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blast induced structural collapsedynamic pervasive fracture

Pervasive Fracture Processes

cool picture of dried clay



engineered geothermal nuclear waste isolation,
CO2 sequestration

Fluid Flow on Discrete Fracture Networks



Computational Challenges of Allowing 
Cracks to Grow Arbitrarily

Imagine 3D!

• Do we restrict branching?
• Do we restrict initiation?

- from surface only?
- from crack tips only?
- from existing cracks only?

• Constraints on turning angles?
• Constraints on crossing 

angles?
• Constraints on minimum 

fragment size?



Have you ever seen a straight crack?  smooth crack? 

• Fracture is inherently a multi-scale phenomenon.

• Idealizing a material as homogeneous and 
isotropic is a vast idealization.

• Crack-front samples the subscale heterogeneity.

• Probability of seeing a straight crack propagate 
through a random field is zero.



Computational Approach

1. Random Voronoi tessellation (mesh)

2. Polyhedral finite-elements (shape functions generated by 
RKPM)

3. Fracture only allowed at element edges (dynamic change 
in mesh connnectivity)

4. Dynamic insertion of cohesive tractions at limit surface

5. Penalty contact (discrete element paradigm)

6. Explicit dynamics solution 

Pandolfi, A. and Ortiz, M. (2002) ‘An efficient adaptive procedure for three-dimensional 
fragmentation simulations,’ Engineering with computers, 18, 148-159.

dynamic insertion of cohesive tractions based on . . . 



Eliminating Mesh Induced Crack Bias

If cracks can grow only at element edges, then need to eliminate any 
directional bias in crack growth (well known in ‘lattice’ methods).

Structured grids can result in 
strong mesh induced bias 
(potentially nonobjective).

• need to use ‘random’ 
discretizations

• statistically isotropic

Voronoi tesselation of 
with random seeding



Dynamic Mesh Connectivity



Polyhedral Element Formulation

Use EFG/RKPM methodology to generate shape functions.
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1. Generate nodal weight function  by solving Poisson 
equation on compact support.

2. Generate nodal shape function  at each integration 
point using Reproducing Kernel Method.

3. Correct shape function derivatives to satisfy integration 
consistency (Gauss’s theorem).

weight function  shape function 

RKPM 
methodology



Shape Function  and Element Properties

six nodal shape functions
for a regular hexagon

• partition of unity and x

• Kronecker delta property at nodes

• linear on edges

• works for non-convex elements

• shape functions defined on original configuration

• no mapping to ‘parent’ shape

• total-Lagrangian formulation

• mean-dilation formulation for incompressibility

• ‘special’ mass-lumping



Effect of Shape for Hexagons

r = 0.0

r = 0.1

r = 0.2

regular array of hexagons
r > 0  random perturbation of node position



Mean Dilation Formulation

same as conventional FEM



3D Arbitrary Polyhedral Element Formulation

• arbitrary number of vertices and faces
• can have nonplanar faces
• works for non-convex elements 
• uses harmonic shape functions (Joshi, 2007), defined on original configuration
• no isoparametric mapping to ‘parent’ shape
• need to use total-Lagrangian formulation
• number of integration points equals number of vertices (Rashid, 2006)
• partition of unity and x
• Kronecker delta property at nodes
• compatible with existing finite elements
• mean dilation formulation for incompressibility

shape functions
polyhedral element



3D Verification

truncated octahedron nodal shape function



3D Verification



Example: 3pt-bend

• quasistatic
• single crack growth

realization 1

realization 2

realization 3

View mesh independence and 
convergence in terms of 
distributions of results. 



Example: Explosively Loaded Concrete Cylinder

p(t)

p(t)

t



t = 0
t = 2 ms t = 20 ms

Example: Explosively Loaded Concrete Cylinder







short time



short time



realization 1 realization 2



h=32 h=16 h=8

converging ?



Nonlinear Dynamical Systems

turbulence
Rayleigh-Taylor instability

pervasive fracture

buckling

high speed penetration

shear banding
necking

• Exhibit extreme sensitivity to initial conditions and system parameters.

• Deterministic description is, in a sense, ill-posed.

• Regularize using a distributional description of inputs and outputs, e.g. (material variability, geometric variability).



Definitions of Statistical Convergence

  0)()(Prlim
0




qPqPh
h

Convergence in Probability

)()(lim
0

qFqFh
h




Convergence in Distribution

  0)()(lim
0




r

h
h

qPqPE

Convergence in r-mean
)(qPh

probability distribution for 
a given mesh resolution h

q = engineering quantity 
of interest

increasing
strength

)(qFh
cumulative distribution for 
a given mesh resolution h

(Mode of convergence used to prove Central Limit Theorem.)

Almost Sure Convergence

a.e.)()(lim
0

qPqPh
h






)()(lim
0

qFqFh
h




How to Assess Convergence in Distribution?
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To have a complete function space with this norm, 
need to assume Fh is continuous.  

(Space of continuous functions is complete in the L norm.)

use L norm:

use L norm:



What about finite sampling effects?

empirical CDF, )(xSN
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Strong Law of Large Numbers:
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Kolmogorov-Smirnov Statistic
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What is the distribution for DN?

continuous CDF



Kolmogorov-Smirnov Statistic

N = 50 N = 500

95% confidence bounds



How to use KS-statistic to assess convergence-
in-distribution with finite sample sizes?
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Also, joint probability reduces confidence level.



Example:  Ductile Thin Ring Expansion
Grady, D. and D. Benson (1983). "Fragmentation of metal rings by electromagnetic loading." 
Experimental Mechanics 23(4): 393-400.



Four Mesh Refinement Levels

R0 R1 R2 R3

• 48K elements
• 1 proc. on workstation
• ~2 hour runtime

• 6K elements
• 1 proc. on workstation
• ~10 min runtime

• 385K elements
• 16 proc. on tbird
• ~2 hour runtime

• 3M elements
• 128 proc. on tbird
• ~4 hour runtime

4 elements through thickness

8 elements through thickness

16 elements through thickness

32 elements through thickness



Approaches to Material Texture

model material variability 
via a Voronoi texture

Weibull Probability Density

model material variability 
via a Hilbert texture

Hilbert space filling curve

2D 3D

currently in Alegra
(Allen Robinson)

currently in EMU
(Stewart Silling)

Weibull modulus = 25

Voronoi texture Hilbert texture



Simulation



Cross-Sectional Area
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Reduce 3D random field to 1D random field.



Neck Identification



sample sizes
N0 = 1714
N1 = 2274
N2 = 2386
N3 = 2421

Convergence in Distribution?

with material texture

100 run ensemble

quantization effect



Convergence in Distribution?



t = 0
t = 2 ms t = 20 ms

Example Revisited

What about convergence?





Application to Geo-Systems

h1
h2Qin

Qout

fluid-flow in discrete fracture-networks

Nodal Forces

• Reynold’s equation
• coupled fluid-structure
• solve fluid-network problem at 

each structural time step

Flow Rate



Hydrofrac Simulations

no fluid on crack faces with fluid on crack faces



1. Development of arbitrary polyhedral finite elements.

2. Using randomly close-packed Voronoi meshes to model 
pervasive fracture in random media.

3. Statistical definitions of convergence.

4. Application to fragmentation and the modeling of fluid-
structure coupling in geo-systems with discrete fracture 
networks.

Summary


