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ABSTRACT
Authentication between mobile devices in ad-hoc computing
environments is a challenging problem. Without pre-shared
knowledge, existing applications rely on additional commu-
nication methods, such as out-of-band or location-limited
channels for device authentication. Much of the focus in de-
velopment of new applications in this area seeks to reduce or
eliminate the impact of this additional requirement. How-
ever, no formal analysis has been conducted to determine
whether out-of-band channels are actually necessary. We
seek to answer this question through formal analysis of au-
thentication protocols in mobile device applications. Specif-
ically, we use BAN logic to show that device authentication
using a single channel is not possible, and propose a BAN
logic extension to help prove correct existing authentication
protocols. We further demonstrate this analysis on existing
mobile device authentication applications.

1. INTRODUCTION
The field of ubiquitous computing has shown tremendous

growth over the past several years, both in the sophistication
and capabilities of devices, and in the variety of applications
to which devices are being applied. Many people rely on mo-
bile devices, such as smart phones, personal digital assistants
(PDAs), tablets, and laptop computers to stay in touch with
friends, family, co-workers, and other important contacts.
One core component of ubiquitous computing is communi-

cation with other devices, which usually occurs using broad-
cast radio frequency (RF) transmission. Consequently, prob-
lems may arise when communication between devices is ex-
pected to be private. Consider a credit-card transaction
between a smart-phone and a movie-ticket kiosk; the con-
sumer’s credit card information should be protected from
eavesdropping. The most common method for protecting
these types of information exchanges is encryption. How-
ever, this raises additional issues. First, devices in ubiqui-
tous computing are usually constrained in both power and
computational capabilities, making some encryption tech-
niques either too expensive in terms of power consumption,
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or undesirable in terms of time. Fortunately, advances in
device hardware have addressed this concern very well. Sec-
ond, in order to encrypt information, both the sender and
receiver must agree on the method of encryption, as well
as key information. While this is a relatively simple opera-
tion between two machines operating in a wired, trusted en-
vironment, accomplishing key establishment between wire-
less devices in untrusted environments presents several chal-
lenges. The greatest of these challenges is device authentica-
tion, which means ensuring that only the intended devices
are those actually communicating. Put another way, it is
ruling out the possibility that an unknown device, or “man-
in-the-middle,” is present and intercepting data between the
devices. This challenge is especially difficult because devices
in ubiquitous computing are not assumed to possess a priori
knowledge of each other.

Several applications exist to address this problem, propos-
ing authenticated information exchange between mobile de-
vices using an array of methods other than the standard
broadcast channel. These are sometimes called out-of-band,
side-channels or location-limited channels (LLCs) [1], and
include audio, visual, infrared, ultrasound, and other forms
of transmission [7, 9, 15, 19]. While not necessarily provid-
ing confidentiality, they allow the receiver of the device to
physically verify the source of the transmission. Using the
information received, devices can be authenticated, and se-
cure key establishment can occur.

In standard computing environments, authentication pro-
tocols are subject to rigorous performance analysis and ver-
ification. One tool for doing this is known as BAN Logic [2].
This work presents a logic of belief, which is basically the
process of coupling assumptions about current states with
a simple set of steps and reasoning, to arrive at a conclu-
sion regarding the soundness of an authentication protocol.
BAN Logic has been used extensively to identify flaws in
new and existing security protocols, and is often employed
by authors to prove new proposals sound.

However, applying such formal analysis to device authen-
tication protocols in mobile computing applications has not
been studied to date. Important and interesting questions
arise such as: can device authentication protocols that use
location-limited channels be shown correct using analysis
techniques such as BAN logic? More importantly, are location-
limited channels a necessary component of device authenti-
cation between mobile devices in ubiquitous computing?

In this paper, we seek to answer these questions. Specifi-
cally, we show that device authentication between previously
unknown devices in ubiquitous computing is not possible
using only a single broadcast channel for communication.
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Next, we attempt a formal analysis of device authentication
protocols that use LLCs. However, as originally proposed,
BAN logic is insufficient to address the characteristics of
such protocols, so we propose two extensions to BAN logic
to support them. To demonstrate our extension, we show
the analysis of two existing device authentication applica-
tions.
The remainder of this paper is organized as follows. Sec-

tion II discusses background material and related works.
Section III considers device authentication using a single
broadcast channel only and extends BAN logic to support
analysis of device authentication protocols. Section IV demon-
strates the use of these extensions, and Section V concludes
the paper with a discussion of future work.

2. BACKGROUND
Mobile computing environments generally do not assume

the presence of a trusted authority (TA) to provide verified
authentication information, such as public keys. Therefore,
to authenticate public keys, another solution is necessary,
and several approaches have been developed to address this
problem. Solutions requiring some sort of additional knowl-
edge, passed between users either in the form of a password
or via some other communication channel besides the stan-
dard channel make up the bulk of the work on this subject.

2.1 Location-Limited Channels
One of the most widely referenced techniques for verifying

key establishment between mobile devices is proposed by [1]
and introduces three components: location-limited channels,
demonstrative identification, and pre-authentication. Location-
limited channels (LLC) are a means of communication be-
tween two devices with the property that the operators of
the devices have control over which devices are communi-
cating. Unlike radio frequency (RF), where the sending
and receiving devices are not easily identifiable, LLCs could
include non-RF communication. Demonstrative identifica-
tion describes the process by which the sending device is
authenticated simply by sending information via the LLC.
For instance, a kiosk showing a video display of a two-
dimensional barcode can be verified as the source of the
data simply by looking at it - it demonstrates that the infor-
mation being shown originated from that device. Although
this seems rather simple and intuitive, it plays a key role in
key establishment protocols between mobile devices. Pre-
authentication is the process of identifying the devices to
communicate, and exchanging information over the LLC be-
tween them. Using that information, key establishment can
occur.
A protocol for device authentication using these two con-

cepts, shown in Table 1 using a protocol trace developed
in [21], has served as the basis for most of the later work
on the subject [1]. Using this protocol and an LLC, devices
exchange information - specifically, the network addresses of
the devices and the hash values of the devices’ public keys.
Then, using the network addresses exchanged, the devices
establish communication over the normal channel and re-
quest the others’ public key. The key received is hashed and
compared to the value received via the LLC. If the values
match, then the public key is authenticated.
Many works build upon the foundations established by [1],

including approaches based on visual channels proposed in [7,
8, 15, 19]. While most approaches use two-way LLC trans-

# Ch Alice Bob
1 LL −AddrAlice, H{KAlice} →
2 LL ← AddrBob,H{KBob}−
3 RF ← Key exchange protocol →

Table 1: Basic Protocol for Exchanging Keying
Information via a Location-Limited Channel (Ch:
Communication Channel, RF: Radio Frequency, LL:
Location-Limited)

mission, some of them achieve device authentication using
only one LLC transmission [9,19,21].

2.2 BAN Logic
We can turn to formal methods as a tool in evaluating

the soundness of proposed authentication protocols. An ap-
proach to formalizing the logic associated with authentica-
tion, called “BAN Logic,” is presented in [2]. This work
presented a logic of belief, which is basically the process of
coupling assumptions about current states with a simple set
of steps and reasoning, to arrive at a conclusion regarding
the soundness of an authentication protocol. It has been
used extensively to identify flaws in new and existing secu-
rity protocols, and is often employed by authors to prove
new proposals sound.

BAN logic is not without limitation, however. Various is-
sues, most often a result of ambiguous assumptions [12,13],
have been identified with the original BAN logic. However,
by noting and carefully addressing these concerns, the orig-
inal BAN logic continues to be used by authors to verify
authentication protocols, generally due to the simplicity of
the approach [6,14,17,18,20].

Constructs.
We must first cover several basic components of BAN

logic, including its constructs and postulates. The con-
structs are represented as follows [2]:

A |≡X : A believes X. A may act as though X is true.
A ▹ X : A sees X. A has received a message containing X.
A |∼X : A said X. A once said X, though when X was

said is unknown.
A Z⇒ X : A controls X (A has jurisdiction over X). A

is an authority on X and should be trusted to provide
a correct X.

♯(X) : X is fresh. X has not been sent in any previous
message during the current protocol run. X is typically
a nonce.

A
K←→ B : K is a shared key A and B may use to commu-

nicate
K7→ A : K is the public key of A, with a matching secret key

K−1 that remains secret to A or any principal trusted
by A.

A
X� B : X is a secret formula, such as a password, known

only to A and B.
{X}K : The formula X encrypted under K.
⟨X⟩Y : X combined with formula Y . Usually, Y is a secret,

and its presence proves the identity of whoever utters
⟨X⟩Y .



Postulates.
The postulates which manipulate these constructs are as

follows:
Message-Meaning Rule If A believes K is the shared key

with B, and A sees X encrypted under K, then A believes
B once said X:

A believes A
K←→ B, A sees{X}K

A believes B said X

Or, written using the construct notation (as all future
postulates will be):

A |≡A
K←→ B, A ▹ {X}K
A |≡B |∼X

Nonce-Verification Rule This rule checks to see if the mes-
sage was sent recently, that is, the sender still believes in the
message. If A believes X is fresh, and A believes B once said
X, then A believes B believes X.

A |≡ ♯(X), A |≡B |∼X

A |≡B |≡X

Jurisdiction Rule If A believes that B has jurisdiction
over X, and A believes B believes X, then A trusts B on
the truth of X, thus A believes X:

A |≡B Z⇒ X, A |≡B |≡X

A |≡X

3. OUR APPROACH
First, we must establish the conditions by which the prob-

lem of device authentication in ubiquitous computing is bound.
We assume the only channel of communication is a wireless
broadcast channel (RF), available to all devices, including
those of an attacker. We assume no a priori knowledge exists
between the two devices wishing to communicate securely.
Furthermore, we assume the existence of an active attacker,
who is able to intercept and modify the contents of RF trans-
missions between our two devices - this is commonly referred
to as the “man in the middle.”
We will use BAN logic to analyze a basic question of au-

thentication protocols for mobile computing applications: is
authentication possible without the use of a side-channel
(LLC, human interaction, etc.)? In considering this ques-
tion, we make the following claim: If a protocol exists that
allows device authentication without use of LLCs (i.e. us-
ing RF communication only), then it can be verified to be
correct using BAN logic.
It is important to note that we assume both parties partic-

ipating in the authentication protocol are trustworthy. That
is, neither device knowingly provides incorrect information.
This is consistent with [2], which does not deal with au-
thentication of untrustworthy principals, stating “We focus
on the beliefs of trustworthy parties involved in the proto-
cols and on the evolution of these beliefs as a consequence
of communication.” Other security protocol analysis works
also make this assumption [5,10,11,16].

3.1 Analyzing Authentication Between Unknown
Mobile Devices

Let us consider the following definitions regarding our en-
vironment and goals:

Definition 1. A device authentication protocol is a pro-
cedure for identifying the identity of another device on a
network.

Definition 2. Ad-hoc computing environments exhibit the
following characteristics:

• No pre-shared, or a priori, knowledge exists between
devices
• Device location is not fixed, nor is device proximity

assumed
• Only a broadcast method of communication is used for

normal data transfer

We must establish these definitions for several reasons.
First, it is important to be very clear about our definition
of “ad-hoc computing,” as interpretations have been pro-
posed which differ from ours [4]. Next, we must remove any
ambiguity regarding the meaning of “device authentication”
protocols. It is essential that we be clear about these def-
initions in order to proceed with the following proposition
regarding device authentication in ad-hoc computing:

Proposition 3.1. Key-based device authentication between
two previously unknown mobile devices in an ad-hoc comput-
ing environment is not possible using only a single broadcast
communication channel.

Proof. We will prove this proposition by contradiction.
To do so, we will assume that there is a protocol for device
authentication between two previously unknown devices in
an ad-hoc environment that does not use additional informa-
tion, such as that provided by a demonstrative side-channel,
and attempt to prove this assumption correct.

Let us first establish the goals of device authentication.
The goals of authentication, according to [2], can vary, but
generally consist of a shared session key between two entities,
that is:

A |≡A
K←→ B

B |≡A
K←→ B

Because we assume no a priori knowledge between de-

vices, the shared key A
K←→ B must be established via the

authentication protocol between A and B, it cannot be as-
sumed to exist beforehand. There are two possible cases for
authentication protocols that are key-based: those that use
symmetric keys and those that use asymmetric keys.

Case 1: Symmetric Keys.
Device authentication protocols using symmetric keys, by

the very definition of symmetric keys, assume that informa-
tion is already shared between both devices - specifically a
shared symmetric key. It is trivial to show, because this
violates the constraints we have established for key-based
device authentication in mobile computing, that this family
of protocols is not possible.

Case 2: Asymmetric Keys.
For device authentication protocols utilizing asymmetric

keys, it is required that each device know the public key
of the other device. Doing so requires that each device, at
some point during the mutual device authentication proto-
col, receives the public key of the other device. To put it
formally, at some point, the following must occur:

A→ B :
KA7→ A

B → A :
KB7→ B

However, simply receiving a public key does not assure
a device that it is the authentic public key of the intended
target device. Therefore, the goal in this protocol is more



stringent, specifically, it is assurance the public key of the
sending device is authentic, or to put it formally:

A |≡ Kb7→ B

B |≡ Ka7→ A

Note that both components are required for mutual device
authentication to occur. We will therefore begin with an

analysis of the first component, A |≡ Kb7→ B.

Case 2.1: Authenticating B to A..
Typically, when proving a protocol using BAN logic, as-

sumptions are established first. We assume the following for
our hypothetical device authentication algorithm:

A |≡ Ka7→ A B |≡ Kb7→ B

A |≡A Z⇒Ka7→ A B |≡B Z⇒Kb7→ B

A |≡B Z⇒Kb7→ B B |≡A Z⇒Ka7→ A

A |≡ ♯(
Ka7→ A) B |≡ ♯(

Kb7→ B)

A |≡ ♯(
Kb7→ B) B |≡ ♯(

Ka7→ A)

¬(A |≡ Kb7→ B) ¬(B |≡ Ka7→ A)

Most of these assumptions are obvious. However, the as-
sumptions in the last row require a brief explanation. Nor-
mally, we only state what we assume to be true, rather
than what we assume is not true. However, in this case,
these statements of negation are necessary because of the
ad-hoc computing environment. It is not enough to omit
the assumption that we believe a specific public key belongs
another device, we must explicitly state that we do not be-
lieve a specific public key belongs to another device, because
an ad-hoc environment explicitly excludes this type of prior
knowledge.
Working backwards from our goal, by the jurisdiction rule,

we see that for A |≡ Kb7→ B to be true, we must establish

A |≡B Z⇒Kb7→ B and A |≡B |≡ Kb7→ B. We assume A |≡B Z⇒Kb7→
B, that is, B has control of its own public key. To estab-

lish the second part of this rule, A |≡B |≡ Kb7→ B, we must

establish A |≡ ♯(
Kb7→ B) and A |≡B |∼ Kb7→ B.

Considering our assumptions, we see that only A |≡ ♯(
Kb7→

B) is shown. To establish A |≡B |≡ Kb7→ B, we would need to

show that A |≡B |∼ Kb7→ B. This is achieved either by assump-
tion (which we do not have) or by the message-meaning rule,

which stipulates A |≡ Kb7→ B and A ▹ {X}
K−1

b
must be true

for A |≡B |∼ Kb7→ B. However, this contradicts our assump-

tion ¬(A |≡ Kb7→ B), and therefore, Case 2.1 is not possible.

Case 2.2: Authenticating A to B..
By symmetry, Case 2.2 is also not possible.

Final Steps.
By analyzing the necessary steps for key-based device au-

thentication protocols between two previously unknown mo-
bile devices, we have demonstrated that such protocols un-
der the constraints of ad-hoc computing are not possible
using only a single broadcast communication channel. Be-
cause our example is representative of any key-based device
authentication protocol operating under the constraints of
ad-hoc computing, and we have shown that such an proto-
col is not possible, we have successfully proven our proposi-

tion.

In essence, what BAN logic tells us about the constraints
of ad-hoc computing is that it is necessary to have some
sort of basis to believe a message was sent from a particular
device. Because we use a broadcast method of communica-
tion, we cannot make any statements about the origin of a
particular message simply because we suppose it came from
a specific device, or the message claims to have originated
from a specific device. To prove that a message originated
from a specific device, BAN logic tells us that the message
must have been encrypted (or otherwise encoded) using a
key (or secret) that A believes is either shared with B, or
belongs to B. There is no other way, using the BAN logic
constructs and postulates we specified, to form a belief about
the origin of a message.

3.2 Extending BAN Logic
If we cannot achieve device authentication using only a

single broadcast channel, suppose data X is transmitted
from B to A using a side-channel, or LLC. This allows the
users of each device to identify the other device, establish-
ing the origin of the data received (demonstrative identifi-
cation [1].) This additional information exchanged supplies
the conditions necessary to establish our goals. While the
data can also be seen by an attacker, an attacker is not able
to modify the data transmitted. The receiving device knows
with certainty the information was said by the sending de-
vice.

Doing so allows us to conclude the following:
A ▹ X

A |≡B |∼X

The last statement is of particular importance. Under the
message-meaning rule and normal communication, to estab-

lish A |≡B |∼X would require us to establish A |≡ Kb7→ B and
A ▹ {X}

K−1
b

. However, since we are using another method

which allows A to verify the origin of X, we can establish
A |≡B |∼X without using the message-meaning rule.

This is an extension to BAN logic afforded by the prop-
erties of LLCs, and to assist in our proofs of device authen-
tication protocols, we will denote this extension using the
following construct:

A
XL99 B : A receives X from B via a channel by which A

can verify the origin of X is B.

The following postulate will also be added:
Side-Channel-Communication (SCC) Rule If A receivesX

from B via a side-channel, then A sees X, and A is entitled
to believe B said X:

A
XL99 B

A ▹ X,A |≡B |∼X

3.3 Handling Hash Functions
The device authentication protocol we seek to prove cor-

rect involves the transmission of hash values via the side-
channel. However, this raises serious issues; specifically, how
do we treat hash values with respect to the constructs and
postulates of BAN Logic? The authors of BAN logic, in an
extended technical report [3], propose a postulate for han-
dling a hash function H, as follows:

A |≡B |∼H(X),A ▹ X

A |≡B |∼X

However, it is clear from their work that H(X) refers to
signed hashes, not an arbitrary hash function, as the authors



state, “If H is an arbitrary function, nothing convinces one
that when A has uttered H(m) he must have also uttered
m. In fact, A may never have seen m.”
How then are we to deal with the use of arbitrary hash

functions in our protocols? According to [3] we cannot as-
sume that because B said H(X), B also said X. However,
we can deduce the following: if A believes H(X), and sees
some message Y (not necessarily from B), and confirms that
H(Y ) equals H(X), then A can reasonably assume that Y
equals X, and can say that A sees X1. However, what we
really need to determine is: did B say X?
To help with this determination, we must first reveal an

implicit assumption within the constructs of BAN logic,
specifically, the notion of uniqueness. In all postulates in-
volving a key K, it is assumed K is unique. For instance,

we assume
K7→ A ̸= K7→ B. In other words, without the assur-

ance that K is unique, the message-meaning rule would not

be true, if it were possible that
K7→ A =

K7→ B. Uniqueness
of keys is a safe assumption to make in the case of suffi-
ciently large cryptographic keys, and for secret data that is
generated prior to protocol execution.
However, in the case of hash values, it is not safe to say

that all values generated are unique. Virtually any cryp-
tographic hash function will generate an infinite number of
collisions for an infinite input set. Additionally, two entities
hashing the same value, using the same hash function, will
return identical hashes. Consider the case where A gener-
ates the hash value of the word “cat,” and B also generates
the value of the word “cat”. If they both use the same hash-
ing function, they will both return the same value, and it
will be impossible to determine which entity performed the
hash. This is the problem stated by [3] above.
However, if we make a stronger assumption about the

value being hashed, that is, that the X which is used to gen-
erate H(X) is unique, then we can also assume that H(X)
is unique. We will use this belief in comparing values and
their hashes during our communication protocol. We can
say that if we have a hash value H(X), and we receive an-
other value Y , that we may determine Y = X if we can show
H(Y ) = H(X), as long as we believe X is unique.
Combining the notion of uniqueness with the BAN logic

construct of jurisdiction, we may conclude the following. If
A believes B is an authority on X, and A believes X is
unique, then A may believe B created X. More impor-
tantly, A may conclude that no other entity could have in-
dependently created X. So, once A establishes that it sees
X (realizing that A has no foreknowledge of the value of X,
so it is still incumbent on the protocol to establish the value
of X, as well as its origin in B), A may conclude that at
some point in time, X was said by B.
To show that we consider a value to be unique, we propose

the following additional construct:
†(X): X is considered to be sufficiently unique that two
entities independently generating the same X is considered
computationally unlikely.
The applications of this construct extend beyond hash func-

1Although we recognize that collisions exist in hash func-
tions, we assume the use of strong cryptographic hash func-
tions for this step. Assuming an attacker is unable to pro-
duce a collision (i.e. generate Y ̸= X such that H(Y ) =
H(X)) in this case is similar to assuming an attacker is
unable to decrypt encrypted messages in other BAN logic
postulates

# Ch Alice Bob
1 LL −AddrA, H(KA)→
2 LL ← AddrB , H(KB)−
3 RF −KA →
4 RF ← KB−
5 Calc H(KB)#4 Calc H(KA)#3

6 H(KB)#4
?
= H(KB)#2 H(KA)#3

?
= H(KA)#1

Table 2: Simple Protocol for Authenticating Public
Keys via a Location-Limited Channel

tions. For instance, uniqueness could be used to describe
newly generated symmetric or asymmetric keys. If A and B
independently generate KA and KB , they should be unique.

Now we can address the question of establishing which
entity said X, based on our beliefs about X and H(X). We
do this by adding some constraints to the hashing postu-
late proposed by [3], making it correct for arbitrary hash
functions. Our proposed addition is as follows:

Hash Analysis Rule If A believes B controls X, and if A
believes X is unique, and if A believes B said H(X), and A
sees X, then A believes that B said X.2

A |≡B Z⇒ X, A |≡ † (X), A |≡B |∼H(X), A ▹ X

A |≡B |∼X

Next, we consider why each component in this rule is nec-
essary:

A |≡B Z⇒ X: A has to believe B controls the value X, in
our case, B’s public key.

A |≡ † (X): As mentioned above, for this to hold, X cannot
be independently generated anywhere else (within computa-
tional allowances); combined with the previous component,
this means A believes only B created X.

A |≡B |∼H(X): This is necessary to verify A▹X. Otherwise,
A has no way to know whether or not the message it sees
is actually X. Despite the assumptions above, A does not
initially know the value of X, but A does know the value of
H(X).

A ▹ X: This is actually determined using another compo-
nent in the same rule. A cannot know it has seen X until it
compares H(X) to the value contained in A |≡B |∼H(X).

4. APPLICATIONS
We will demonstrate the application of the SCC and Hash

Analysis Rules by applying them to the formal analysis of
authentication protocols in two mobile computing applica-
tions. The first, shown in Figure 1, uses a basic bi-directional
protocol based on [1]. The second uses a uni-directional pro-
tocol requiring only one LLC transmission.

4.1 Proving the Basic Device Authentication
Protocol Secure

2For simplicity we assume the following trivial rule:
B Z⇒ X

B Z⇒ H(X)



Figure 1: Application Using LLCs for Device Au-
thentication [8]

The basic mobile device key authentication protocol is
shown in Table 2. This protocol is used by applications
such as the one shown in Figure 1; in this case, colorized
two-dimensional barcodes are exchanged via device displays
and digital cameras. The first step in analyzing the proto-
col is to idealize it, that is, to change it into a form more
easily analyzed by the logic. (See [2] for more details on this
process.) The idealized form of the protocol is as follows:

Message 1 : A→ B : H(
KA7→ A)

Message 2 : B → A : H(
KB7→ B)

Message 3 : A→ B :
KA7→ A

Message 4 : B → A :
KB7→ B

The assumptions we make are as follows:

A |≡ KA7→ A B |≡ KB7→ B

A |≡A Z⇒KA7→ A B |≡B Z⇒KB7→ B

A |≡ ♯(
KB7→ B) B |≡ ♯(

KA7→ A)

A |≡ ♯(H(
KB7→ B)) B |≡ ♯(H(

KA7→ A))

A |≡B Z⇒KB7→ B B |≡A Z⇒KA7→ A

A |≡B Z⇒ H(
KB7→ B) B |≡A Z⇒ H(

KA7→ A)

A |≡ † (KB7→ ) B |≡ † (KA7→ )

Why is ♯(
KA7→ A), ♯(H(

KA7→ A)), ♯(
KB7→ B), ♯(H(

KB7→ B)) as-
sumed in this protocol? This may seem to be a poor as-
sumption to make. The notion of freshness is BAN logic
is meant to assure that the messages being exchanged are
recently generated (during the current run of the protocol),
and not being replayed by an attacker. It could be argued
that the properties of side-channels prevent a replay attack
of the data transmitted (A knows that the information came
immediately from B, therefore, it is fresh). We use this rea-
soning in our assumptions above. However, a more complete

notion of freshness would be assured if some nonce were in-
cluded in the side-channel data, or if the side-channel data
were generated uniquely for each instance of communica-
tion [7]. This would assure the sending device, B, that sub-
sequent protocol messages from A were, in fact, fresh.

Note that both A and B trust the other on the correctness
of their respective public keys. This is a staple of BAN logic,
we assume our counterpart is trustworthy, that is, it has not
been compromised to provide incorrect information. We do
not, however, assume that anything purported to be received
by A from B is actually from B; deciding that is the purpose
of the message-meaning rule.

The main steps of our proof are as follows:

B receives message 1. The SCC rule yields that:

B ▹ H(
KA7→ A), B |≡A |∼H(

KA7→ A)

Likewise, receiving message 2 yields for A:

A ▹ H(
KB7→ B), A |≡B |∼H(

KB7→ B)

Since we have the assumptions

A |≡ ♯(H(
KB7→ B)) and B |≡ ♯(H(

KA7→ A))

We can apply the nonce-verification rule to get

A |≡B |≡H(
KB7→ B) and B |≡A |≡H(

KA7→ A)

Recall we also assume

A |≡B Z⇒ H(
KB7→ B) and B |≡A Z⇒ H(

KA7→ A)

Next, we apply the jurisdiction rule to get

A |≡H(
KB7→ B) and B |≡H(

KA7→ A)

Next, we consider messages 3 and 4, where we find A and
B receive messages purporting to be KB and KA, respec-
tively. However, since these messages do not come from
known sources, we will call them Y and Z for now.

A ▹ Y and B ▹ Z

We use our hash analysis reasoning to check that H(Y )
equals H(KB) and H(Z) equals H(KA). (This is step 5 and
6 in the protocol listed in Table 2.) Because they match, we
now assume

A▹
KB7→ B and B▹

KA7→ A

Next, we recall our assumptions

A |≡B Z⇒KB7→ B and B |≡A Z⇒KA7→ A and

A |≡ † (KB7→ ) and B |≡ † (KA7→ )

We couple those assumptions with the previously deter-
mined statements and apply them to our Hash Analysis Rule
to achieve

A |≡B |∼ KB7→ B and B |≡A |∼ KA7→ A

Using the assumptions

A |≡ ♯(
KB7→ B) and B |≡ ♯(

KA7→ A)

We can apply the nonce-verification rule to get

A |≡B |≡ KB7→ B and B |≡A |≡ KA7→ A

Next, we apply the jurisdiction rule to get

A |≡ KB7→ B and B |≡ KA7→ A

Which is the goal of our protocol.

4.2 One-way LLC for device authentication
In [9], a simplified the key establishment protocol, based

on [21], is presented. This protocol is shown in Table 3. The
simplified protocol begins with both Alice and Bob selecting
new public keys, ga and gb. Alice sends her public key, ga, to



Table 3: UbiSound Key Establishment Proto-
col [9] (RF: Radio Frequency Channel, LL: Location-
Limited Channel, PB: Manual User Interaction
(Push-Button))

# Ch Alice Bob
1 Chooses ga

2 RF −ga →
3 Chooses gb

4 Chooses random Rb

5 Hb = H(ga|gb|Rb)
6 RF ← Hb−
7 LL ← Rb−
8 RF ← gb−
9 H ′

b =
H(ga|gb|Rb)

10 Verifies
Hb = H ′

b

11 PB −verify →

Bob using the unsecured wireless channel. Bob then chooses
a random number, Rb, of sufficient size to prevent guessing
by Marvin, the adversary. Next, Bob calculates a hash value,
Hb, as the concatenation of ga, gb, and Rb, and sends Hb to
Alice using the unsecured channel.
The next step involves the LLC. Rb is encoded and trans-

mitted over this channel, followed by Bob’s public key, gb,
which is sent over the unsecured wireless channel. After
receiving gb, Alice has all the information she needs to cal-
culate H ′

b = H(ga|gb|Rb), and verify that Hb = H ′
b. Because

Alice can verify that Rb came from Bob, using the demon-
strative identification [1] of the LLC, she can verify that Hb

was also generated by Bob. Assuming that an adversary has
not compromised Bob’s device, this confirms to Alice that
the information she received from Bob is authentic, verifying
his device, his public key gb, and allowing key establishment
to commence.
How does Bob establish that he is communicating with

Alice, though? This question is addressed in [21], and the
answer is reasoned as follows. Bob does not receive any
communication from Alice via an LLC, which may lead to
the conclusion that Bob cannot demonstratively identify Al-
ice’s device. While this would be true for completely auto-
mated devices, we have the advantage of user interaction to
complete the protocol. When Alice verifies she is commu-
nicating with Bob, she implicitly verifies to Bob that Hb is
correct. Because Hb contains ga, Alice’s verification to Bob
also confirms to Bob that he has used the correct values in
calculating Hb, and those values can be trusted to establish
a secure channel. Even if Bob were a kiosk device, he could
receive confirmation from Alice via a push-button device,
which only Alice would be able to press. ( [21] points out
that it would take an extremely sophisticated attacker to
develop a button-pushing device that could not be detected
by the kiosk user.)

4.2.1 Proving the Protocol Correct
We will use BAN logic to analyze the correctness of this

protocol. To do so, we first establish the following assump-
tions:

A |≡ ga B |≡ gb

A |≡A Z⇒ ga B |≡B Z⇒ gb

A |≡B Z⇒ gb B |≡A Z⇒ ga

A |≡ ♯(Rb) B |≡ ♯(Rb)
A |≡ † (ga) B |≡ † (gb)
A |≡ † (gb) B |≡ † (ga)
A |≡ † (Rb) A |≡B Z⇒ Rb

Next, we idealize the protocol. According to [2], ideal-
ization of protocols involves removing any messages not en-
crypted. Doing so would leave us with the following idealized
protocol:

Message 1 : B → A : H(ga, gb, Rb)

While this is technically correct, according to the BAN
logic analysis process, we must point out that we require ad-
ditional information to be transmitted for the Hash verifica-
tion step of the protocol. [2] argues that cleartext messages
can be forged. However the hashing element of the protocol
prevents cleartext messages, such as ga and gb, from being
forged. Effectively, the hash component verifies the correct-
ness of these values, and therefore they should be included
in the protocol idealization. We also add the fifth message,
the manual user interaction step “verify” between A and B,
because this step also serves to validate information sent in
cleartext during the protocol.

Message 1 : A→ B : ga

Message 2 : B → A : H(ga, gb, Rb)
Message 3 : B → A : Rb

Message 4 : B → A : gb

Message 5 : A→ B : verification

Now we can prove the correctness of the protocol, the
goal of which is for each device to believe the public key
of the other device, so secure key establishment may occur.
Formally, this is:

A |≡ gb and B |≡ ga

We begin by provingA |≡ gb. In message 2, we seeH(ga, gb, Rb)
sent via LLC from B to A. By the side channel communi-
cation (SCC) rule, we obtain:

A ▹ H(ga, gb, Rb) and A |≡B |∼H(ga, gb, Rb)

Next, we apply the hash analysis rule. Because we assume
A |≡B Z⇒ gb, A |≡B Z⇒ Rb, A |≡ † (gb), A |≡ † (ga), and
A |≡ †(Rb), and we have deduced that A |≡B |∼H(ga, gb, Rb),
knowing that A |≡A Z⇒ ga, we combine these with message
4, A ▹ gb to get:

A |≡B |∼ gb

Next, we consider another component of BAN logic not
yet mentioned, a freshness rule that states: if A believes one
part of a formula is fresh, then the entire formula must also
be fresh [2]. This is shown as follows:

P |≡ ♯(X)

P |≡ ♯(X,Y )

Using this rule, we can establish that since we assume
♯(Rb), we can deduce:

♯(ga)
♯(gb)

Knowing that ♯(gb) and A |≡B |∼ gb, we can apply the
nonce-verification rule to obtain:

A |≡B |≡ gb

And because we assume A |≡B Z⇒ gb, we can use the ju-
risdiction rule to obtain the desired result:



A |≡ gb

This shows the first half of the protocol results. What
about B |≡ ga? Actually, A establishes this for B. Consider
what happens during step 10 of the protocol (shown in Ta-
ble 3). A verifies that the information from B is correct,
according to what A sent and received using the LLC. So
message 5 of the idealized protocol verifies for B that it has
the correct information, allowing B to conclude the ga it
received in message 1 was actually said by A (A |∼ ga). This
also provides the belief in a fresh ga for B, since A must have
established ♯(gb) prior to the verification step (thus imply-
ing ♯(ga) by the freshness rule). We can apply these beliefs
to the nonce-verification rule and jurisdiction rule to obtain
the second half of the desired result:

B |≡ ga

5. CONCLUSION AND FUTURE WORK
We have shown that device authentication in mobile com-

puting applications in ad-hoc computing environments is not
possible using only a single broadcast communication chan-
nel. However, using LLCs, we can achieve device authentica-
tion. Proving such a protocol correct requires extensions of
BAN logic, which we proposed and demonstrated by analyz-
ing two different device authentication applications. Future
work will include more detailed analysis of existing solutions,
and the potential generation of new device authentication
protocols for mobile computing applications.
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