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The CPES scientific simulations run at scale on leadership class machines, collaborate at runtime and 
produce and exchange large data sizes, which present multiple I/O and data management challenges. 
During the CPES project, the Rutgers team worked with the rest of the CPES team to address these 
challenges at different levels, and specifically (1) at the data transport and communication level through 
the DART framework, and (2) at the data management and services level through the DataSpaces and 
ActiveSpaces frameworks. These frameworks and their impact are briefly described below. 
 
DART (Decoupled and Asynchronous Remote Data Transfers): Large-scale CPES simulations 
generate massive amounts of data. This data must be extracted from the system and transported in a 
timely manner, to remote consumers for online processing, analysis and visualization, monitoring, and 
decision-making. However, managing and transporting this data is becoming a significant bottleneck, 
imposing considerable overheads on the applications and leading to inefficient resource utilization and 
frequent QoS violations. Advanced interconnect architectures and innovative communication protocols, 
such as for example, customized high speed interconnection buses, one-sided remote direct memory 
access with zero-copy and OS and application bypass data transfers, have been introduced to address 
these challenges. Nevertheless, these advances have significantly increased the complexity exposed to the 
applications, and applications must be adapted and managed at runtime to effectively use these 
capabilities.  
 

As part of the CPES effort, we have developed DART, an autonomic data management and transport 
substrate that builds on communication technologies such as RDMA, to provide applications with high-
throughput and low-overhead data extraction and transport capabilities. The key objectives of DART are 
(1) to offload the expensive I/O operations from the nodes running the simulation to dedicated I/O nodes, 
and thus to enable an application to do useful computational work, (2) to minimize the impact of the I/O 
operations on the application, (3) to maximize data throughput from the application, and (4) to minimize 
data transfer latency. DART provides the application layer with a simple and asynchronous API. These 
mechanisms autonomically adapt to heterogeneous and dynamic data types, data volumes, data rates and 
application loads. DART has three key components (1) a DART Client that runs in-line with the 
application and provides communication calls similar to file operations for ease of use, (2) DART Server 
that runs as a service independent of the application and coordinates, schedules and extracts data from the 
application, and (3) a DART Receiver that transports data to a remote location.  

We implemented DART on the CRAY XT5 
machine at Oak Ridge National Laboratory 
using the Portals RDMA library. We 
demonstrated that DART can efficiently 
extract large volumes of data from a live 
simulation and stream it to remote 
(downstream consumers), or save it to the 
local storage system, achieving effective 
throughputs of over 1TB per hour from 2048 
computing cores. Evaluations used testing applications as well as different scientific applications 
simulating complex plasma phenomena. Simulations running on 1024 and 2048 nodes respectively 
produced 500GB and 1TB of data. The I/O overhead on the applications in these experiments was only 
0.4% and 0.6%. These results show that DART is a viable transfer method. 

 
DataSpaces:  DataSpaces is a coordination and data-sharing framework that enables dynamic and 
asynchronous applications interactions. It provides the abstraction of a virtual semantically specialized 

Figure 1 - Architectural overview of DART. 



shared space that can be associatively and asynchronously accessed using simple yet powerful and 
flexible operators (e.g., put() and get()) with appropriate data selectors or filters. These operators are 
agnostic of the location, e.g., source/destination, as well as the data distribution and decomposition of the 
interacting application components. It also provides a runtime system for "in-the-space" data 
manipulation and/or reduction, using predefined or customized and user-defined functions, which can be 
dynamically downloaded and executed at runtime while the data is in-transit through the space. 
DataSpaces has an extensible architecture and can provide new data services, e.g., data subscription and 
notification.  
 
The DataSpaces framework provides flexible, 
decoupled and asynchronous data sharing semantics 
that enables interactions between multiple distributed 
application services. It easily integrates into the data 
pipeline of data workflow engines to complement or 
replace the more traditional file-based approaches. It 
alleviates the performance penalties associated with 
these approaches, e.g., latency, variability, by 
providing transparent and memory-to-memory data 
sharing.  
 
The key idea underlying the design of DataSpaces is an efficient addressing/lookup mechanism that uses 
an indexing and addressing scheme that is semantically meaningful to the applications. This addressing 
scheme is used to index into a dynamic distributed hash table, which is implemented across the nodes of 
the space, i.e., a relatively small and dynamic partition called the staging area. It automatically load-
balances data inserted into the space, as well as the data look-up operations. DataSpaces has also been 
extended to support homogeneous as well as heterogeneous distributed data types and have analyzed its 
behavior while coupling heterogeneous applications. It has been evaluated using multiple application 
scenarios in both high-performance parallel environments as well as using distributed resources. The 
results obtained demonstrated overall framework scalability, as well as its ability to sustain high data 
volume traffic for large-scale applications, for example, the data redistribution in a scenario where one 
application running on 1024 processors is coupled with a different application running on 8192 
processors and the applications exchanged 256GB of data per application iteration for 100 iterations.  
 
ActiveSpaces: Data-intensive application workflows typically transform data they manage and exchange, 
and often reduce it before the data can be processed by consumer applications or services. For example, 
coupled application may only require subsets of data, which is sorted and processed before coupling. One 
approach to address this requirement, which we initially explored in this effort, consists of embedding 
pre-defined data transformation operations in the staging area to better utilize CPU resources, and to 
transform the data before it is shipped to the consumer. This approach however requires a priori 
knowledge of the processing, the data structures and data representation, which may not always be 
feasible. 
  
ActiveSpaces builds on DataSpaces and explores an alternate paradigm -- it allows application developers 
to programmatically define data-processing routines, and to dynamically deploy and execute them at 
runtime, in the staging area where the data resides, rather that moving the data to these processing 
routines. The ActiveSpaces framework provides (1) programming support for defining the data 
processing routines, called data kernels, to be deployed and executed on the staging area, and (2) run-time 
mechanisms for transporting the binary codes associated with these data kernels to the staging area and 
executing them in parallel on the staging nodes. The programming abstractions allow an application 
developer to define and implement the data kernels using all constructs of the native programming 
language (e.g., C). The run-time mechanism enables code offloading and remote execution at the data 

Figure 2 – Code coupling using DataSpaces  



source for HPC applications.  

The ActiveSpaces architecture consists of two main components: an ActiveSpaces server and an 
ActiveSpaces client component. The ActiveSpaces server is a stand-alone component, which runs on the 
staging area and provides data services to user applications. The ActiveSpaces client integrates with user 
applications and runs on the computing nodes. These components implement the programming API, 
which is exposed at the application level, and the run-time system, which executes the user-defined data 
kernels. ActiveSpaces extends the DataSpaces framework and implements new services to apply 
transformations to the data on the space or to the results of a data request. These services are provided by 
the run-time execution system. (Rexec). 
 
Data kernels are implemented within an application and have direct knowledge of the structure of the data 
used in the application. Once deployed on the space, these kernels can access the data directly and 
manipulate it without additional support from the space, such as parameter marshalling or data decoding. 
After executing a data kernel, the Rexec 
layer from the server component returns 
the results back to the application. 
 
Multiple applications collaborating at 
runtime can insert data in the space, and 
can retrieve raw or pre-processed data of 
interest using the data kernels processing 
routines. ActiveSpaces can reduce the 
amount of data that needs to be transferred 
over the network for data reduction 
operations. It can also reduce an 
application's computation time by 
offloading computations, such as 
interpolation, redistribution, reformatting, etc., which can be asynchronously executed in parallel on the 
staging area nodes. ActiveSpaces offers some benefits even in more constrained cases where execution of 

Figure 3 – Dynamic code deployment in ActiveSpaces. 

Figure 4 – ActiveSpaces operation in a coupled simulations 
scenario. 



the data kernels is synchronous, because it can better exploit data locality within the staging nodes, 
because the number of nodes hosting the staging area is much smaller than the number of nodes running 
the application.  
 
DataSpaces with Fusion Application: As a case study, we used the kinetic XGC0-M3D-OMP code 
coupling in the Full-ELM workflow for memory-to-memory coupling using DataSpaces. The two 
component simulations, XGC0 and M3D-OMP run on separate set of compute nodes, progress 
independently and at different speeds. The data coupling is two-way, XGC0 produces and shares plasma 
profile data, which is used by M3D-OMP, and M3D-OMP in turn produces and shares equilibrium data, 
which is used by XGC0 in subsequent steps. 
 
XGC0 and M3D-OMP coordinate and exchange data by creating and sharing in-memory data objects 
through DataSpaces shared space abstraction. In this case, XGC0 creates the plasma profile data objects 
named “m3d.in” during a single step, and insert the object into DataSpaces using the put() operator. 
M3D-OMP can retrieve one or more of “m3d.in” data objects from DataSpaces using the get() operator. 
Similarly, M3D-OMP creates and inserts equilibrium data objects “g-eqdsk” into DataSpaces, which is 
consumed by XGC0.   
 
The memory-to-memory coupling is asynchronous and flexible, and it allows the simulation codes to 
create and share multiple versions and multiple copies of data objects. The number of coupling rounds 
and synchronizations are driven by the applications at runtime and are not pre-orchestrated. 
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