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Pervasive fracture modeling approach
Randomly close-packed Voronoi tessellations
Polyhedral element formulations
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Pervasive Fracture Processes

blast induced structural collapse

cool picture of dried clay
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Fluid Flow on Discrete Fracture Networks

engineered geothermal nuclear waste isolation,
CO, sequestration

geothermal reservoir
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Computational Challenges of Allowing
Cracks to Grow Arbitrarily

* Do we restrict branching?
* Do we restrict initiation?
- from surface only?
- from crack tips only?
- from existing cracks only?
+ Constraints on turning angles?
+ Constraints on crossing
angles?
* Constraints on minimum
fragment size?

Imagine 3D!
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%e you ever seen a straight crack? smooth crack?

Fracture is inherently a multi-scale phenomenon.

|ldealizing a material as homogeneous and
isotropic is a vast idealization.

Crack-front samples the subscale heterogeneity.

Probability of seeing a straight crack propagate

through a random field is zero.

m

Laboratories



5.
6.

Computational Approach

Random Voronoi tessellation (mesh)

Polyhedral finite-elements (shape functions generated by
RKPM)

Fracture only allowed at element edges (dynamic change
in mesh connnectivity)

Dynamic insertion of cohesive tractions at limit surface
Penalty contact (discrete element paradigm)
Explicit dynamics solution

dynamic insertion of cohesive tractions based on . ..

Pandolfi, A. and Ortiz, M. (2002) ‘An efficient adaptive procedure for three-dimensional
fragmentation simulations,’” Engineering with computers, 18, 148-1509.




Eliminating Mesh Induced Crack Bias

If cracks can grow only at element edges, then need to eliminate any
directional bias in crack growth (well known in ‘lattice’ methods).
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Voronoi tesselation of
with random seeding

.\ 4 Structured grids can result in
‘V strong mesh induced bias
(potentially nonobijective).

* need to use ‘random’
discretizations
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Dynamic Mesh Connectivity

before mesh modification

e = edge

| =intact

F = fractured

e = global node

after mesh modification
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Polyhedral Element Formulation

Use EFG/RKPM methodology to generate shape functions.

1. Generate nodal weight function ¢ by solving Poisson
equation on compact support.

2. Generate nodal shape function y at each integration
point using Reproducing Kernel Method.

3. Correct shape function derivatives to satisfy integration
consistency (Gauss’s theorem).

Vo+1=0
d=0onT

RKPM
methodology

local support fornode I weight function ¢ shape function y
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Shape Function and Element Properties

* partition of unity and x

» Kronecker delta property at nodes

* linear on edges

» works for non-convex elements

 shape functions defined on original configuration
* no mapping to ‘parent’ shape

« total-Lagrangian formulation

* mean-dilation formulation for incompressibility

* ‘special’ mass-lumping

six nodal shape functions
for a regular hexagon
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Effect of Shape for Hexagons

(l; I
regular array of hexagons
r > 0 = random perturbation of node position
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L, (error) / L, (exact)

Mean Dilation Formulation

same as conventional FEM

1 'l |
2 x 11 mesh E
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013 le—s=—o v=0409 3
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0.001 = 2
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3D Arbitrary Polyhedral Element Formulation

/

polyhedral element

shape functions

« arbitrary number of vertices and faces

 can have nonplanar faces

» works for non-convex elements

« uses harmonic shape functions (Joshi, 2007), defined on original configuration
* no isoparametric mapping to ‘parent’ shape

* need to use total-Lagrangian formulation

« number of integration points equals number of vertices (Rashid, 2006)
* partition of unity and x

» Kronecker delta property at nodes

« compatible with existing finite elements

» mean dilation formulation for incompressibility
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3D Verification

truncated octahedron nodal shape function
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Example: 3pt-bend

 quasistatic

* single crack growth
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realization 3

View mesh independence and
convergence in terms of
distributions of results.
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t=20 ms

Explosively Loaded Concrete Cylinder
t=2ms

Example
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Tune = 0.000000

mnx_p
200et+01
|.50e+0]
1.00e+)]
5.00e+00
0.00e+00
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Tume = 0.000000
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Time = 0.000000

short time

I'l]lL‘-L_lJ
1.00e+01
7. 50e+00
5.00e+00
2.50e+00
0.00e+00
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Time = 0.000000
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short time
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realization 1 realization 2
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Nonlinear Dynamical Systems

high speed penetration

» Exhibit extreme sensitivity to initial conditions and system parameters.
» Deterministic description is, in a sense, ill-posed.
» Regularize using a distributional description of inputs and outputs, e.g. (material variability, geometric variability).




Definitions of Statistical Convergence

Almost Sure Convergence

limP,(q)=P(q) a.e.

p probability distribution for

AC)) - - :
a given mesh resolution 4 Convergence in »-mean

F,(g) cumulative distribution for GmEl P ()= P(a) 1=

' a given mesh resolution % o0 “ (9) = P(q) J 0 ncreasing
_ . . : . TF strength
g = engineering quantity Convergence in Probability
of interest

lim Pr(F, (q) ~ P(¢) > €)= 0

———————————————————————————

Convergence in Distribution
lim £, (¢) = F(q)

(Mode of convergence used to prove Central Limit Theorem.)
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How to Assess Convergence in Distribution?

lim F, (9) = F (q)

CDF

use L, norm: L (F,,F)=sup|F,(x)—F(x)]

To have a complete function space with this norm,
need to assume F), is continuous.
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CDF

0.8

0.6

0.4

0.2

What about finite sampling effects?

] empirical CDF, S, (x)

0, x<Xx
i Sy(x¥)=9— x.<x<x, r=1..,N-1
1 Xy <X

Strong Law of Large Numbers:

]lvi_rilo Sy(x)=F(x) (almost surely)
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Kolmogorov-Smirnov Statistic

D, =sup|S,(x)—F(x) . o
Y S | What is the distribution for D,?
- continuous CDF
sample, N, =50
sample, N, =50
0.4 0.6 0.8 1 1.2 1.4
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Kolmogorov-Smirnov Statistic

95% confidence bounds

09 r
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Weibull
eCDF, N= 50
95% confidence band
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—— Weibull
eCDF, N= 500
______ — — == 95% confidence band
| 1 1 | | | |
0 02 04 06 08 1 1.2 14 16 18 2

Sandia
National
Laboratories




e

How to use KS-statistic to assess convergence-
in-distribution with finite sample sizes?

— F)
— sample L ——==——-
_ _ _ _  confidence d
0.8 band p F](y)
Nj(y)
0.6 [
> d . —d <D.+D, =iy Zi
o ij  “NpoN| =N, N, T
2 JN, N,
@)
04 |
02 Also, joint probability reduces confidence level.
0 |
0 0.2 0.4 0.6 0.8 1
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Example: Ductile Thin Ring Expansion

Grady, D. and D. Benson (1983). "Fragmentation of metal rings by electromagnetic loading."
Experimental Mechanics 23(4): 393-400.

Fragmentation of Metal Rings by

Electromagnetic Loading

Fragmentation studies on rapidly expanding metal rings are
performed with electromagnetic loading. Dynamic-fracture strain and
fragment-size measurements are reported lor aluminum and coppar

by D.E. Grady and D.A. Benson

ABSTRACT A method s oesciines for parforming
fion atudies on rapdy espanding melal rings. A ta
capacitor system generates magnefic forces which accels

the rings to 1 radial af ¥
200 mis c ponding 1o ¢ AR rles ol
appioximately 10°fF al [ragmontation. Streak-camera tech-
niquéid are used 1o |ecord the Ume-rescived moton of (he
rings, Fractute-sirsn and fragmenialion experimaenls have
peen parformed on samples of OFHC copper and 11000
aburminum,

Introduction

The fragmentation of a body due to a violent impuisive
load is a complicated phenomenon which currently cannot
be caloulned with confidence. Dynamic loading leads 10
myriad interactions of stress waves which govern the
fragmentation event. In addition, material

complicated by the explosive viokence, product gases, and
preconditioning of samples through application of the
Imitinl high-amplitude sbock wave, An improved labora-
tory technique has been explored' ™ where the sample rm;
is lsolated from the explosive by a cylindrical, high
strengh meial mandrel. Recently, Wamnes ¢ al* have
extended this technique and used velocity interferometry
Lo determine tme-resolved motion of the expanding ring,
Again, there is concern aboul shock preconditioning of
e sample. Shock-wave siudies indicate that marerial
properties in meials can be severely altered by shock
stresses above approximately 10 GPa.'* Also, the impulse
provided by this method s not sufficient to produce
significant [ragmentation,

The application of magnetic forces to load ring or
cyilndncui geometries appears 1o have been described in

effeots and statistics of the fraciure Ilul:lcﬂl;inrﬂ“ﬂ
growth process are alsa mpmanl.
{

Interp of fractur i is

the | first by Niordson." A similar system has
been described by Walling nnd Forrestal* and used by
Wesenberg and Sagartz* to conduct fragmentation studies
on lerge aluminom c)ﬂmdns. illustrating the energy

licated by the multiaxial and h B stresy
ph

pability of this technigue, Magr loading has several
i (1) motion is imparted 10 the sample

states ocourring in most impact- or loive-] g
studies. Consequently, experimental methods which
simplify the stress din leading 1o ion of
the body offer a better possibility of und ding the

through continirous body forces rather than shock loading
"""I. comequently, preconditioning  shock  effects are

principles governing dynamic fregmentation. One attrac-
tive method is provided by radial loading of ring-shape
specimens with magnetic forces in which dynamic fracture
and fragmentation is brought about by the rapid applica-
thon of g !mmwous one-dimensional !-:nsulc streds. The
present report describes sech radial-loadi ation
experiments. Data on ring samples of 1100-0 aluminum
and OFHC copper are also provided,

The expansion of nngs and cyfindrical shells has boen
ussd productively in thr past 10 Wtugm: the pheno-
menon of d studies by
direct apphention of explosive loading to the interior wall
of cylindrical samples have been made. The method is
extremely energetic, however. Experimenial control is

{LE. Gorody and D.A. Besson gre Research Sciemcints, Soadia Natinsal
Labaromarivn, A lbuquergue, NM 87155,

Original mamescrips. suboitied: March 2%, 1952, Final versoa received:
Juty 11, 1983,

(2} loading rates are readily controfled through
variation in rate and amplitude of the driving-current
pulse; and (3) the method is more conducive Lo a labora-
Loy than I ding schemes, A
magnetic-loading technigue |s not without 7ts drawbacks,
however. Since it s based on the principle of opposing
forces between primary and induced currents, inductive
heating, which may also have preconditioning effects, can
oceur in the sample material. Also, when fragmentation
oeeurs, arcing of induced currenty can result in additional
local-heating effects.

The system that we have developed to conduct frag-
mentation cxperiments on metal rings is modest compared
to the 250-k] fast-discharge capacitor system described by
Walling and Forrestal.' The present method uses approxi-
mately 10 kJ of energy and compares most closely 1o the
work described by Niordson,” Implementation of the
technigue n.qulrui additional dmlopmcm however, und

quently, some For exampie,
smaller experimental ass«:mblm were [mmd to be more
i to loading di

were needed to apply the magnetic forces. The method

Experimental Mechanics » 383
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Fig. 5—Photograph of fracture
and arrestod-neck region from
dynamic expansion of an
aluminum ring

=1 mm—
* FRACTURE

=1 mm—
* ARRESTED NECX

EXPANDING RING SPECIMEN { L100O-0 ALUMINUM )
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Four Mesh Refinement Levels

RO R1 R2

» 6K elements _ » 48K elements » 385K elements
» 1 proc. on workstation « 1 proc. on workstation « 16 proc. on tbird
* ~10 min runtime « ~2 hour runtime « ~2 hour runtime

4 elements through thickness 16 elements through thickness

8 elements through thickness

R3

* 3M elements
* 128 proc. on tbird
* ~4 hour runtime

32 elements through thickness
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Approaches to Material Texture

Hilbert texture

model material variability
via a Hilbert texture

Voronoi texture

model material variability
via a Voronoi texture

Hilbert space filling curve

Weibull Probability Density

currently in Alegra
(Allen Robinson)

currently in EMU _ >
(Stewart Silling) i P

Weibull modulus = 25 \
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Simulation

Time = 0000000

_EQPS _|

0.50
0.38
0.25
012
0.00




N

Cross-Sectional Area

A(9)

v

Reduce 3D random field to 1D random field.
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o
o

o
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o
(N

cross-sectional area, mm?

o

o
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Neck Identification

at time = 40us, mesh refinement 1

?gziwmmmmmmmmmmvw\mmmwm

realization 1

gggggggg

mmﬂf\wmwﬁ\/\mm/\wvmmvwr

. realization 2

gggggggg

é;zéwmmmmmwmwmmwmww

realization 3
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CDF

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Convergence in Distribution?

with material texture

quantization effect
100 run ensemble
R, )
N sample sizes
Rl N,=1714
: N,=2274
Rs N, = 2386
N, =2421
10 20 30 40 50 60

pre-fragment size
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L, difference norm

0.01

Convergence in Distribution?

with texture
————— no texture

0.01 0.1
h

i+1
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Example Revisited
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Cumulative Number Fraction, (empirical CDF)

coarse mesh
medium
fine

100 run ensemble

no cutoff 5% cutoff 10% cutoff

N,=14900 N,=4750 N, =2420
N,=20200 N,=4650 N,=2710
N,=25000 N,=4640 N,=2930

0.4 1
== no cutoff
% 0.1 5% cutoff
0.2 - 10% cutoff
' 0.01 }
5% cutoff
16 32
10% cutoff mesh size
0 L L |
0x10° 2x10° 4x10° 6x10*

Fragment Size (mm?)

8x10*
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Application to Geo-Systems

fluid-flow in discrete fracture-networks

/ « Reynold’s equation

— h, = Quu + coupled fluid-structure
 solve fluid-network problem at
each structural time step
Nodal Forces Flow Rate

o
w
o0
S
1
a~)
il
~

time = 1.0

(Fo-F)/(Hy-H)/L

o
o
flow rate, Q (cc/cm/s)
D
S
1

Nodal Force, (F/L - H;/2) / (H, - H;)

25
= P=0
é 40 -
=]
=
0.1
20 A
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Hydrofrac Simulations

no fluid on crack faces with fluid on crack faces

-.": .

10.00
7.50
5.00 |
250 al
0.00

tories



Summary

Development of arbitrary polyhedral finite elements.

Using randomly close-packed Voronoi meshes to model
pervasive fracture in random media.

Statistical definitions of convergence.

Application to fragmentation and the modeling of fluid-
structure coupling in geo-systems with discrete fracture
networks.
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