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Abstract—Electromechanical oscillations often limit transmis-
sion capacity in the western North American Power System
(termed the wNAPS). Recent research and development has
focused on employing large-scale damping controls via wide-
area feedback. Such an approach is made possible by the recent
installation of a wide-area real-time measurement system based
upon Phasor Measurement Unit (PMU) technology. One poten-
tial large-scale damping approach is based on energy storage
devices. Such an approach has considerable promise for damping
oscillations. This paper considers the placement of such devices
within the wNAPS system. We explore combining energy storage
devices with HVDC modulation of the Pacific DC Intertie (PDCI).
We include eigenanalysis of a reduced-order wNAPS system,
detailed analysis of a basic two-area dynamic system, and full-
order transient simulations. We conclude that the optimal energy
storage location is in the area with the lower inertia.

Index Terms–Power system dynamics, stability, control, oscil-
lations; HVDC modulation; energy storage.

I. INTRODUCTION

The western North American power system (wNAPS) con-
sists of an interconnection of the entire western US and
Canada and includes long transmission paths resulting in
several modes of inter-area oscillation. These oscillations have
historically been, and continue to be, a concern. For example,
oscillatory instability was a contributing factor to the 1996
system break up [1]. Recent increased power transmission re-
quests and observed low-damping events have spurred research
and development activities to address oscillation damping.
This includes implementation of a PMU-based real-time wide-
area measurement system (WAMS) and the evaluation of
large-scale oscillation damping devices that utilize WAMS
feedback.

One control approach that has received considerable at-
tention is modulation of the Pacific DC Intertie (PDCI) [2].
The PDCI is an 846-mile 3,100-MW DC transmission line
connecting northern Oregon and southern California. It has
extensive leverage on the electromechanical dynamics. The
converter controls allow for modulation of the DC power on
the line at a rate significantly above the bandwidth of the
electromechanical dynamics. The approach in [2] modulates
the DC power based upon the frequency error across the DC
line. Using transient-stability and eigenanalysis model studies,
it is demonstrated in [2] that this approach has significant
advantages and performance.

A more generalized version of the PDCI approach is to
symmetrically inject real power at the two ends of an os-
cillation based upon the frequency error between the two
areas [3], [4]. The symmetrical injection can be achieved via
HVDC modulation and/or energy storage. Other approaches
investigated in [3], [4] include thyristor braking.

This paper expands the results in [2]-[4] by considering
asymmetrical power injection. The goal is to minimize the
amount of power modulation required to increase modal
damping. We specifically focus upon the wNAPS system and
the most troublesome north-south oscillations. We include
eigenanalysis of a reduced-order wNAPS system, detailed
analysis of a basic two-area dynamic system, and full-order
transient simulations. We conclude that the optimal location
for damping control systems is in the area with the smaller
inertia.

II. PROPERTIES OF THE WNAPS

Inter-area mode properties of the wNAPS are discussed in
more detail in [2]; the following is a summary. The inter-area
modes of interest are:

• “NS Mode A” nominally near 0.25 Hz;
• “NS Mode B” nominally near 0.4 Hz;
• “BC” mode nominally near 0.6 Hz; and,
• “Montana” mode nominally near 0.8 Hz.

Other modes exist in the system; but, these four have been
observed the most and are well understood. Of the four modes,
NS Mode B is the most widespread and troublesome. It is the
focus of this paper.

A. Mode Shape

NS Mode A has the northern half of the system (Canada
and the pacific northwest US) swinging against the southern
half (desert southwest US and southern California). By far,
the dominant observability point of NS Mode A is in Alberta
Canada. NS Mode B first showed up after Alberta intercon-
nected to the system [5] and has a very widespread shape. It
has the Alberta area swinging against British Columbia and the
northern US which in turn swings against the southwest US.
The mode dividing line is typically south of the California-
Oregon intertie.
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Historically, the Alberta interconnection has the strongest
influence on NS Modes A and B. With Alberta connected, NS
Mode B typically has the lowest damping and is the most
widespread and troublesome. Its damping is influenced by
flows from Canada to California, which are historically high
during the summer season. With Alberta disconnected, NS
Modes A and B meld into a single north-south mode nominally
near 0.32 Hz which again has a dividing line near the COI.
This mode is typically lightly damped.

B. Controllability

The current knowledge base for the controllability of the NS
Modes A and B is primarily based upon model studies. One
approach employed to study the controllability is a reduced-
order model of the system presented in [2]. This system is
shown in Figure 1.

Fig. 1. One-line of wNAPS reduced-order model.

One perspective on controllability is the open-loop transfer
function residue. The residue is an excellent measure of
controllability. It represents the vector of departure in the root
locus [6]. Ideally, the magnitude is large and the angle is near
±180◦. This indicates the root locus is traveling to the left.

Table I shows the normalized open-loop transfer-function
residues for NS Mode B for two different power-flow cases.
Power-flow case 1 has generator 34 (Alberta) connected while
power-flow case 2 has generator 34 disconnected. The “Bus
18” row is for power injection at bus 18 and an output of
the relative speed between generators 7 and 23. The “Bus

TABLE I
OPEN-LOOP TRANSFER-FUNCTION RESIDUES.

Case 1 Case 2

Input |R| 6 (deg) |R| 6 (deg)

Bus 18 0.585 -178 0.58 -175

Bus 54 0.218 155 0.31 157

54” row is for power injection at bus 54 and an output of
the relative speed between generators 23 and 7. Because the
residue magnitude at bus 18 is nearly double that for bus
54, one can conclude that real-power modulation control at
bus 18 will likely have double the increased damping for a
given modulation gain. Simulation results in [3], [4] verify
this. The following two-mass system attempts to correlate the
larger controllability with the inertia in each area.

III. CONTROL STRATEGY

Our control strategy is to derive a feedback signal that will
proportionally provide damping to all modes when used to
modulate real-power injection, and that won’t interact with
speed governor actions. Because we assume real-time access to
a WAMS, we have the ability to derive this idealistic feedback.

When analyzing power systems, it is well known that one
can improve damping by feeding back generator speed as a
torque (termed damping torque) [7]. This concept is expanded
in [8] to the modulation of real power in two areas based
upon the relative frequency between two areas. The concept
is relatively simple. Real power is injected into the system
in two areas proportional to the frequency difference between
the two injection points. Ideally, the injection points are on
the two ends of an oscillation. This concept is the basis for
what follows.

Given a two-area system shown in Figure 2, the control law
at each damping control node is given by

∆PD1 = −K(f1(t)− f2(t− τ)) (1)

∆PD2 = −K(f2(t)− f1(t− τ)) (2)

where ∆PDi is the real power injected at node i, fi is the fre-
quency measurement at node i, and τ is the message transport
delay for the distant frequency measurement. The controller
gain at each node is the same, resulting in a symmetric control
response at each node. An example of this approach would be
modulation of the Pacific DC Intertie. Neglecting losses, the
power injected at one end is approximately the power received
at the other end.

If energy storage or other real power injection techniques
are to be employed in conjunction with PDCI modulation, the
actuation signals will no longer be symmetric. An example
would be co-locating an energy storage based damping control
system at one end of the PDCI. To analyze the behavior of
such a system, the simplified two-area linear system model
shown in Figure 3 illustrates the basic system dynamics [9].
The model parameters are summarized in Table II.

The two-area model simplifies to the following state space
system.

ẋ = Ax +Bu (3)
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Fig. 2. Two-area system with damping control.

TABLE II
TWO-AREA SYSTEM MODEL QUANTITIES

Quantity Description
Mi Area i inertia
Di Area i damping
T Synchronizing torque coefficient

∆PLi Area i load variation
∆PDi Area i damping torque
∆ωi Area i change in speed
∆δi Area i change in angle
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Fig. 3. Two-area system [9] with damping control.

where
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]
(6)

In order to accommodate an asymmetric controller, the control
laws in equations (1)-(2) are redefined in terms of a scale factor
α ∈ [0, 1],

∆PD1 = −Kα(f1(t)− f2(t− τ)) (7)

∆PD2 = −K(1− α)(f2(t)− f1(t− τ)) (8)

Assuming that the communication delays are negligible, the
dynamics of the closed-loop system are captured by

ACL =


−D1+Kα

M1
− T
M1

Kα
M1

T
M1

1 0 0 0
K(1−α)
M2

T
M2

−D2+K(1−α)
M2

− T
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 (9)

Solving for the characteristic polynomial of the closed-loop
system yields

p(s) = as4 + bs3 + cs2 + ds+ e (10)

where

a = M1M2 (11)
b = M1D2 +M2D1 +M1K(1− α) +M2Kα (12)
c = T (M1 +M2) +D1D2 +D1K(1− α) +D2Kα (13)
d = T (D1 +D2) (14)
e = 0 (15)

One pole is at the origin, leaving a 3rd order polynomial. We
are interested in the roots of this polynomial for the case of one
real root and two complex conjugate roots. It should be noted
that by inspection, if the area damping Di and inertias Mi are
equal, the characteristic polynomial is no longer a function of
α. For this case the location of the damping controller does
not affect damping performance.

For a third order polynomial, it is possible to factor out the
real root p1 using the Ruffini-Horner method [10].

p(s) = as3 + bs2 + cs+ d (16)

p(s) = (s− p1)

(
s2 + s(

b

a
+ p1) +

c

a
+
b

a
p1 + p21

)
(17)

The real part of the complex pole (e.g. rate of decay) and the
natural frequency are given by

ζωn =
1

2

(
b

a
+ p1

)
(18)

ω2
n =

(
c

a
+
b

a
p1 + p21

)
(19)

Singular perturbation theory may be applied to arrive at an
approximation for the real pole p1 [11]. For a large T , e.g. a
tightly coupled system, the characteristic polynomial may be
approximated as

p(s) ≈ s (cs+ d) (20)



Solving for the non-zero pole yields

p1 ≈
−T (D1 +D2)

T (M1 +M2) +D1D2 +D1K(1− α) +D2Kα
(21)

For large T , this further reduces to

p1 ≈ −
D1 +D2

M1 +M2
(22)

Using this approximation (accurate to ∼ 1% for typical values
of M and D), equation (18) may be rewritten as

ζωn ≈
1

2

(
D2

M2
+
D1

M1
+
K(1− α)

M2
+
Kα

M1
− D1 +D2

M1 +M2

)
(23)

It is clear that the rate of decay is maximized when α is
selected such that all of the damping actuation is in the
area with the lower inertia. The next section looks at the
eigenvalues of the closed-loop system as α varies between 0
and 1 for the case of M2 = 2M1 using typical parameters. The
movement of the closed-loop eigenvalues is easily visualized
graphically given a set of system parameters.

IV. EIGENVALUES OF THE TWO-AREA CLOSED-LOOP
SYSTEM

In order to illustrate the optimal asymmetric gain which
provides maximum damping, a two-area system with unequal
inertias was analyzed. The model parameters are listed in
Table III. The trajectory of the closed-loop eigenvalues, as
α is varied between 0 and 1, is shown in Figure 4. The red
‘o’ indicates α = 0 while the blue ‘x’ indicates α = 1. With
unequal inertias, the parameter α has an affect on the damping
of the closed-loop eigenvalues. The maximum damping is
obtained when α = 1, which corresponds to placing all of
the control actuation in the area with the smaller system
inertia. This is intuitive and consistent with equation (23).
For two areas oscillating against each other, applying control
effort to the area with less inertia will have the most affect
in damping out the inter-area oscillations. The next section
evaluates several different control scenarios using the Western
Electricity Coordinating Council (WECC) 2013 heavy summer
PSLF (Positive Sequence Load Flow Software from General
Electric) base case to show that this same phenomenon is
present in large power systems.

TABLE III
MODEL PARAMETERS FOR SIMPLIFIED TWO-AREA SYSTEM

Parameter Value
M1 4 sec
M2 8 sec
D1 1.2
D1 1.2
T 3.132
K 0.3

V. EIGENVALUES OF WECC 2013 HEAVY SUMMER PSLF
BASE CASE

A WECC 2013 heavy summer PSLF base case
(13hs 146a01.sav) developed by the Bonneville Power
Adminstration was employed to illustrate the impact of
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Fig. 4. Closed-loop eigenvalues as α varies from 0 to 1 (M2 = 2M1). The
red ‘o’ indicates α = 0 while the blue ‘x’ indicates α = 1.

energy storage location on damping control performance.
Based on the analysis of the simplified model for a two-area
system, one would expect an energy storage damping control
system to have the most impact located in the area with the
smaller inertia. PDCI modulation has the greatest impact on
the NS mode B. Therefore, this analysis will focus on this
eigenvalue. In order to assess the inertias of various regions,
a PSLF epcl program was written to calculate the inertia of
all generators and loads modeled as rotating machines by
WECC area.

J =
2H(MVA base)

ω2
o

, kg ·m2 (24)

where H is the inertia constant in seconds, w0 is the generator
angular velocity, and MVA base is the generator rating [12].

The results for the 2013 heavy summer base case are
summarized in Table IV. Each region was classified as ‘north-
ern’ or ‘southern’ based on its geographic location. For this
particular base case, the inertia of the pacific northwest is
significantly less than the inertia of the southwest. This is
a rough estimate of the relative inertias of the two regions
that participate in the NS mode B. A more accurate approach
would be to determine the generators/loads that participate
in the mode and sum the inertias from the two sets that
oscillate against each other. A rough estimate is suitable for
this analysis since the end goal is to simply demonstrate
that the location of an energy storage damping system that
augments PDCI modulation is important.

TABLE IV
2013 WECC HEAVY SUMMER BASE CASE, INERTIA BY WECC AREA

(kg ·m2). NORTHERN AREAS ARE INDICATED BY ‘N’ WHILE SOUTHERN
AREAS ARE INDICATED BY ‘S’. TOTAL SOUTHERN INERTIA IS 6,397,841

WHILE THE TOTAL NORTHERN INERTIA IS 3,355,033.

WECC area gen inertia load inertia total inertia N/S
Arizona 1750185.38 10070.08 1760255.45 S
Mexico-CFE 153512.25 0.00 153512.25 S
Imperial CA 104790.92 0.00 104790.92 S
San Diego 264102.41 0.00 264102.41 S
So. Calif. 1608605.88 26175.96 1634781.83 S
LADWP 336956.59 22556.97 359513.57 S
PG & E 2095445.50 25439.47 2120884.97 S
Northwest 1843026.75 3638.56 1846665.31 N
B.C. Hydro 792542.63 24291.40 816834.03 N
Fortis B.C. 35133.55 4969.22 40102.77 N
Alberta 597615.94 53815.44 651431.38 N
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Fig. 5. WECC 2013 heavy summer base case eigenvalue location for the
NS mode B.

Four different scenarios were simulated to illustrate the
impact of energy storage damping controller location:

• Nominal base case with no damping control.
• PDCI modulation (K = 3000 MW/Hz).
• PDCI modulation plus energy storage system located at

the south end (K = 3000 MW/Hz).
• PDCI modulation plus energy storage system located at

the north end (K = 3000 MW/Hz).
A Chief Joseph brake insertion for 0.5 seconds was used
to stimulate the system. The Eigensystem Realization Algo-
rithm (ERA) was applied to generator speeds to identify the
eigenvalue location of the NS mode B for each scenario.
The ERA algorithm is described in [13] and power system
applications are presented in [14], [15], [16]. The results are
summarized in Figure 5. All three active control scenarios
resulted in improved damping of the NS mode B. However,
the controller located at the north end of the PDCI provided the
most damping. This was consistent with the inertia estimate
by area and the results for a two-area system.

VI. CONCLUSION

Real power modulation via WAMS feedback has been
identified as a promising approach for damping inter-area
oscillations in the wNAPS. Previous research has developed a
symmetric control system based on PDCI real power modu-
lation for damping the NS mode B. This paper builds on the
symmetric controller design by exploring the performance of
an asymmetric controller, e.g. PDCI modulation augmented
with energy storage. A simplified two-area system model was
used to show the behavior of the closed-loop eigenvalues as the
symmetry of the control law was varied. For a two-area system
with equal inertias, the location of the damping controller
does not impact the location of the closed-loop eigenvalues.
However, for the case with asymmetric inertias, the “optimal”
controller location for the maximum damping is in the area
with the lower inertia. This is intuitive, as it is easier to ‘move’
the area with the lower inertia given the same control effort.

Four different scenarios were then considered with a model
of the wNAPS using the WECC 2013 heavy summer PSLF
base case. These results were consistent with the eigenvalues
derived for the simplified two-area system. Augmenting PDCI
modulation with an energy storage device located in the region
with the smaller inertia has the biggest impact on improving
damping of the NS mode B. This behavior was also observed

in a reduced-order model of the WECC. Future research will
focus on damping multiple inter-area modes by augmenting
PDCI modulation with energy storage.
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