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Reactive Transport Processes during Geological
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Little Grand Wash Fault
Crystal Geyser, Utah

Observations along the surface exposure of the Grand Wash fault indicate
alteration zones of 10-50 m width with spacing on the order of 100 m

Different flow conduits active at different times

Locations of conduits controlled by fault-segment intersections and/or
topography

Sandstone permeability reduced by 3 to 4 orders of magnitude in
alteration zones by carbonate cementation
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Succinct chemistry & mineralogy

- Spring water: Low temperature and Mg concentrations

- Aragonite (metastable CaCO, phase) precipitation indicates large, sudden increase of
supersaturation with respect to CaCQO, in solution -> high CO, degassing rate

- Springs: high concentrations of dissolved CO, (pCO, = ~ 100 kPa)

- Both calcite and aragonite are present

- For some horizontal travertine veins, veins grow top to bottom (U-Th dating)

pCO, = ~100 kPa [CaZ*]=7~192 mM
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Crystal Geyser Site: Grand Wash
Fault Modeling

Simplified, two-dimensional response surface

Permeability reduction due to calcite precipitation is a function of
cumulative pore volume (Q) of groundwater and fluid pressure (P)

Fluid pressure is taken as a gross proxy for chemical conditions in which
higher calcite solubility is associated with higher fluid pressure (greater
depth)
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Crystal Geyser Site: Grand Wash
Fault Modeling

= Unconditional geostatistical simulation 5
= |nitial simulated steady-state flow ;
pattern is qualitatively similar to the
spacing of seeps along the Grand Wash
fault (~100’s of m between locations of

groundwater discharge)

=  Transient flow simulation includes explicit _, _
updating of k field at each time step using
the response surface (FEHM)
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= Evolution of the flow field results in more
dispersed groundwater discharge at the
surface




Response Function based on Pore Scale
Simulations

= Vigorously tested pore-scale model can be used to develop a
response function (or dimension reduction model) for
continuum-scale permeability and porosity (k-g)
relationships

= k-g and surface area-¢ relationships will be developed over a
range of solution chemistry, chemical reaction, and pore
structure configurations in addition to Pe and Da numbers

Changes in porosity due to precipitation ~tortuosity and permeability by
phenomenological power law relations
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Response Function based on Pore Scale
Simulations

e Pe & Da numbers

Pe(uL/D) = 0.08, 0.8, 8 =)
Da(KL/(K4,5xD)) = 0.002, 0.02, 0.1

Ca2+ -
(Ksp, calcite = 3-3%1079 M?) ECO 3; m)
e Chemical speciation 31T
=20mM

Speciation: Ca?*, H*, CO;2" HCO;", H,CO, =
No speciation: Ca?*, CO,*

e Pore structures Grain with reactive surface

fracture network with varying apertures and patterns
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Permeability-Porosity Relationships

High Pe; Low Da

Carbonate speciation
Low Pe;

Medium Da
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High Pe & Low Da
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High Pe & High Da

CaCO, volumetric content

.

[Ca?*],=[CO42] =20mM



High Pe & Medium Da

CaCO, volumetric content
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Summary

Vigorously tested pore-scale model was used to develop a response
function (or dimension reduction model) for continuum-scale permeability
and porosity (k-€) relationships

Pore scale model was able to qualitatively capture pore clogging patterns
observed at the Little Grand Wash Fault

An adaptive strategy to couple pore- and continuum scale using a response
function approach will be tested against travertine patterns observed in the
Little Grand Wash Fault

Algorithms developed in this work will be implemented into a continuum
scale reactive transport model (p-FLOTRAN)
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Permeability (k/k,)

Permeability-Porosity Relationships
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Chemical Speciation

Solid symbols: Speciation
Open symbols: No speciation
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Pore Scale Model Framework
Velocity at 1 micron

Lattice Boltzmann Method:
Velocity field (u) at pore scale
; resolution

Finite Volume Method: Reactive transport at pore scale

At . =C, +ZUJT{T Chemical equilibrium in bulk fluid (e.g., H*, HCOg, ...)
i=1 Extended Debye-Hickel Equation for activity coefficients

D—L=—71_ on reactive surface
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Fracture network

“elocity field

pH




