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Water quality signals are processed by event detection systems (EDS) to determine the 
probability of a water quality event occurring at each sample time. Inherent noise in sensor data 
and rapid changes in water quality due to changes in the hydraulic operations of the distribution 
network can cause false alarms from EDS’s. Here we examine the practical problem of utilizing 
information on the operations of the network within water quality event detection and present 
two different approaches for integrating operational and water quality data.

We consider two situations, proximal and distal, that define the relationship between the 
locations of a water quality monitoring station and the operational changes that impact the water 
quality. In the proximal case, the monitoring station is located near the source of the operational 
changes and those changes have a direct and nearly immediate impact on water quality. In the 
distal case, the monitoring station and the operational changes are located in different parts of the 
network and the lag time between the operational and water quality changes are variable and 
unknown.

For the proximal case, we construct aggregated signals as composites of the raw operational 
signals. Compositing operations are defined as algebraic combinations and transformations of 
one or more raw signals into a new signal. For example, water quality changes are observed to 
result when at least 2 of 3 pumps at an adjacent location start or stop running. A composite 
“pump change” signal is created to indicate when at least two pumps have changed status. This 
new signal serves as the input to a second composite signal that looks for a change in the “pump 
change” signal during any of the previous five time steps. A change within that time window is 
used to decrease the sensitivity of the EDS. This approach is equivalent to creating a hardware 
calibration alarm based on the pump operations.

In the distal case, historical water quality data and operational data are used to develop a 
multivariate pattern library of frequently observed changes. As an example, simultaneous 
changes in water quality signals are accompanied by changes in flow rate and water temperature
at the monitoring station. All of these signals define multivariate patterns of change in a pattern 
library. During real-time operations, any new potential event is compared against the library.
Current data that match an existing pattern within a tolerance are not considered as water quality 
events. The CANARY software was used to test and demonstrate these techniques for integrating 
operational data to improve event detection sensitivity and decrease false alarms. 
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Introduction

Potential contamination of water distribution networks by contamination events is concern for 
network operators and the customers they service.  The infrastructure of these networks was
designed primarily for customer service and firefighting, retrofitting them to be more robust 
against contamination events is difficult and costly.  One solution to making them more robust to 
contamination events is enhanced monitoring.  Deployment of an EDS within a distribution 
network can provide around-the-clock monitoring of water quality data signals with near-
realtime notification of the presence of anomalous water quality (see Murray et al., 2010a).

An potential issue with EDS deployment are larger than desired numbers of false positive event 
notifications.  Too many false positives can decrease confidence in the EDS by the water quality 
analysts.  False positive water quality alarms can often be caused by changes in the hydraulic 
operations of the distribution network.  As an example, deployment of EDS tools at the Greater 
Cincinnati Water Works (GCWW) over a six month period has shown a number of instances 
where false alarms were produced due to opening or closing of valves, draining of tanks and 
changes in the status of pumps within the distribution system (Allgeier and Umberg, 2008).  Data 
processing algorithms are needed to recognize water quality changes that are due to operational 
changes and improve the water quality event detection.  

Here we examine two approaches to integrating operational data into water quality event 
detection: composite signals and trajectory clustering.  A brief description of both approaches is 
provided and example calculations are documented.  The event detection examples and results 
shown here are done using the CANARY software (Hart and McKenna, 2010; Murray et al., 
2010b).  CANARY has been developed as an open-source platform for water quality event 
detection and contains a number of algorithms for detecting anomalous periods of water quality.  
These algorithms include adaptive filtering of multivariate water quality signals, data fusion 
techniques, a binomial failure model to aggregate information over time steps and multivariate 
pattern recognition (Hart and McKenna, 2010; Murray et al., 2010b).  CANARY connects to 
existing SCADA systems and provides the user with full customization of the sensitivity of the 
event detection algorithms for each monitoring station within the network.  

Composite Signals
Operational data from a utility often provide indirect information on water quality changes.  For 
a given utility, a rule-set could be developed that uses recorded changes in operational signals to 
inform the analyst of upcoming changes in water quality.  An alternative to utility specific rule-
sets is a more general approach to incorporating operational signals into water quality event 
detection.  Here we employ composite signals to integrate both operational and water quality 
signals into enhanced event detection.

Composite signals within CANARY are defined as a set of algebraic operations that can be 
completed on individual water quality signals or on combinations of water quality signals.  These 
operations create new signals that are sent, along with the original water quality signals to 
CANARY for analysis.  As examples, a moving average or a set of differences between single 
time steps can easily be created from a water quality signal.  Additionally, ratios of two or more 



signals at the current time step or at different previous time steps can be created.  Additional 
details and applications of composite signals to water quality event detection are available in 
Hart et al., (2010).

Here, we are interested in using composite signals to transform changes in operational signals 
into calibration alarms.  This is a simple approach use a pattern or a change in operations to 
temporarily suspend event detection capability.  The change in operational data is used as a cue 
to notify the event detection algorithms that the system is undergoing a temporary calibration and 
the incoming water quality signals are not representative of the background water quality.  This 
approach works best for the case of the water quality monitoring station being proximal to the 
source of the operational change.  

Trajectory Clustering
Trajectory clustering considers the multivariate pattern of water quality through time.  Historical 
data are used to construct a library of these patterns.  Typically, the patterns are defined by the 
measured water quality signals within a prescribed number of time steps prior to a water quality 
event.  The approach to pattern library construction is designed to provide a concise summary of 
common multivariate water quality patterns against which any new water quality pattern can 
quickly be compared.  The steps in this approach are to: 1) Identify water quality events in 
historical data; 2) Summarize the change in water quality that defines those events by fitting each 
signal within the event data with a low-order polynomial; 3) Classify the regression models into 
a small number of patterns through multivariate cluster analysis applied to the coefficients of the 
polynomials regression models; and 4) Calculate statistics on the resulting patterns.  

During online event detection, the statistical description of the resulting patterns is used to 
determine the proximity of any new water quality event to one of the existing patterns.  If the 
water quality event in question is close enough to a known pattern, it is considered part of the 
background water quality and no alarm is sounded.  The current water quality pattern is then 
added to the appropriate cluster within the library.  

Patterns can be constructed from historical water quality data or they can be constructed from a 
combination of water quality and operational data.  Adding operational data can reduce the 
variability in the patterns and provide a link between changes in water quality and causal 
operational changes

Example Calculations
Three example calculations are used to demonstrate the effective integration of operational data 
into water quality event detection.  The first two examples cover the case of the water quality 
monitoring station being proximal to the cause of the operational changes and utilize composite 
signals to 1) utilize information on changes in pumping rates to suppress false positive alarms 
during those periods; and 2) integrate supplemental water quality data into event detection.  
Both of these example calculations also use composite signals to suppress water quality alarms 
after a period of sensor calibration, although these results are not called out specifically here.  
The final example calculation examines the case of a water quality monitoring station being 
distal from the operational change.  For this example, a pattern library is constructed from 
historical data and then trajectory clustering is used to match current water quality to those 



patterns.  Additional details on trajectory clustering and its application to water quality data can 
be found in Vugrin et al. (2008).  TRAJECTORY CLUSTERING EXAMPLE

Post-Calibration Alarm Suppression

A common issue in water quality monitoring is the creation of alarms following the calibration 
of a monitoring station.  Post-calibration water quality is often significantly different than water 
quality prior to the calibration due to changes in the sensor settings.  EDS tools will often see this 
change as an event and provide an alarm.  A composite signal can be created to suppress alarms 
for a time period following a calibration event.  In the two proximal examples shown below, 
EDS alarms are suppressed for 15 time steps (30 minutes) following any sensor calibration.  

Water Quality Changes Caused by Operational Changes

A common cause for water quality change at a monitoring station within a water distribution 
networks is a change in pumping such that water from a different source, or water of a different 
age, is now moving past the monitoring station.  In this example analysis, a pump that connects a 
reservoir to a main as well as two other pumps in the network impact water quality at the 
monitoring station (Figure 1).  The locations of the pumps and details on their connections to the 
main containing the water quality sensor are known by the utility, but were not available for this 
analysis.  For this monitoring station, five water quality signals are monitored: residual chlorine 
(Cl), pH, specific conductance (COND), turbidity (TURB) and total organic carbon (TOC).  
Additionally, the water temperature is recorded but is considered and operational parameter here.

The data in Figure 1 show a relationship between changes in the pump status and changes in the 
water quality.  However, it is not clear if all pumps impact water quality equally or if the timing 
between the change in pump status and the change in water quality is the same for all pumps.  A 
composite signal was developed to look back in time over the previous five time steps of the 
pumping rate and retain the maximum absolute change.  This same composite signal was applied 
to each of the three pumps.  Another composite signal was written to combine these results and 
retain the maximum change (absolute value) over all three pumps during the past five time steps.  
A final composite signal compares the maximum change value against a threshold, here 5.0 gpm, 
and suspends the event detection if the change exceeds that threshold.  The maximum time for 
which the event detection will be suspended is set by the length of how far back changes in the 
pump are recorded – 5 time steps (10 minutes) in this example.  

Implementation of these composite signals results in short periods of suspended event detection 
that are initiated by significant changes in operational data.  Comparison of results with and 
without the composite signals activated is shown in Figure 2.  For the week of data shown in 
Figure 2, there are three events (see blue dots on signals responsible for causing the events).  
When the information on changes in pumping is integrated through the composite signals, two of 
the events are seen to be associated with changes in pumping and are ruled out as potential water 
quality events and only one event remains.  Over the entire data set of 105 days, 0.85 percent of 
all time steps are considered water quality events without the use of composite signals and these 
occur in 20 different groups.  When the composite signals are used to identify water quality 
changes due to changes in pumping, the percent of time steps considered as events is reduced to 
0.50 and these occur in 10 groups.  For this example, integration of changes in pumping reduced 
the proportion of false positive time steps by approximately 40 percent.  Certainly, utility-



specific knowledge could be used to further improve these results by refining the numbers of 
time steps and the thresholds used within the composite signals.  

Figure 1.  Relationships between pumping rates (three graphs with green labels on Y axis) and 
water quality data.



Figure 2.  Comparison of water quality data and CANARY results without the use of composite 
signals (top) and with the addition of composite signals (bottom).  Time periods where event 
detection is suspended are shown by the green lines in the bottom graphs.  The probability of an 
event as calculated by CANARY is shown by the blue lines in the bottom graph of each set.



Supplemental Water Quality Data
Primary water quality monitoring stations are often supplemented by nearby secondary water 
quality monitoring stations.  A common example is supplemental monitoring of a single water 
quality signal, e.g., residual chlorine, at a nearby tank outlet or pump station.  While 
supplemental monitoring stations may only employ one water quality signal, this can be enough 
information to reliably cue the event detection system to significant changes in water quality at a 
downstream monitoring station.

In this example, a nearby tank outlet that feeds into the network upgradient of the monitoring 
station has a residual chlorine monitor.  The data from this monitor are used to construct a 
composite signal that is then used as input to the event detection running on the monitoring 
station.  Here, the composite signal identifies the largest (absolute value) change in the tank 
outlet chlorine value between the current time step and either of the two previous time steps.  
This maximum change value is then compared against a threshold of 0.06 mg/l.  Changes larger 
than this threshold are considered indicative of an impending significant change in water quality 
at the down-gradient monitoring station and the monitoring station is considered to be in 
“calibration mode” for that time step.  Because the maximum change is calculated between the 
current time step and either of the two previous time steps, the typical result is that a change in 
the tank outlet chlorine value will cause the monitoring station to remain in calibration mode for 
two consecutive time steps (four minutes for this monitoring station).

Results comparing the use of the composite signals to the case where they are not employed for a 
single day of analysis are shown in Figure 3.  The upper set of graphs is for the case of no 
composite signals and the lower set is for the case of the composite signals being activated.  In 
the lower set of graphs, the signals are colored green during periods of water quality event 
suppression.  Three water quality signals are analyzed: residual chlorine (CL2X), pH (PHXX) 
and specific conductance (COND).  Additionally, the water temperature is recorded, but is not 
used in the water quality event detection.  The upstream Cl monitor values are also shown in 
Figure 3.  The bottom graph in each set (blue line) shows the probability of a water quality event 
as calculated by CANARY.  For the day of data shown in Figure 3, there are three event periods 
identified by CANARY without the composite signals.  When the composite signals are 
activated, all of these events are identified as being due to changes in the water entering the 
system from the reservoir as signaled by the changes in the chlorine residual values at the 
upstream monitoring station.  

A total of 41 days of data were analyzed for this monitoring station.  The base case analysis here 
with no composite signals results in 2.87 percent of all time steps classified as water quality 
events.  Addition of the composite signals to utilize the upstream Cl monitor and to allow a 
smooth transition after calibration events reduces the amount of time steps classified as events to 
0.47 percent.  This result is close to an 85% reduction in the number of false positives for this 
monitoring station.  Similar to the first example case, it may be possible to improve these results 
with additional tuning of the composite signals 



Figure 3.  Example 2 comparison of water quality data and CANARY results without the use of 
composite signals (top) and with the addition of composite signals (bottom).  Time periods 
where event detection is suspended are shown by the green lines in the bottom graphs.  The 
probability of an event as calculated by CANARY is shown by the blue lines in the bottom graph 
of each set.



Building Water Quality Pattern Libraries
In the case of a monitoring station that is distal from the source of operational changes, the 
timing and nature of the relationship between the operational change and the water quality 
change may be complex and time varying.  In these cases, construction of a library of observed 
water quality changes that are considered part of the background water quality variability can be 
completed for later use in realtime monitoring.  As an example of library construction, 46 days of 
water quality data were collected and analyzed.  The data are sampled every 2 minutes and there 
are three water quality signals: chlorine residual (CL2), pH and specific conductance (COND).  
Additionally, the water temperature (TEMP) was also recorded at this station.

Multivariate patterns were constructed by running CANARY on the historical data and capturing 
the 20 time steps of data in each signal prior to and including the time step at which an event was 
identified.  Each of these segments of data is then fit with a third-order polynomial and the 
coefficients of the polynomials are clustered using a fuzzy-C-means clustering algorithm.  The 
analysis was done on the three water quality parameters.  In a second run, temperature was 
included in the clustering.  Temperature is treated as an operational signal here and does not 
contribute to the event detection, but it is used as a separate signal in the pattern construction.  
The attributes of the multivariate patterns identified in the data with and without consideration of 
temperature as a signal are compared in Table 1.  In Table 1, the colors denote the general 
change in each signal over the 20 time steps captured in the pattern: Red is a decrease, yellow is 
no change and green is an increase.

Table 1.  Comparison of patterns detected in historical data with and without inclusion of 
temperature.  

Nevent CL2 pH COND TEMP
Pattern 1 24
Pattern 2 171
Pattern 3 34
Pattern 4 15
Pattern 5 1

Pattern 1 37
Pattern 2 165
Pattern 3 17
Pattern 4 25
Pattern 5 1

The addition of temperature to the pattern definition has minimal effect on the resulting patterns 
with the exception of Pattern 3.  Pattern 3 decreases in size (number of events) from 34 to 17 and 
demonstrates an increase in chlorine residual values when temperature is added relative to 
decreasing values in the original pattern.  



Summary
Two approaches for integrating operational data into water quality event detection have been 
described here.  The composite signal approach provides a flexible platform for defining signals 
that are created from operations on one or more input data streams.  Examples here show how 
changes in pumping rates and changes in upstream water quality can be used to reduce false 
positive event detections.  Additionally, composite signals are used to suppress water quality 
event alarms after a sensor calibration.  Results in these examples show that integration of 
operations data through composite signals can reduce false positive events by 40 and 85 percent 
in examples 1 and 2, respectively.

The conference presentation will use the pattern libraries constructed here in event detection.  
The results with the addition of the operational data, temperature, will be compared to the results 
where temperature is not included in the pattern library construction.

A difference in the two approaches used here is that the composite signal approach provides a 
calibration signal that is used to suppress alarms when a significant change in water quality 
occurs.  While the results above show the proportion of time the station is put into calibration 
mode to be less than 1.5% and typically less than 0.1%, the EDS is not operating during these 
time periods.  The trajectory clustering approach does not require the monitoring station to be 
taken offline and therefore provides uninterrupted event detection.  
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