
Center for Plasma Edge Simulation (CPES) -- Rutgers University Final Report (03/06/14)

The CPES scientific simulations run at scale on leadership class machines, collaborate at runtime and
produce and exchange large data sizes, which present multiple I/O and data management challenges.
During the CPES project, the Rutgers team worked with the rest of the CPES team to address these
challenges at different levels, and specifically (1) at the data transport and communication level through
the DART framework, and (2) at the data management and services level through the DataSpaces and
ActiveSpaces frameworks. These frameworks and their impact are briefly described below.

DART (Decoupled and Asynchronous Remote Data Transfers): Large-scale CPES simulations
generate massive amounts of data. This data must be extracted from the system and transported in a
timely manner, to remote consumers for online processing, analysis and visualization, monitoring, and
decision-making. However, managing and transporting this data is becoming a significant bottleneck,
imposing considerable overheads on the applications and leading to inefficient resource utilization and
frequent QoS violations. Advanced interconnect architectures and innovative communication protocols,
such as for example, customized high speed interconnection buses, one-sided remote direct memory
access with zero-copy and OS and application bypass data transfers, have been introduced to address
these challenges. Nevertheless, these advances have significantly increased the complexity exposed to the
applications, and applications must be adapted and managed at runtime to effectively use these
capabilities.

As part of the CPES effort, we have developed DART, an autonomic data management and transport
substrate that builds on communication technologies such as RDMA, to provide applications with high-
throughput and low-overhead data extraction and transport capabilities. The key objectives of DART are
(1) to offload the expensive I/O operations from the nodes running the simulation to dedicated I/O nodes,
and thus to enable an application to do useful computational work, (2) to minimize the impact of the I/O
operations on the application, (3) to maximize data throughput from the application, and (4) to minimize
data transfer latency. DART provides the application layer with a simple and asynchronous API. These
mechanisms autonomically adapt to heterogeneous and dynamic data types, data volumes, data rates and
application loads. DART has three key components (1) a DART Client that runs in-line with the
application and provides communication calls similar to file operations for ease of use, (2) DART Server
that runs as a service independent of the application and coordinates, schedules and extracts data from the
application, and (3) a DART Receiver that transports data to a remote location.

We implemented DART on the CRAY XT5
machine at Oak Ridge National Laboratory
using the Portals RDMA library. We
demonstrated that DART can efficiently
extract large volumes of data from a live
simulation and stream it to remote
(downstream consumers), or save it to the
local storage system, achieving effective
throughputs of over 1TB per hour from 2048
computing cores. Evaluations used testing applications as well as different scientific applications
simulating complex plasma phenomena. Simulations running on 1024 and 2048 nodes respectively
produced 500GB and 1TB of data. The I/O overhead on the applications in these experiments was only
0.4% and 0.6%. These results show that DART is a viable transfer method.

DataSpaces: DataSpaces is a coordination and data-sharing framework that enables dynamic and
asynchronous applications interactions. It provides the abstraction of a virtual semantically specialized

Figure 1 - Architectural overview of DART.

shared space that can be associatively and asynchronously accessed using simple yet powerful and
flexible operators (e.g., put() and get()) with appropriate data selectors or filters. These operators are
agnostic of the location, e.g., source/destination, as well as the data distribution and decomposition of the
interacting application components. It also provides a runtime system for "in-the-space" data
manipulation and/or reduction, using predefined or customized and user-defined functions, which can be
dynamically downloaded and executed at runtime while the data is in-transit through the space.
DataSpaces has an extensible architecture and can provide new data services, e.g., data subscription and
notification.

The DataSpaces framework provides flexible,
decoupled and asynchronous data sharing semantics
that enables interactions between multiple distributed
application services. It easily integrates into the data
pipeline of data workflow engines to complement or
replace the more traditional file-based approaches. It
alleviates the performance penalties associated with
these approaches, e.g., latency, variability, by
providing transparent and memory-to-memory data
sharing.

The key idea underlying the design of DataSpaces is an efficient addressing/lookup mechanism that uses
an indexing and addressing scheme that is semantically meaningful to the applications. This addressing
scheme is used to index into a dynamic distributed hash table, which is implemented across the nodes of
the space, i.e., a relatively small and dynamic partition called the staging area. It automatically load-
balances data inserted into the space, as well as the data look-up operations. DataSpaces has also been
extended to support homogeneous as well as heterogeneous distributed data types and have analyzed its
behavior while coupling heterogeneous applications. It has been evaluated using multiple application
scenarios in both high-performance parallel environments as well as using distributed resources. The
results obtained demonstrated overall framework scalability, as well as its ability to sustain high data
volume traffic for large-scale applications, for example, the data redistribution in a scenario where one
application running on 1024 processors is coupled with a different application running on 8192
processors and the applications exchanged 256GB of data per application iteration for 100 iterations.

ActiveSpaces: Data-intensive application workflows typically transform data they manage and exchange,
and often reduce it before the data can be processed by consumer applications or services. For example,
coupled application may only require subsets of data, which is sorted and processed before coupling. One
approach to address this requirement, which we initially explored in this effort, consists of embedding
pre-defined data transformation operations in the staging area to better utilize CPU resources, and to
transform the data before it is shipped to the consumer. This approach however requires a priori
knowledge of the processing, the data structures and data representation, which may not always be
feasible.

ActiveSpaces builds on DataSpaces and explores an alternate paradigm -- it allows application developers
to programmatically define data-processing routines, and to dynamically deploy and execute them at
runtime, in the staging area where the data resides, rather that moving the data to these processing
routines. The ActiveSpaces framework provides (1) programming support for defining the data
processing routines, called data kernels, to be deployed and executed on the staging area, and (2) run-time
mechanisms for transporting the binary codes associated with these data kernels to the staging area and
executing them in parallel on the staging nodes. The programming abstractions allow an application
developer to define and implement the data kernels using all constructs of the native programming
language (e.g., C). The run-time mechanism enables code offloading and remote execution at the data

Figure 2 – Code coupling using DataSpaces

source for HPC applications.

The ActiveSpaces architecture consists of two main components: an ActiveSpaces server and an
ActiveSpaces client component. The ActiveSpaces server is a stand-alone component, which runs on the
staging area and provides data services to user applications. The ActiveSpaces client integrates with user
applications and runs on the computing nodes. These components implement the programming API,
which is exposed at the application level, and the run-time system, which executes the user-defined data
kernels. ActiveSpaces extends the DataSpaces framework and implements new services to apply
transformations to the data on the space or to the results of a data request. These services are provided by
the run-time execution system. (Rexec).

Data kernels are implemented within an application and have direct knowledge of the structure of the data
used in the application. Once deployed on the space, these kernels can access the data directly and
manipulate it without additional support from the space, such as parameter marshalling or data decoding.
After executing a data kernel, the Rexec
layer from the server component returns
the results back to the application.

Multiple applications collaborating at
runtime can insert data in the space, and
can retrieve raw or pre-processed data of
interest using the data kernels processing
routines. ActiveSpaces can reduce the
amount of data that needs to be transferred
over the network for data reduction
operations. It can also reduce an
application's computation time by
offloading computations, such as
interpolation, redistribution, reformatting, etc., which can be asynchronously executed in parallel on the
staging area nodes. ActiveSpaces offers some benefits even in more constrained cases where execution of

Figure 3 – Dynamic code deployment in ActiveSpaces.

Figure 4 – ActiveSpaces operation in a coupled simulations
scenario.

the data kernels is synchronous, because it can better exploit data locality within the staging nodes,
because the number of nodes hosting the staging area is much smaller than the number of nodes running
the application.

DataSpaces with Fusion Application: As a case study, we used the kinetic XGC0-M3D-OMP code
coupling in the Full-ELM workflow for memory-to-memory coupling using DataSpaces. The two
component simulations, XGC0 and M3D-OMP run on separate set of compute nodes, progress
independently and at different speeds. The data coupling is two-way, XGC0 produces and shares plasma
profile data, which is used by M3D-OMP, and M3D-OMP in turn produces and shares equilibrium data,
which is used by XGC0 in subsequent steps.

XGC0 and M3D-OMP coordinate and exchange data by creating and sharing in-memory data objects
through DataSpaces shared space abstraction. In this case, XGC0 creates the plasma profile data objects
named “m3d.in” during a single step, and insert the object into DataSpaces using the put() operator.
M3D-OMP can retrieve one or more of “m3d.in” data objects from DataSpaces using the get() operator.
Similarly, M3D-OMP creates and inserts equilibrium data objects “g-eqdsk” into DataSpaces, which is
consumed by XGC0.

The memory-to-memory coupling is asynchronous and flexible, and it allows the simulation codes to
create and share multiple versions and multiple copies of data objects. The number of coupling rounds
and synchronizations are driven by the applications at runtime and are not pre-orchestrated.

Relevant Publications:
1. F. Zhang, S. Lasluisa, T. Jin, I. Rodero, H. Bui, M. Parashar, “In-situ Feature-based Objects Tracking

for Large-Scale Scientific Simulations”, In International Workshop on Data-Intensive Scalable
Computing Systems (DISCS) in conjunction with the 2012 ACM/IEEE Supercomputing Conference
(SC'12), Salt Lake City, UT, USA, November 2012.

2. J. C. Bennett, H. Abbasi, P. Bremer, R. W. Grout, A. Gyulassy, T. Jin, S. Klasky, H. Kolla, M.
Parashar, V. Pascucci, P. Pbay, D. Thompson, H. Yu, F. Zhang, J. Chen, “Combining In-Situ and In-
Transit Processing to Enable Extreme-Scale Scientific Analysis”, In ACM/IEEE International
Conference for High Performance Computing, Networking, Storage, and Analysis (SC’12) , Salt
Lake City, Utah, U.S.A., November, 2012.

3. T. Jin, F. Zhang, M. Parashar, S. Klasky, N. Podhorszki, H. Abbasi, “A Scalable Messaging System
for Accelerating Discovery from Large Scale Scientific Simulations”, 19th IEEE International
Conference on High Performance Computing (HiPC’12) , Pune, India, December, 2012.

4. F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki and H. Abbasi, “Enabling In-situ
Execution of Coupled Scientific Workflow on Multi-core Platform”,26th IEEE International Parallel
and Distributed Processing Symposium (IPDPS'12) , Shanghai, China, May 2012.

5. F. Zhang, C. Docan, M. Parashar and S. Kalasky, “Enabling Multi-Physics Coupled Simulations
within the PGAS Programming Framework”, 11th IEEE/ACM International Symposium On Cluster,
Cloud and Grid Computing (CCGrid'11), Newport Beach, California, May 2011.

6. C. Docan, M. Parashar, J. Cummings and S. Klasky, “Moving the Code to the Data -- Dynamic Code
Deployment using ActiveSpaces”, 25th IEEE International Parallel and Distributed Processing
Symposium (IPDPS'11), Anchorage, Alaska, May 2011.

7. C. Docan, F. Zhang, M. Parashar, and S. Klasky, “Coupling Scientific Fusion Simulations at Extreme
Scale”, 4th IEEE International Scalable Computing Challenge (SCALE 2011).

8. C. Docan, M. Parashar and S. Klasky. “Enabling High Speed Asynchronous Data Extraction and
Transfer Using DART”. Concurrency and Computation: Practice and Experience, 22(9):1181-1204,
2010.

9. F. Zhang, C. Docan, M. Parashar and S. Kalasky, “DADS: A Dynamic and Adaptive Data Space for
Interacting Parallel Applications”, 22nd International Conference on Parallel and Distributed
Computing and Systems (PDCS'10), Marina del Rey, California, November 2010.

10. C. Docan, M. Parashar and S. Klasky, “DataSpaces: An Interaction and Coordination Framework for
Coupled Simulation Workflows”, 19th ACM International Symposium on High Performance and
Distributed Computing (HPDC'10), Chicago, Illinois, June 2010.

11. C. Docan, F. Zhang, M. Parashar, J. Cummings, N. Podhorszki and S. Klasky, “Experiments with
Memory-to-Memory Coupling for End-to-End Fusion Simulation Workflows”, 10th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid'10), Melbourne, Australia,
May 2010.

12. F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky, Q. Liu, M. Parashar, N. Podhorszki, K.
Schwan and M. Wolf, “PreDatA - Preparatory Data Analytics on Peta-Scale Machines”, 24th IEEE
International Parallel and Distributed Processing Symposium (IPDPS'10), Atlanta, Georgia, April
2010.

13. J. Cummings, A. Sim, A. Shoshani, J. Lofstead, K. Schwan, C. Docan, M. Parashar, S. Klasky, N.
Podhorszki and R. Barreto, “EFFIS: an End-to-end Framework for Fusion Integrated
Simulation.”, 18th Euromicro International Conference on Parallel, Distributed and Network-Based
Computing (PDP'10), Pisa, Italy, February 2010.

14. N. Podhorszki, S. Klasky, Q. Liu, C. Docan, M. Parashar, H. Abbasi, J. F. Lofstead, K. Schwan, M.
Wolf, F. Zheng and J. C. Cummings “Plasma Fusion Code Coupling using Scalable I/O Services and
Scientific Workflows”, 4th Workshop on Workflows in Support of Large-Scale Science
(WORKS'09), Portland, Oregon, November 2009.

15. C. Docan, M. Parashar and S. Klasky, “Enabling High Speed Asynchronous Data Extraction and
Transfer Using DART”, Concurrency and Computation: Practice and Experience, 22(9):1181-1204,
2010.

16. C. Docan, S. Klasky, and M. Parashar. “Enabling High Speed Asynchronous Data Extraction and
Transfer Using DART”, 17th ACM International Symposium on High Performance and Distributed
Computing (HPDC'08), Boston, Massachussets, June 2008.

17. C. Docan, S. Klasky, and M. Parashar. “High Speed Asynchronous Data Transfers on the Cray XT3”,
Technical Report TR-284, May 2007.

18. V. Bhat, M. Parashar, H. Liu, M. Khandekar, N. Kandasamy, S. Klasky, and S. Abdelwahed, “An
Self-Managing Wide-Area Data Streaming Service”, Cluster Computing: The Journal of Networks,
Software Tools, and Applications, Special Issue on Autonomic Computing, 10(7):365-383, 2007.

19. V. Bhat, M. Parashar, and S. Klasky, “Experiments with In-Transit Processing for Data Intensive
Grid workflows”, 8th IEEE International Conference on Grid Computing, Texas, Austin, September,
2007.

20. V. Bhat, M. Parashar, M. Khandekar, N. Kandasamy, and S. Abdelwahed, “Enabling Self-Managing
Applications using Model-based Online Control Strategies” 3rd IEEE International Conference on
Autonomic Computing, Dublin, Ireland, June 2006.

21. L. Zhang and M. Parashar. Seine: A Dynamic Geometry-based Shared Space Interaction Framework
for Parallel Scientific Applications. Concurrency and Computations: Practice and Experience. John
Wiley and Sons. 2006.

22. L. Zhang and M. Parashar. Enabling Efficient and Flexible Coupling of Parallel Scientific
Applications. In the Proceeding of the 20th IEEE International Parallel and Distributed Processing
Symposium, Rhodes Island, Greece, 2006.

23. L. Zhang and M. Parashar, E. Gallicchio and R.M. Levy. Salsa: Scalable Asynchronous Replica
Exchange for Parallel Molecular Dynamics Applications. In the proceedings of the 2006 International
Conference on Parallel Processing. Columbus, Ohio, USA, August 14-18, 2006.

24. L. Zhang, M. Parashar, and Scott Klasky. Experiment with Wide Area Data Coupling Using the Seine
Framework. In the proceeding of the IEEE International Conference on High Performance
Computing. Bangalore, India. Dec. 2006.

