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Abstract 

A method, sequence library, and software suite was invented to rapidly assess whether 

any member of a pre-specified list of threat organisms or their near neighbors is present in a 

metagenome. The system was designed to handle mega- to giga-bases of FASTA-formatted raw 

sequence reads from short or long read next generation sequencing platforms. The approach is to 

pre-calculate a viral and a bacterial ―Pathogen Marker Library‖ (PML) containing sub-sequences 

specific to pathogens or their near neighbors. A list of expected matches comparing every 

bacterial or viral genome against the PML sequences is also pre-calculated. To analyze a 

metagenome, reads are compared to the PML, and observed PML-metagenome matches are 

compared to the expected PML-genome matches, and the ratio of observed relative to expected 

matches is reported. In other words, a 3-way comparison among the PML, metagenome, and 

existing genome sequences is used to quickly assess which (if any) species included in the PML 

is likely to be present in the metagenome, based on available sequence data.  

Our tests showed that the species with the most PML matches correctly indicated the 

organism sequenced for empirical metagenomes consisting of a cultured, relatively pure isolate. 

These runs completed in 1 minute to 3 hours on 12 CPU (1 thread/CPU), depending on the 

metagenome and PML. Using more threads on the same number of CPU resulted in speed 

improvements roughly proportional to the number of threads. Simulations indicated that 

detection sensitivity depends on both sequencing coverage levels for a species and the size of the 

PML: species were correctly detected even at ~0.003x coverage by the large PMLs, and at 

~0.03x coverage by the smaller PMLs. Matches to true positive species were 3-4 orders of 

magnitude higher than to false positives. Simulations with short reads (36 nt and ~260 nt) 

showed that species were usually detected for metagenome coverage above 0.005x and coverage 

in the PML above 0.05x, and detection probability appears to be a function of both coverages. 

Multiple species could be detected simultaneously in a simulated low-coverage, complex 

metagenome, and the largest PML gave no false negative species and no false positive genera. 

The presence of multiple species was predicted in a complex metagenome from a human gut 

microbiome with 1.9 GB of short reads (75 nt); the species predicted were reasonable gut flora 

and no biothreat agents were detected, showing the feasibility of PML analysis of empirical 

complex metagenomes.   

  

Background 

 The current approach to labeling metagenomic data is to use sequence alignment tools 

that align each read to a part of each reference sequence and report a summary of the top 

reference matches. The limitations of this approach are scalability and computational cost. 

Applying this approach to the Sargasso Sea metagenome data of 1.8 million reads (of length 700) 

would take approximately 42 days on a 64 CPU cluster (Huson et al. 2007). Using sequence 

alignment to label data sets produced by the newest high throughput sequencer (Illumina HiSeq 

2000), would require 4,630 days of compute time, indicating that a 1,000-node cluster would 

need 5 days to process one data set. Biosecurity applications require accurate and complete 

information in a matter of hours, and would benefit from a system that could handle output 

from a large number of sequencers distributed around the world generating data on a continuous 

basis (Franz and Lehman 2009).  

An alternative to sequence alignment are the composition based approaches, which match 

the frequency of occurrence for short (k=6) kmers (oligos of length k) in the query read with 
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frequency of occurrence for kmers found in broad classes of organisms (Teeling et al 2004, 

Chatterji et al. 2008, and McHardy et al. 2007). This approach is more scalable then sequence 

alignment but lacks the ability to provide detailed discrimination of the sample contents. 

We advocate a hybrid approach, replacing costly pair-wise sequence alignment with 

faster kmer searches to a reference database using larger values for k (k=18+). We built 

Pathogen Marker Libraries (PMLs) with kmers selected to be informative for a set of bacteria 

and viruses of interest. By informative, we mean that the kmers are family specific, genus 

specific, species specific, etc. Widely occurring kmers in human or non-target microbial 

sequence databases are excluded from the PMLs, so that metagenome matches to the PMLs 

suggest the presence of particular microbes of interest. Here we present 1) 3 design approaches 

for alternative PMLs, 2) methods for building a pre-computed database of expectations relative 

to a large microbial sequence database, 3) methods and software for rapidly comparing a 

metagenome to a PML, 4) results of testing on actual metagenomes (raw, unprocessed short 

reads), and 5) results of testing on simulated metagenomes where ground truth is known.  

 

Methods 
 

PML construction 

PMLs were designed to cover the pathogenic species and near neighbors in 5 viral 

families and 8 bacterial families listed in Table 1. 

 

Table 1 

size  

(# bases) # sequences Family 

1.45E+09 696 Enterobacteriaceae 

6.44E+08 296 Bacillaceae 

5.95E+08 187 Burkholderiaceae 

4.03E+08 126 Clostridiaceae 

1.62E+08 63 Brucellaceae 

1.25E+08 71 Francisellaceae 

5.74E+07 54 Rickettsiaceae 

2.90E+07 154 Poxviridae  

1.83E+07 16 Coxiellaceae  

4.15E+06 1359 Bunyaviridae  

3.07E+06 266 Togaviridae  

1.10E+06 222 Arenaviridae  

1.00E+06 53 Filoviridae  

3.50E+09 3563 Total 

 

Three alternative methods were used to construct candidate PMLs. The first method was 

based on the KPATH conserved/unique sequences (Slezak et al. 2003).  The second approach 

was based on family-specific kmers, clustering sequences in a family by shared kmers and 

selecting a subset of those kmers for inclusion in a PML based ―heavyweight clusters‖ covering 

all levels of conservation in the family whether or not clusters map to NCBI taxonomy (any 

conserved subgroups, including but not limited to strains, species, genus, etc.). The third method 
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pulls out all family-specific regions relative to a large database of non-target sequence, 

regardless of conservation within the family. Additional files for all of the libraries are available 

with annotations as to the genomes matching each marker sequence and the genes they land on 

(gene annotations are slow due to limitations on hitting the NCBI website, so may not be 

complete by May 31, 2011 for the largest libraries. Smaller libraries have completed, and 

updated gene annotations for the larger libraries will be sent upon completion.) 

 

First Approach: KPATH conserved/unique signatures  

KPATH is LLNL’s software system for designing pathogen identification signatures and 

has been described in detail (Slezak et al. 2003). KPATH signature design runs for a target set to 

identify the conserved and unique sequences.  These conserved/unique sequences represent for 

the members of the target set conserved regions of at least 18 nt that are not found in any other 

sequenced bacterial or viral genome outside of the target set. Different chromosomes, viral 

segments, or plasmids must be run separately, since all the members of a target set must share 

the selected regions. Species-level and genus-level target sets must also be run separately. We 

note that while KPATH is roughly equivalent to the Insignia software recently put out by 

University of Maryland, as both determine regions of relative uniqueness, KPATH was designed 

to be able to create signatures at varying levels of resolution (genus/species/strain).  KPATH 

PMLs were the lists of conserved/unique regions for the pathogenic bacteria and viruses and 

some of their near neighbors from the families in Table 1. 126 KPATH runs were performed on 

12 and 26 bacterial genera and species, and 6 and 44 viral genera and species, respectively. A 

complete list is provided in an excel spreadsheet accompanying this document 

(KPATH_pathogen_reference_marker_101015.xlsx).  Many of the species (e.g. VEE, WEE, 

EEE, CCHF) were so divergent that no conservation exists for regions >=18 nucleotides, so 

those viruses had no representation in the KPATH viral PML. Therefore, we pursued an alternate 

approach to enable better pathogen target representation in the PMLs than was possible from the 

strict consensus calculations by KPATH. 

 

Second approach: Kmer clusters 

The kmer method described below is more flexible with regards to finding markers at 

different taxonomy levels simultaneously, i.e. genus, species, and strain-specific subsequences 

can be found in the same set of calculations for a family, as can markers for different 

chromosomes, viral segments, and plasmids. This is preferred over many separate KPATH runs, 

some of which yield no markers (e.g. divergent viral species). The following steps are used to 

generate ―Kmer‖ PMLs.  

 

1. Enumerate kmers in a family, k=16 or 17. Smaller k is higher uniqueness stringency.  

2. Delete any kmers that match assembled human genome or bacteria or virus not in family 

3. Cluster sequences in the family that share kmers. All possible sequence combinations that 

share 1 or more kmers are calculated. Each sequence combination is a cluster. A 

sequence may be found in more than one cluster, but a kmer maps to only one cluster of 

sequences that contain that kmer. There can be an extremely large number of clusters, so 

splitting the kmers into smaller subsets facilitates fitting all clusters in memory until 

those supported by too few kmers can be eliminated (step 4 below). Some of the clusters 

map to the established taxonomy (all members of a species, all members of a genus) and 

some do not (some members of a species, some members of multiple species). Incorrect 
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taxonomic labels (mislabeled or unlabeled species or strains) are surprisingly common: 

430,848 of 2,755,253 sequences in the KPATH database, 16%, have no species label in 

the NCBI taxonomy table. We have encountered mislabeled strains or species of 

Burkholderia, Francisella, and Bacillus that we discovered during SNP or other 

phylogenetic analyses. When possible, we confirmed and corrected the labeling errors 

with subject matter experts, but suspect that other cases exist in the data, particularly for 

less intensively examined genomes. 

4. Weight clusters by # of shared kmers. ―Heavyweight clusters‖ that share a lot of kmers 

usually mean there is some meaningful phylogenetic similarity (or could also mean that a 

gene has been horizontally transferred), and kmers from these ―heavyweight‖ clusters are 

what are included in the PML. Note that PML sequences contain both the kmers that map 

to nodes of the kmer tree as well as homoplastic kmers from heavyweight clusters. In 

contrast, those kmers forming clusters of sequences sharing only a few kmers are 

phylogenetically noisy and represent highly variable sequence which should be omitted 

from a PML. The threshold for the number of kmers in a cluster required to include that 

cluster’s kmers in the PML was ~100 for viruses and ~800 for bacteria. These thresholds 

are approximate because the calculations were divided in parallel across CPUs with a 

lower threshold for each CPU.  IO limitations prevented storing all of the small 

intermediate files that did not pass the threshold for a single node, so exact threshold 

counts are not feasible. In addition, no markers that are present in only a single sequence 

were included, since isolate and strain identification was not a goal of the project. 

Alternative libraries could be designed that did include strain specific kmers. 

5. Using positional information from a sequence in the cluster, extend overlapping kmers 

from the heavyweight clusters into maximum-length unique substrings (MLUS).  MLUS 

of minimum=18, 19, or 20 bases long make up the PML. Thus, when k=16 for the 

uniqueness calculations, there must be 3 kmers shifted by 1 base in a heavyweight cluster 

to make up an 18-mer, the minimum length of a marker sequence.  

6. Build 12 Kmer libraries with different k (step 1) and minimum MLUS (step 6) for all 

bacteria and viruses in the families in Table 1: Unique k=16, 17  X  and minimum length 

marker=18, 19, 20 with markers for each of 2 kingdoms (virus, bacteria) [ 2 x 3 x 2= 12]. 

These are named KmerUniq[16|17]Extend[18|19|20][Virus|Bacteria]  

7. Also built smaller libraries by manually inspecting and selecting clusters that correspond 

to some bacterial genera and species of interest. This was labor intensive, error prone 

(unlabeled or mislabeled species), and unscalable for large numbers of sequences or large 

numbers of clusters, so was not pursued further. Tests on a number of bacterial species 

libraries computed manually showed lower sensitivity than the automated, rule-based 

libraries described in the steps above (data not shown). 

 

As a convenient way to visualize some of the major clusters captured by kmer analyses, a kmer-

based tree can be built from a pairwise distance matrix between all pairs of sequences in the 

family. Distance between sequences i and j is calculated as  

 

Neighbor-joining (the ―neighbor‖ program in the PHYLIP software; Felsenstein 2005) was used 

to build the tree from the distance matrix. 

 For well-curated sequences (finished genomes, separate components like plasmids and 

different chromosomes) the kmer based tree accurately estimates phylogeny (Figure 1). 
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However, if the sequences in a family are a mixture of finished sequence that contains only a 

single chromosome or plasmid and draft sequences that contain plasmid and all chromosomes 

(Figure 2), or have experienced substantial horizontal gene transfer or convergent evolution, the 

tree may diverge from phylogeny. The tree enables a visualization of just a small number of the 

clusters which map to the nodes of that particular tree. A large number of additional clusters may 

exist that do not map to a node, for example, clusters that contain sequences branching from 

multiple nodes or only a subset of the sequences under a node. These are ―homoplastic‖ kmers 

relative to that kmer tree. Homoplastic kmers can make up the bulk of kmers, and therefore are 

an important component of the Kmer PMLs. 

Kmer based trees were built for all the families in Table 1, and are provided in slides 

accompanying this document (Kmer tree plots.pptx). One is shown based on k=16 for 

Coxiellaceae (Figure1) and Bacillus anthracis genomes and plasmids (Figure 2). The numbers of 

kmers specific to each node are plotted, and the numbers of genome-specific kmers are given in 

brackets by each genome. Figure 2 clearly shows that when draft data mixing sequence elements 

like plasmids and chromosomes into a single sequence entry is combined with finished data, a 

kmer tree cannot capture the actual phylogenetic pattern. The BA[L|R|V|S], BA[N|I] and other 

draft genomes with plasmid and chromosome data combined into a single sequence entry 

(contigs glued together with intervening N’s) do not cluster with their closest near neighbors, and 

instead all stack up above the finished genomes but along different branches than the plasmids, 

since they share most of their kmers with the finished genomes but also thousands of kmers with 

the plasmids. For example, SNP analyses clearly show that BAI_A0442_IsolateB clusters with 

A0442 and the KrugerB genomes (Figure 3), but on the kmer tree BAI branches next to the other 

B** draft genomes. The kmer counts for the various nodes for the plasmids have 0 kmers 

mapping to them because those kmers are also contained in the BA[L|R|V|S], BA[N|I] draft 

sequences branching off the chromosome part of the tree. The plasmid kmers map to clusters 

containing both draft ―genomes‖ and plasmids that are captured by the cluster data but are not 

visually evident in the kmer tree. This illustrates why it is important to use kmers in the PML 

from all heavyweight clusters, not just those that map to nodes of a tree, as described in step 4 

above. In summary, a) clustering sequences based on shared kmers is an automated and scalable 

method to classify subsequences across the entire range of conservation and divergence, b) draft 

sequence data with combined elements like plasmids and chromosomes will give a kmer based 

tree that differs from a phylogenetic tree, and c) visualizing the data in a tree illustrates only a 

single pattern from the much richer and more informative set of patterns captured in the cluster 

data. A phylogenetic network representation could enable a richer visual representation of the 

complex relationships among sequences. 
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Figure 1: Kmer tree for Coxiellaceae sequences.  
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Figure 2: Kmer tree based on k=16 for Bacillus anthracis genomes and plasmids. 
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Figure 3: SNP-based tree for Bacillus anthracis finished and draft genomes, calculated using 

an updated version of the kSNP software (Gardner and Slezak 2010). Counts of the alleles shared 

by the genomes under a node are plotted at each node, and counts of genome-specific SNPs (or 

sequencing errors) are given in brackets after the strain name.  

 

Third approach: Unique_k19 libraries 

 The third approach was to find the family specific regions for every sequence in the 

family, regardless of conservation. This process is much like the KPATH library construction 

without the manual target set selection for every species or genus of interest (instead all 
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sequences/all species in a family were included) and without the problematic conservation 

requirements that eliminated too many regions for divergent species. 

These calculations were done most recently, so a larger set of sequences was used to 

eliminate non-unique regions. In addition to screening against the bacteria and viruses not in the 

target family (as in the KPATH and Kmer PMLs) and the assembled chromosomal and 

mitochondrial human genome (Kmer PMLs only), the sequences were also screened for 

uniqueness against fungal and archaeal complete sequences, the human version hg19 sequences 

including repeat regions and unassembled pieces that have not been localized on a chromosome 

yet, sequences from the SILVA ribosomal RNA database outside the target kingdom (i.e. 

bacteria were not screened against bacterial rRNA sequences), and the RepBase16.01 database of 

repeat elements (Jurka et al 2005). Any match of 19 bases or longer to non-target sequence was 

eliminated. This length is slightly longer than the matches of 16-18 for the Kmer and KPATH 

libraries, and was necessary because of the expanded set of sequences for uniqueness checks in 

order to have sufficient unique sequence for a marker library. These uniqueness calculations 

required thousands of cpu-hours. 

In each family, unique regions of at least 18 bases were gathered from all genomes and 

clustered using cd-hit (Li and Godzick 2006) at a 99% similarity level to remove redundant 

sequences. That is, many genomes contained nearly identical unique substrings, so these were 

clustered and the longest sequence in each cluster was taken as the representative of that cluster. 

Clustering at 95% yielded libraries only slightly smaller than the 99% clustering, so we used the 

99% level. These non-redundant unique substrings were gathered for all the families in Table 1, 

and these comprised the ―Unique_k19‖ viral and bacterial PMLs.  

 

Advantages and disadvantages of each PML approach 

KPATH PML 
Pros 

 simple to compute using an established method that has been used to predict thousands of 

successful PCR-based signatures.  

 libraries are small, so they are fast to run against a metagenome 

 there should be little or no marker overlap, as a consequence of building a single 

consensus sequence from multiple target sequences  

Cons 

 conservation criterion is overly strict, resulting in few or no signature regions for viruses 

at the species and genus levels 

 libraries are small, so while they have sufficient sensitivity for pure samples (cultured 

isolates) they have low sensitivity against complex mixtures (e.g. soil).  

 manual selection of target sets and initiation of runs for every species and chromosome, 

segment, or plasmid component is unscalable 

 currently no uniqueness checks against human genome 

 expressly excludes virulence or antibiotic resistance genes that are not conserved and 

unique to a single species 

 

Kmer PML 

Pros 

 library size is tunable based on uniqueness, minimum marker size, and the minimum 

number of shared kmers in those clusters used for a library. Large libraries are very 
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sensitive even for complex samples, while a small library can be used for pure/simple 

samples 

 automated to compute 

 markers for all species in a family are included, both pathogenic and near neighbors 

 markers for both highly conserved and species or strain specific regions are included, to 

detect both novel unsequenced organisms in a family and characterize known organisms 

to the species level. 

 

Cons 

 Substantial software development with memory and speed optimization was required to 

design these libraries 

 Currently markers may partially overlap one another by lengths shorter than the value of 

k used for clustering, so markers are not independent in a strict sense and the library is 

larger than it needs to be if all overlaps can be eliminated (future version will address this 

to facilitate statistics that assume marker independence) 

   

Unique_k19 

Pros 

 Conceptually simple to compute. Essentially the KPATH process, without the overly 

strict conservation requirements and manual target set selection. 

 Most stringent uniqueness filters employed in terms of number and types of sequences 

checked, although the length of allowable non-unique regions is 1-3 bases longer than in 

the other libraries 

 Since no checks for conservation, strain specific markers are included in the library so 

strain identification may be possible 

Cons 

 Regions are unique at 19-mer level, so there may be more 18-mer non-specific hits 

 One of the larger libraries, more sensitive than smaller libraries but possibly more false 

positive matches 

 The downside of keeping strain-specific markers is that there may be marker overlap, and 

thus markers are not strictly independent. Clustering sequences at 99% similarity reduced 

marker overlap to some extent, but not entirely.  

 

   

In some of the tables and figures, abbreviated library names have KU=KmerUniq and E=Extend, 

and PML_bacteria_unique_k19 is Unique_k19. 

 

Table 2: Summary information about the size of each PML  
PML Number 

Bases 
Number 
Markers 

Avg 
Marker 
Length 

Minimum 
Marker 
Length 

Maximum 
Marker 
Length 

KPATHbacteria 1,566,740 62,806 24.9 18 1183 

KmerUniq16Extend18Bacteria 22,274,728 1,182,918 18.8 18 39 

KmerUniq16Extend19Bacteria 10,153,474 509,515 19.9 19 39 

KmerUniq16Extend20Bacteria 4,967,139 236,550 21.0 20 39 
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KmerUniq17Extend18Bacteria 3.16E+08 16,131,587 19.6 18 67 

KmerUniq17Extend19Bacteria 1.86E+08 8,957,361 20.8 19 67 

KmerUniq17Extend20Bacteria 1.19E+08 5,421,907 22.0 20 67 

PML_bacteria_unique_k19 1.39E+08 3,983,469 34.9 19 759 

KPATHvirus 516,165 11,718 44.0 18 2131 

KmerUniq16Extend18Virus 421,979 22,259 19.0 18 35 

KmerUniq16Extend19Virus 206,519 10,289 20.1 19 35 

KmerUniq16Extend20Virus 108,498 5,130 21.1 20 35 

KmerUniq17Extend18Virus 3,143,718 158,636 19.8 18 71 

KmerUniq17Extend19Virus 1,962,684 93,023 21.1 19 71 

KmerUniq17Extend20Virus 1,316,057 58,990 22.3 20 71 

PML_virus_unique_k19 1,189,237 32,835 36.2 19 247 

 

 

 

Calculating Expected and Observed Matches to PML 

Expected matches 

 Bacterial PMLs were compared to the complete bacterial sequences in the KPATH 

database, and virus PMLs to viral sequences in KPATH to calculate a list of the expected 

matches. KPATH is LLNL’s database of only complete finished and draft sequences, including 

chromosomes, plasmids, genomes, and viral segments. Single genes or other sequence fragments 

are not included. We used Mummer to perform rapid calculations of maximal exact matches of at 

least 18 nt, which were stored in separate files for every sequence, with separate directories for 

each PML. Redundant matches that were exact match subsequences of longer matches were 

removed using cd-hit. Sequences with fewer than 100 nt of PML matches summed across all 

≥18-mer matches for a given PML were removed from consideration as possible matching 

sequences, since coverage was too low in the PML for reliable detection. To avoid unnecessary 

bookkeeping that would slow down the calculations, only the matching sequences were stored; 

the identity of the marker sequence in the PML containing that match was not stored. The 

process of computing the expected matches is only done once per PML, and stored for all future 

tests against new metagenomes. 

 

 

Observed matches 
 Given a metagenome sequence (raw short or long reads in fasta format), 

run_match_library finds the matches of at least 18 nt between reads and a PML.  Neither the 

entire read nor the entire marker are required to match, so long as there is an exact match of at 

least 18 bases (found with Mummer). This allows flexibility to handle both short and long reads 

and PMLs with both short and long marker sequences. Redundant subsequence matches captured 

by longer matches are ignored. Then the observed matches of the PML and metagenome versus 

the expected matches of the PML and every KPATH database sequence are compared.  

 Since many of the more conserved markers (e.g. genus-level markers) match multiple 

sequences, the sequences with matches were ranked by number of observed matches. Sequences 

for which ALL matches could be entirely explained by a higher (with more matches) or equal 

ranking sequence were not reported. So unless a different strain or near neighbor explained 
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additional matches, and not just a subset of already-explained matches, it was not reported. Thus, 

hits should be interpreted as a species hit rather than a strain match, since strain specific markers 

were not included in most PMLs. However, if at least 2 matches spanning more than 30 nt could 

not be explained by a higher ranking sequence, the sequence was reported, with both the number 

of matches not explained by a higher ranked sequence and the total matches including those 

already explained. Thus, sequences are reported only if they provide additional information 

beyond others already reported. The entire set of matching sequences (including duplicating 

matched sequences) is also reported in the Matches subdirectory, to maintain a complete 

reporting system. Sequence variation between existing genomes and unsequenced isolates, e.g. 

―missing links‖ between available genomes, or mixtures of multiple species sequenced at very 

low coverage, or chimeric genomes could account for these lower ranked matches. Extending 

this process to provide strain-level information is a possible future enhancement. While this 

would increase library size, improvements in hardware and algorithms are possible that could 

dramatically speed up the calculations. We are pursuing funding to develop novel algorithms for 

rapid, high resolution metagenome analysis taking advantage of recent improvements in large, 

fast, random-access, persistent memory technology. Since plasmids were combined with 

chromosomal sequence in many of the draft genomes, matches to these were scored twice, once 

ranking them with all the sequences, and a second time ranking them only with plasmids. 

Otherwise, plasmid hits could be omitted from the list of top hits if all the matches to a plasmid 

were also captured by a draft genome ranking higher by match count.  

 

Output Files 

 A report file ―metagenomeName.PML‖ in the output directory specified in the 

run_match_library script gives some summary information about which PML and metagenome 

were compared, total sizes, number of markers and reads, and average marker and read length. 

The output file listing the hits is ―metagenome.PML.DBtype.TOP_HITS.names.taxonomy‖ in 

the output directory specified in the run_match_library script. DBtype is ―bacteria‖ or ―virus‖ 

depending on which database of expected matches was used. Since the information in taxonomy 

tables at NCBI and KPATH is imperfect/incomplete, the files with the full header information 

(with gi and kpath ID’s, usually with some strain or plasmid name) are provided in 

―metagenome.PML.DBtype.TOP_HITS.names‖. Pruning to report only the sequences with 

Obs/Expected number of matches ≥3% is reported in another file: ―metagenome.PML. 

TOP_HITS.3percentOvsE‖.  This file is provided for convenience only when examining 

organisms with sequencing coverage greater than approximately 0.5x, and all of the analyses 

presented below use the ―metagenome.PML.DBtype.TOP_HITS.names.taxonomy‖ results, 

rather than the pruned *TOP_HITS.3percentOvsE, unless explicitly stated otherwise. 

 

The 9 columns in the *TOP_HITS* files report the following data: 

1)  The first column reports both the total number of matches and in parentheses the subset 

of matches not already explained by a better-matching sequence. More specifically: the 

number ≥18 nt matches in the metagenome for PML markers from that database 

sequence, and (Number of these matches not already explained by a sequence above).  

2) Number of expected ≥18 nt matches of database sequence to the PML  

3) Ratio of column 1/column 2: Obs/Exp number of matches 

4) Number of matching bases spanned by the matches in column 1, and in parentheses the 

number of matching bases not already explained by a sequence above. This corrects for 
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differences in the length of matches, information which is not captured by the simple 

counts in column 1. 

5) Number of expected matching bases covered by the expected matches in column 2 

6) Ratio of column 4/column 5: Obs/Exp number of matching bases 

7) Number of bases in the database sequence 

8) Coverage in the PML for this sequence, computed as column 5/column 7. This indicates 

sensitivity of the PML for this sequence. 

9) Species or name of sequence. The ―.taxonomy‖ in the file name indicates that species 

names have been pulled from a taxonomy table (NCBI and KPATH taxonomy database). 

Many of the sequences are missing species information in the taxonomy database, so 

sequence names were automatically parsed as best as possible for species and 

chromosome, segment or plasmid identifiers. Full sequence names are given in the file 

ending ―.names‖ (no ―.taxonomy‖ at the end). 

 

A number of additional intermediate output files are in the Mummer and Matches 

subdirectories. This data can be removed if it is not of interest, but it may be useful for 

debugging or more in depth investigation of reads containing matches. 

Although no formal statistical model has been developed to assess likelihoods and p-

values, the ratio of observed/expected matches represents information about 1) whether a species 

is present, and 2) coverage in the metagenome for that species. We are seeking funding to devise 

statistical models to estimate p-values for presence/absence and confidence intervals, as that is 

beyond the scope of the currently funded work.  

 

 

Data 

 
Empirical Metagenomes (unassembled short read collections) 

 We downloaded datasets from the Short Read Archive (SRA) of NCBI. The datasets we 

tested are listed in Tables 3 and 4. All are unassembled reads; 8 datasets are of cultured 

organisms and one is a true metagenomic sample. 

 

Table 3 

Metagenome Organism Platform 

DRR000002 Bacillus subtilis subsp. subtilis str. 168 Illumina Genome Analyzer II 

DRR000184 B. anthracis BA104  Illumina Genome Analyzer II 

ERR011207 A human gut microbial gene catalog Illumina Genome Analyzer II 

ERR015579 Yersinia enterocolitica biotypes Illumina 

SRR000340 Francisella tularensis B-SA  454 

SRR004172 Brucella abortus bv. 5 str. B3196  454 

SRR005754 Brucella melitensis bv. 1 str. F1/01 Illumina Genome Analyzer II 

SRR039956 Francisella tularensis subsp. tularensis FSC043  Illumina 

SRR133640 Yersinia pestis KIM D27 Illumina Genome Analyzer II 
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Table 4 

Metagenome 
Number 
bases 

Number 
reads 

Average 
read 
length  

Minimum 
read 
length      

Maximum 
read 
length 

DRR000002 5.9E+08 16354270 36 36 36 

DRR000184 3.8E+08 7631281 50 50 50 

ERR011207 1.9E+09 25274238 75 75 75 

ERR015579 8E+08 21535250 37 37 37 

SRR000340 4.2E+07 401300 105.417 34 250 

SRR004172 9.4E+07 359502 262.452 35 375 

SRR005754 3.5E+08 6869470 51 51 51 

SRR039956 2.2E+08 5743234 38 38 38 

SRR133640 2.3E+08 2311784 100 100 100 

      

 

We did not report on the testing of any viral PMLs since we found no metagenomes for the 

viruses in Table 1. We plan to expand the taxonomic coverage (e.g. Caliciviridae, Adenoviridae, 

etc) of more clinically common viruses in the PMLs for testing next year on available 

metagenomes and simulated reads. 

 

Simulated Metagenomes 

Single species simulations 

Reads were simulated according to the error models provided in Metasim (Richter et al. 

2008). 454 reads averaged ~260 bases and Illumina reads exactly 36 bases with the default 

―Empirical‖ model. Simulations were done for 15 bacterial genomes, listed in Table 5. For each 

species/error model combination, we simulated ―metagenomes‖ of 50, 500, and 5000 reads for 

each species, to mimic various coverage levels (the exact coverage depends on the length of each 

genome). Although these single species simulated datasets are not metagenomes in the usual 

sense of a complex sample of multiple species, for ease of presentation we refer to them as 

metagenomes in the sense that they are short, unassembled raw reads. Then we ran the PMLs 

against each metagenome and counted the number of instances that the top hit was the correct 

species and the number of matching bases in correct top hits, correct genus hits, and other 

(incorrect genus) hits. 

 

Complex Mixture Simulations 

To simulate a complex mixture, simulated reads from the 15 bacteria in Table 5, plus two 

Escherichia coli genomes (K12_DH10B and O157H7_EDL933) and 13 viruses were mixed into 

one complex metagenome composed of reads from 30 genomes (29 species). There were 500 

reads per genome, each 36 nt long, simulated with the Empirical error model in Metasim, or 

0.002x-0.016x coverage per genome (interpolating from Table 5). This complex metagenome 

was run against each bacterial PML.   
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Table 5: Genomes and coverage levels for simulated 454 and Illumina reads.  

 Coverage 

Genome 5
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Bacillus_anthracis_AmesAncestor  .003 0.034 0.002 0.239 

Bacillus_subtilis_spizizenii  0.0005  0.045 0.003 0.313 

Brucella_melitensis_ATCC23457 0.0005 0.054 0.004 0.374 

Brucella_suis_ATCC_23445 0.0005 0.054 0.004 0.377 

Burkholderia_cenocepacia_AU1054 0.0003  0.025 0.002 0.171 

Burkholderia_mallei_SAVP1 0.0003  0.033 0.002 0.228 

Clostridium_botulinum_A_ATCC19397 0.0005  0.047 0.003 0.324 

Clostridium_perfringens_SM101 0.0006  0.062 0.004 0.431 

Coxiella_burnetti_Dugway  0.0008  0.083 0.006 0.579 

Francisella_philomiragia_ATCC25017 0.0009  0.09 0.006 0.624 

Francisella_tularensis_SCHU_S4 0.001  0.095 0.007 0.66 

Rickettsia_akari_Hartford  0.0015  0.146 0.01 1.015 

Rickettsia_prowazekii_Madrid_E  0.0016  0.162 0.011 1.125 

Yersinia_pestis_CO92 0.0004  0.039 0.003 0.269 

Yersinia_pseudotuberculosis_IP31758 0.0004  0.038 0.003 0.265 

 

 

 

Results 
Empirical Metagenomes 

The results in the *3percentOvsE files for each PML vs each metagenome are provided 

as supplementary data in the file ―PML_metagenome_hits.xlsx‖. In summary, every PML clearly 

reported the top hit as the correct species that was sequenced. The B.anthracis (DRR000184) and 

Y.pestis (SRR133640) metagenomes also had strong hits to multiple plasmids. The others had no 

or only weak plasmid hits. From the ―metagenome.PML.DBtype.TOP_HITS.names.taxonomy‖ 

files (including all top hits, not only those with Obs/Exp≥3%), the number of bases matching the 

best sequence (the correct species in the metagenomes tested), sequences in the same genus, or 

sequences in other genera are plotted in Figure 4. For these high-coverage actual metagenomes 

from cultured isolates, Obs/Exp ratios are close to 1 (see the ―PML_metagenome_hits.xlsx‖ file), 

and there are ~1-3 orders of magnitude more matching bases to the correct species than to near 

neighbors (NNs) or more distant species. 
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Figure 4: The number of bases matching the PML markers for the correct species, the 

average matching other species in the correct genus, or other genera. Error bars are across 

different sequences in that group (e.g. matching genomes from the correct genus, or matching 

genomes from other genera). Base counts were of the number of matching bases not already 

explained by a better-matching sequence, and each bar represents a different metagenome. 

 

 

Plotting the ratio of incorrect/correct species matches (Figure 5) shows that the smallest 

library, the KPATH PML, had only 3% matching sequence to false positives compared to true 

positives, and this percentage declines as the PML size increases and more correct matches 

occur; the larger the library, the higher the specificity, as hits to incorrect species and genera 

diminish relative to hits to the correct species. However, since these are actual metagenomes, we 

do not actually know ground truth: possible low level contamination may mean that some hits 

could be real rather than false positives.  
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Figure 5: Ratio of bases matching NNs or distantly related species relative to the best 

(correct) match species. Base counts were of the number of matching bases not already explained 

by a better-matching sequence. Each bar represents a different metagenome. The Brucella 

abortus sequence had the highest bars, due to the similarity of B.abortus with other Brucella 

species, considered different subspecies by some taxonomists. Even for B.abortus, NN matches 

were less than 2% of those to the correct target species. The plot shows the number of bases not 

explained by a better match. For ―correct genus‖ and ―other genera‖ the average with standard 

error bars is across sequences with matches.  

 

Calculation Times 

The average times required to run the empirical metagenomes against the PMLs is shown 

in Figure 6 and 7, on the 12 CPU 48 GB server we had available for testing using 12 threads (1 

per CPU). Run times averaged across PMLs for each metagenome were less than an hour (Figure 

6). Run times varied more by PML, with the smallest PMLs running in less than 5 minutes on 

average across metagenomes, and the largest PML averaging 1.75 hours (Figure 7). Full timing 

information for every metagenome/PML comparison is provided in the Appendix. The fastest 

comparison finished in just over a minute, and the slowest required 3 hrs 17 minutes. However, 

we recently tried running with 36 threads and saw a significant speedup of 70% on average. For 

example, the longest running comparison dropped from 3 hrs, 17 minutes with 12 threads down 

to 37 minutes with 36 threads, an 81% speedup. Of course, all results were the same regardless 

of the number of threads. This is a variable that should be tested further, to find the threading 

level that minimizes run time. 
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Figure 6: Time required to run each metagenome against the various bacterial PMLs, averaged 

across PMLs.  

 

 
 

Figure 7: Time required to run each metagenome against the various bacterial PMLs, averaged 

across metagenomes.  

 

Complex Empirical Metagenome 

Results of each PML against the complex ―human gut microbial gene catalog‖ are in the 

supplementary file ―ERR011207_3percentOvsE.xlsx‖. This was the largest and most complex 

metagenome examined, with 1.9 GB of sequence as 75 nt Illumina reads. There were dozens of 

species with hits, including Escherichia coli, Clostridium sp., Bacteriodes sp., Odoribacter sp., 

Sutterella, Shigella, Faecalibacterium, Phascolarctobacterium, and others, many of which were 

seen across all PMLs. Reassuringly, there were no hits to biothreat agents, suggesting a low false 

positive rate for agents of concern, even in highly complex metagenomes predicted to contain 

NNs to those agents (e.g. Clostridium sp., Bacillus plasmids, Burkholderiales bacterium). 
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Single Species Simulations 

The KPATH library failed to identify the correct species in 50-90% of cases for 50-500 

Illumina reads and 50 454 reads (Figure 8). The KmerUniq17Extend[18|19] libraries consistently 

had the best rates of species identification, even with very low coverage levels provided by 50 

Illumina or 454 reads (~0.0003x-0.003x). For higher coverage levels ~0.03x-0.3x (5000 Illumina 

reads, 500-5000 454 reads), all the libraries except the KPATH PML had similar success at 

identifying the correct species. In most cases B.mallei was mis-identified as a B.pseudomallei, 

even for the largest libraries, since B. mallei is very similar to B.pseudomallei but with a large 

deletion. Looking at the ratio of Obs/Exp matches it is clear that B.mallei is a better match, 

although since the hits are sorted by number of matches rather than the Obs/Exp ratio, 

B.pseudomallei is listed as the top hit. The heuristics employed to reduce the redundant reporting 

of multiple strains sometimes causes omission of the correct species from the TOP_HITS list if 

ALL the matches are also explained by the NN, especially for low read coverage and small 

PMLs. Nevertheless, we still opt to sort by number of matches rather than the Obs/Exp ratio 

because genomes with low coverage in a PML, including non-pathogenic species for which 

markers were not specifically designed, can have a high Obs/Exp ratio due to a small 

denominator. Since intermediate files with all the matching sequences are provided in the 

Matches subdirectory of the output directory, one can check those for species that one suspects 

might be pruned out in the TOP_HITS file, as well as all the strains that have approximately 

equivalent matches. 
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Figure 8: Number of instances that the top hit was not the correct species for simulated 454 and 

Illumina reads. A total of 15 species were tested. Smaller libraries and shorter or fewer reads 

resulted in more failures to pick the correct species as the top hit. Abbreviated library names 

have KU=KmerUniq and E=Extend. 

 

Figure 9 shows the average number of bases matching the correct species as the top hit 

(red bars) and the number of matching bases not already explained by a better matching genome 

which match either another species in the correct genus (green bars) or another genus (blue bars). 

These are taken from the ―metagenome.PML.DBtype.TOP_HITS.names.taxonomy‖ files 

(including all top hits, not only those with Obs/Exp≥3%). All libraries on average have more 

bases matching the correct top hit species than lower-scoring matches to other members of the 

correct genus or other genera, with one exception: KPATH PML for the extremely low coverage 

in the Empirical 50 read simulations, for which no hits (73% of the tests) or the incorrect species 

in the genus (20% of tests) was selected as the top hit. The larger libraries have more false 

positive hits to incorrect genera for the higher coverage simulations, although the false positive 

predictions were dwarfed by the true positive predictions by ~4 orders of magnitude, so at worst 

would be considered very minor constituents. Note that the plots in Figure 9 are on a log scale, 

so the ratio of matching bases of the correct species is 1000-10,000+ times higher than other 

species in the genus or other genera (Figure 10), and the ratio of correct/incorrect matches is 1-2 

orders of magnitude higher for the larger than for the smaller PMLs, showing that the confidence 

in predicting the correct species goes up with library size. The Unique_k19 library is slightly less 
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specific than expected based on library size, however: the KmerUniq17Extend20 library is 

smaller than the Unique_k19 library but it results in relatively more matches to the correct 

species than to incorrect species.  

 

 
 

 

Figure 9: Number of bases matching the correct species (top hit), other species in the correct 

genus (Genus), or other genera (Other) were averaged across the 15 simulated metagenomes.  
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Figure 10: Ratio of the number of matching bases in matches to (correct species/other species in 

genus) and (correct species/other genera), for the Empirical 500 read simulations. 

 

True Positives (TP), False Negatives (FN), and False Positives (FP) 

 

 

Figure 11 summarizes the results of the simulated metagenomes for each species 

described above in terms of TP, FN, and FP.  Each point represents a combination of a simulated 

metagenome with a PML. TP and FN are a function of both the amount of sequence in the PML 

representing a genome (―coverage in PML‖) and the coverage by the reads in a metagenome 

(―Coverage‖ in the plots in Figures 11A,B,C). For a given combination of (coverage in PML, 

coverage in metagenome) there is only 1 data point, since each genome in the simulation is a 

different length (and thus has different coverage for a given number of reads) and has a different 

amount of conserved/unique sequence representing it in the PML. Rather than averaging across 

coverage levels and calculating sensitivity=TP/(TP+FN) across all metagenome/PML 

combinations, each TP and FN point is plotted separately (Figure 11A). Detection failures occur 

more often for species whose metagenome coverage is under 0.005x and for which the coverage 

in the PML is less than 0.05x, although this is a fuzzy boundary and a fair number of successes 

occur at lower coverage levels, and a few failures occur at higher coverage levels (Figure 11A).  

Calculating specificity is problematic, since all species not detected in our database (with 

over 5000 bacterial genomes) would be considered true negatives, so the calculated specificity 

rates would be exceedingly high. False positive rates are more informative. There is a tradeoff 

compared to the sensitivity, with more false positives at higher metagenome and PML coverage 

levels. At about the same thresholds (metagenome coverage under 0.005x and coverage in the 

PML less than 0.05x) false positives in other genera are very uncommon (Figure 11B). 

Considering NN false positives in the same genus as the species used for the simulation in 

addition to false positives in other genera, there are more false positives below these thresholds, 

but usually less than a handful (≤5) in the same genus for any given simulation. The results 

presented above in Figures 9 and 10 clarify that on average the false positives have  orders of 
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magnitude fewer bases matching  the PML than the correct species (and fewer matches as well, 

data not shown). Therefore, simply counting false positives in the Figures 11B,C does not 

convey that true versus false positives are usually easily distinguished by comparing the number 

of matches or number of matching bases. 

 
 

Figure 11A: Detection success and failure events for the simulated 454 and Illumina 

metagenomes, plotted as a function of coverage in the metagenome (Coverage) and coverage of 

the genome in the PML. 
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Figure 11B: False positives from other genera only, for the simulated 454 and Illumina 

metagenomes, plotted as a function of coverage in the metagenome (Coverage) and coverage of 

the genome in the PML. 

 

 
 

Figure 11C: Total False positives, same genus and other genera for the simulated 454 and 

Illumina metagenomes, plotted as a function of coverage in the metagenome (Coverage) and 

coverage of the genome in the PML. 

 

 

Complex Mixture Simulation 

For the simulated metagenome composed of a complex mixture of 30 genomes, the 

numbers of true positive, false positive, and false negative species reported in the 

―metagenome.PML.DBtype.TOP_HITS.names.taxonomy‖  files are shown in Figure 12. The 

results sort out by library size: KPATH had the most false negatives, followed by 

KmerUniq16Extend20, and so on. Many PMLs detected either Brucella suis or Brucella 

melitensis (usually suis) but not both, and all incorrectly detected Burkholderia pseudomallei (a 

false positive for every PML in Figure 12B) but not Burkholderia mallei, except for the largest 

PML (KmerUniq17Extend18) which detected them both. Only the Unique_k19 library detected 

organisms in the wrong genus (2 18nt matches to each of Colwellia and Neisseria), supporting 

the prediction in the list of ―Cons‖ above that this library might be less specific (more FPs) than 

the others after controlling for PML size. At the low sequencing coverage levels of these 

simulations (most are <0.01x), 99% of all hits had Obs/Exp of less than 1%. 

 



25 

 

 
Figure 12: Counts of A) true positive, false negative and B) false positive bacterial species 

reported in the *TOP_HITS.names.taxonomy files for a simulated complex metagenome with 16 

bacterial species and 13 viral species. 

 

Discussion and Conclusions 

Sequencing errors and novel unsequenced organisms may result in unanticipated matches 

to a PML. Distinguishing true positives for  organisms sequences with extremely low coverage 

(e.g. <<0.0001x) from false positives will be very difficult, whether one uses the PML approach, 

BLASTs to a reference database, or read mapping to a set of reference genomes. Results 

presented here suggest that the PML approach can rapidly narrow the database of possible target 

species. A PML analysis to filter the reference database in minutes makes slower techniques like 

BLAST or read mapping, which align the entire sequence of a read and allow mismatches and 

gaps, more feasible for second line analysis. BLAST or read mapping for a large metagenome is 

not currently feasible against a large reference database with thousands of genomes, so a 

prefiltering step is necessary.  

The difficulty in distinguishing B.mallei from B.pseudomallei illustrate that gene loss and 

small changes in common genes are much harder to detect with the reference marker approach 

than cases where novel genetic material readily defines the pathogenic species of interest. Thus, 

a second line analysis with BLAST or read mapping could include other species in the same 

genus as those detected by the PML in the filtered reference database, to ensure more accurate 

species identification, particularly for species differing by deletion or minor sequence variations.  

 Another alternative approach to the PML methods that we considered was metagenome 

analysis with the LLNL TriTool detection simulation software, which compares a sequence data 

set with the LLMDA (Lawrence Livermore Microbial Detection Array) probes designed by Shea 

Gardner. The advantage of this would be that we have already carefully designed dozens of 

family-specific probes for every species in our KPATH whole genome database, and our 

biostatistician (Kevin McLoughlin) has developed and our biologist (Crystal Jaing) has 

extensively tested in lab experiments a rigorous statistical methodology for predicting the 

presence of multiple species. However, the LLNL TriTool software does not currently run at the 

speed and memory footprint we need for metagenome analysis, although it may be possible to 

remedy this given time and funding. A member of our team attempted to run a small 

metagenome (285 MB) against the LLMDA version 2 probes with TriTool. Although the 
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MDAv2 probe set is much smaller than any of the PMLs, the TriTool calculations ran for two 

days, most of which was required to BLAST the probe sequences against the metagenome reads. 

In comparison, the PML software was able to analyze this metagenome in minutes. A few 

features that make the TriTools software difficult to scale for gigabase-sized metagenomes are 

the slow BLAST step and the statistical likelihood calculations that require large amounts of 

memory; we run all the TriTools calculations on a dedicated machine with 192 GB of memory. 

Additional optimization efforts are likely to lead to solutions for the speed and memory 

bottlenecks of the TriTools method. 

 In conclusion, PMLs were designed and a method to rapidly compare a metagenome to a 

genome database was invented. We developed a suite of software and tested it against real and 

simulated metagenomes. Rapid species identification (usually under 20 minutes, ranging from 1 

minute to 3 hours with 12 threads) is possible for organisms represented in the PML, and 

substantial speedup is possible using more threads (3 hours dropped to 37 minutes with 36 

threads). We found low false positive rates and high sensitivity for genomes in a metagenome at 

coverages of ~0.03x and below, depending on the PML used. Simulations with short reads (36 nt 

and ~260 nt) showed that the correct species were usually detected for metagenome coverage 

above 0.005x and coverage in the PML above 0.05x. We envision the PML approach as a first-

pass rapid analysis to pre-filter a genome database prior to more in-depth read alignments against 

a subset of genomes from the original database. 
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Appendix: Timings 

Time to run PMLs against test metagenomes on a single node with 12 CPU and 48 GB RAM (on 

the aztec cluster at LLNL), without using multiple threads per CPU Using more threads 

significantly speeds up the calculations, as shown for the KmerUniq17Extend18Bacteria library. 

PML  Metagenome 

Time 
(h:mm:ss or 
m:ss on 12 
CPU, 48GB 
RAM, 12 
threads) 

Time 
(h:mm:ss or 
m:ss on 12 
CPU, 48GB 
RAM, 36 
threads) 

Ratio of 
compute 
time for 
36 
threads/ 
12 
threads 

KmerUniq16Extend18Bacteria DRR000002 07:37.2   

KmerUniq16Extend18Bacteria DRR000184 04:34.0   

KmerUniq16Extend18Bacteria ERR011207 15:45.4   

KmerUniq16Extend18Bacteria ERR015579 08:29.5   

KmerUniq16Extend18Bacteria SRR000340 02:23.9   

KmerUniq16Extend18Bacteria SRR004172 03:26.6   

KmerUniq16Extend18Bacteria SRR005754 04:36.7   

KmerUniq16Extend18Bacteria SRR039956 04:18.4   

KmerUniq16Extend18Bacteria SRR133640 05:06.7   

KmerUniq16Extend19Bacteria DRR000002 06:25.6   

KmerUniq16Extend19Bacteria DRR000184 03:34.4   

KmerUniq16Extend19Bacteria ERR011207 14:25.9   

KmerUniq16Extend19Bacteria ERR015579 07:02.9   

KmerUniq16Extend19Bacteria SRR000340 01:44.0   

KmerUniq16Extend19Bacteria SRR004172 02:40.8   

KmerUniq16Extend19Bacteria SRR005754 03:48.9   

KmerUniq16Extend19Bacteria SRR039956 02:59.0   

KmerUniq16Extend19Bacteria SRR133640 03:47.8   
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KmerUniq16Extend20Bacteria DRR000002 05:36.9   

KmerUniq16Extend20Bacteria DRR000184 03:03.0   

KmerUniq16Extend20Bacteria ERR011207 13:12.5   

KmerUniq16Extend20Bacteria ERR015579 06:13.7   

KmerUniq16Extend20Bacteria SRR000340 01:22.3   

KmerUniq16Extend20Bacteria SRR004172 02:06.1   

KmerUniq16Extend20Bacteria SRR005754 03:13.7   

KmerUniq16Extend20Bacteria SRR039956 02:44.2   

KmerUniq16Extend20Bacteria SRR133640 02:52.5   

KmerUniq17Extend18Bacteria DRR000002 3:17:20 37:16.9 0.19 

KmerUniq17Extend18Bacteria DRR000184 1:01:35 21:56.5 0.36 

KmerUniq17Extend18Bacteria ERR011207 2:29:15 47:02.0 0.32 

KmerUniq17Extend18Bacteria ERR015579 1:18:55 29:05.2 0.37 

KmerUniq17Extend18Bacteria SRR000340 39:55.6 17:11.7 0.43 

KmerUniq17Extend18Bacteria SRR004172 55:22.6 20:49.5 0.38 

KmerUniq17Extend18Bacteria SRR005754 1:38:57 26:17.6 0.27 

KmerUniq17Extend18Bacteria SRR039956 1:04:42 21:50.6 0.34 

KmerUniq17Extend18Bacteria SRR133640 3:07:59 35:49.0 0.19 

KmerUniq17Extend19Bacteria DRR000002 30:40.9   

KmerUniq17Extend19Bacteria DRR000184 16:00.7   

KmerUniq17Extend19Bacteria ERR011207 41:34.5   

KmerUniq17Extend19Bacteria ERR015579 23:21.2   

KmerUniq17Extend19Bacteria SRR000340 10:48.1   

KmerUniq17Extend19Bacteria SRR004172 13:49.4   

KmerUniq17Extend19Bacteria SRR005754 18:47.8   

KmerUniq17Extend19Bacteria SRR039956 14:48.9   

KmerUniq17Extend19Bacteria SRR133640 25:11.5   

KmerUniq17Extend20Bacteria DRR000002 24:13.8   

KmerUniq17Extend20Bacteria DRR000184 10:30.1   
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