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Evans et al. (2004)  

Little Grand Wash Fault 
Crystal Geyser, Utah 

 Observations along the surface exposure of the Grand Wash fault indicate 
alteration zones of 10-50 m width with spacing on the order of 100 m 

 Different flow conduits active at different times 

 Locations of conduits controlled by fault-segment intersections and/or 
topography  

 Sandstone permeability reduced by 3 to 4 orders of magnitude in 
alteration zones by carbonate cementation 

From Peter Eichhubl 



Succinct chemistry & mineralogy 

- Spring water: Low temperature and Mg concentrations 

- Aragonite (metastable CaCO3 phase) precipitation indicates large, sudden increase of  

    supersaturation with respect to CaCO3 in solution -> high CO2 degassing rate 

- Springs: high concentrations of dissolved CO2 (pCO2 = ~ 100 kPa) 

- Both calcite and aragonite are present 

- For some horizontal travertine veins, veins grow top to bottom (U-Th dating) 
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 Simplified, two-dimensional response surface 

 Permeability reduction due to calcite precipitation is a function of 
cumulative pore volume (Q) of groundwater and fluid pressure (P) 

 Fluid pressure is taken as a gross proxy for chemical conditions in which 
higher calcite solubility is associated with higher fluid pressure (greater 
depth) 

Q 
Pressure 

Log k 

Crystal Geyser Site: Grand Wash  
Fault Modeling 

Adapted from Mehmani et al. (2012) 



 Unconditional geostatistical simulation 

 Initial simulated steady-state flow 
pattern is qualitatively similar to the 
spacing of seeps along the Grand Wash 
fault (~100’s of m between locations of 
groundwater discharge) 

Time = 0 

Crystal Geyser Site: Grand Wash  
Fault Modeling 

Time = 1000 years 
 Transient flow simulation includes explicit 

updating of k field at each time step using 
the response surface (FEHM) 

 k is reduced by several orders of magnitude 
by calcite precipitation, primarily in the 
shallower high-flow channels 

 Evolution of the flow field results in more 
dispersed groundwater discharge at the 
surface 



 Vigorously tested pore-scale model can be used to develop a 

response function (or dimension reduction model) for 

continuum-scale permeability and porosity (k-) 

relationships 

 k- and surface area- relationships will be developed over a 

range of solution chemistry, chemical reaction, and pore 

structure configurations in addition to Pe and Da numbers 

Response Function based on Pore Scale 
Simulations 

Changes in porosity due to precipitation ~tortuosity and permeability by 

phenomenological power law relations 



Response Function based on Pore Scale 
Simulations 

[Ca2+]T= 

[CO3
2-] T  

=20mM 

Pe(uL/D) = 0.08, 0.8, 8 

Da(kL/(Ksp
0.5D)) =  0.002, 0.02, 0.1 

Speciation: Ca2+, H+, CO3
2- HCO3

- , H2CO3 

No speciation: Ca2+, CO3
2- 

(Ksp, calcite = 3.3*10-9 M2) 

Grain with reactive surface 

 Pe & Da numbers  

 Chemical speciation 

 Pore structures 

fracture network with varying apertures and patterns 

[Ca2+]T=[CO3
2-] T=20mM 

Length scale ~ 20cm 
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Permeability-Porosity Relationships 
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Pore clogging at the front 
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[Ca2+]T=[CO3
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High Pe & Medium Da 
CaCO3 volumetric content 



 Vigorously tested pore-scale model was used to develop a response 

function (or dimension reduction model) for continuum-scale permeability 

and porosity (k-) relationships 

 Pore scale model was able to qualitatively capture pore clogging patterns 

observed at the Little Grand Wash Fault 

 An adaptive strategy to couple pore- and continuum scale using a response 

function approach will be tested against travertine patterns observed in the 

Little Grand Wash Fault 

 Algorithms developed in this work will be implemented into a continuum 

scale reactive transport model (p-FLOTRAN) 

Summary 



Questions? 
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Permeability-Porosity Relationships 
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Chemical Speciation 

Solid symbols: Speciation 

Open symbols: No speciation 
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Pore Scale Model Framework 



Fracture network 


