plasticity Model Equations 

For more model details, see 
Lim et al. “Temperature and 
Strain Rate Effects on the 
Dislocation Plasticity of BCC 
Transition Metals” in room 
xx at time xx. 

Lim H, Battaile CC, Carroll JD, Boyce BL, Weinberger CR, “A physically based temperature and strain rate 
dependent crystal plasticity model for BCC metals” (submitted). 
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17 Crystal plasticity finite element model. 

             
        

   

 
 

 
 

    
    

From fits to single 
crystal experiments 
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18 Finite element meshes for each specimen cover most 
of the gage section with pseudo-3d mesh. 

 FEM code (JAS-3D) developed at Sandia. 
 Dislocation density based hardening. 
 Hexahedral elements (8 nodes). 
 One orientation per element. 
 50 elements through specimen thickness. 

– ~1.5 million total elements  
– ~30,000 surface elements 

Oligo 1 

Oligo 2 

Oligo 4 Finite Element Mesh (coarse) 
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20 Oligo 1 Strain fields agree in most places. 
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21 Out-of-plane strain fields agree within most grains. 

 Many grain boundaries have large strains not captured by 
model. 

Profilometry Measurements CP-FEM Predictions 

Specimen 1 (6.8% applied strain) 



22 

Medium Mesh 
(1,664,150 elements) 

Coarse Mesh 
(207,200 elements.) 

Medium Mesh 
1 element through 
thickness 

Mesh refinement has a slight affect on strain field. 
Including a pseudo-3d mesh has a significant effect. 

Experiment 



23 Oligo 4 Strain fields agree in most places. 
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24 Quantitative, pointwise comparison of 
measured and predicted strains. 
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25 Oligo 4 Disagreement between measured and predicted 
strain fields is explained by 3d effects. 
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26 Oligo 2: Modeling with {110} and {112} slip planes 
give different results, but with roughly the same 
accuracy. 
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27 Model predicts high strain at location of observed 
crack initiation. 
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28 Model predicts high strain at location of observed 
crack initiation. 
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29 

{112} slip 

{110} slip 

In 3D, model predicts failure initiation on front 
surface. 
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31 

C A E G 

Oligo 1 grain rotation: model and experiment 
show good qualitative agreement. 
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Oligo 2: Compare texture evolution. 



33 Streaks in inverse pole figure (from 
experiment) are at grain boundaries. 



34 

Deformed Deformed 

Initial Initial 

Orientation per grain Orientation per element 

Defining orientations per element (instead of an orientation 
per grain) gives more realistic inverse pole figures. 
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(a) Measured (EBSD) (b) Predicted (CP-FEM) 
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Oligo 4: Grain rotations 
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37 Conclusions 

 Strain predictions show good agreement with experiments. 
– Quantitative pointwise agreement within ~3% strain. 
– Results affected by 3d issues 
– Fracture initiation observed at location of highest predicted strain. 

 Grain rotations are more challenging. 
– Improved grain boundary modeling has promise. 

 Effects of model parameters 
– Still unclear whether {110} or {112} (or combination) is better. 
– Pseudo 3D model is much more accurate than 2D. 
– Defining orientations element-wise makes grain rotations look more 

realistic. 
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