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Reducing the dimensionality of composite 
electrodes

real cathode

carbon black 
conductive scaffold

ion insertion active oxide

electrolyte 
infiltrated binder 
(PVDF)

Positive electrode structure

Mz±

• Platform development: 

• Simplified metal-oxide/carbon 
electrode

• Structure-activity relationships at 
the individual nanoparticle level, in 
situ

• Application:

• Role of structure and interface in 
activity of β-MnO2-graphite system 
using EC-AFM

simplified cathode Simplified positive electrode structures

graphite current collector

oxide nanostructures

graphene current collector

probe-able interface
electron/photon transmissive substrate



An active metal-oxide test case: β-MnO2

Bruce, Adv. Mater. 2007

Bulk

Mesoporous

Size/structure dependant activity

• Why β-MnO2?
• Thermodynamically stable phase
• Active cathode material for Li-insertion
• Activity is size/structure dependent
• Li-insertion accompanied by substantial lattice 

change (16% for a)

16%

Structural signature of activity

Liu, PCCP 2013

Bach, Electrochim. Acta 2011

Bruce, JACS 2010

(001) Li-insertion/transport



Directed β-MnO2 nanostructure growth on 
graphite

Island distribution governed by surface mobility.  

25oC 370oC

enhanced mobility leads to preferential 
nucleation/growth at step-edges

restricted mobility leads to broader 
nucleation site distribution
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High temperature growth yields thermodynamically 
stable β-phase, as confirmed by TEM

Tetragonal structure of 
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Controlling high temperature nucleation/growth via 
oxygen functionalization
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XPS and Raman illustrate confirm perturbation of surface 
layers via increased disorder and oxidation

Oxygen functionalization routes:

• Atomic oxygen: Mn deposition in O/O2 background

• Ionic oxygen: O2
+ irradiation prior to Mn deposition in O2

Star, J. Phys. Chem. Lett. 2013
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Generate oxygenated defects to act as covalent linkers



Functionalization controls particle size, 
number density, adhesion strength…

O Synthesis
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• Tunable terrace structure size, packing density, adhesion strength

• Trade-off between particle isolation and adhesion

• Can grow isolated islands, semicontinuous films and continuous nanoribbons
• Can go after activity as a function of structural form and interface

Functionalization Trends



In-situ characterization of β-MnO2 lithiation

Li reference 
electrode

Li counter 
electrode

SPM Scanner

HOPG Working electrode

In-situ AFM provides information regarding particle lithiation
and delithiation response
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Nanoribbon expansion during first lithiation
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Quantifying particle/ribbon activity via lattice 
expansion
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Potential dependent lithium insertion/extraction for step-edge 
β-MnO2 nanoribbons
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In-situ height measurement to detect a/b expansion:

MnO2
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Δz ~ 12-16%
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Potentiostatic switching experiments demonstrate large activity variation + statistical 
noise



Structure/interface-activity differences
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Why the activity difference?

• Structural form - ribbons vs. islands

• Z-dimension restriction

• Differences in particle-substrate wiring - step-edge (line defect) vs. terrace (point defect) linkage

β-MnO2 voltammetric response is swamped by 
background - confirms low overall lithiation activity
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Determining particle-substrate wiring

Tip

Graphite

MnO2

Rt ~ Low contact area, low compliance

R = Rt + Rp + Rg

Rg ~ High contact area, high compliance

CAFM:
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Particle contact area: a = pi*d2/4
d ~ 45 nm
a ~ 10-11 cm2

Rg @ 5 Gohm ~ 0.05 ohm*cm2
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Current-Force spectroscopy convoluted by tip 
contact mechanics 
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Rods Islands

• Apparent differences in particle-substrate 
connectivity: ribbon > island

• Electrical connectivity correlates 
with apparent adhesion strength

• May explain observed activity 
differences (in part)

CAFM wiring statistics from I-F spectroscopy:  Ribbons require 70-80 nN, islands require 100 nN.

Unfunctionalized graphite Functionalized graphite



Enabling in situ characterization beyond AFM

SPM electronic property measurements

STM band mapping  of MnO2

Vbias = 1.0 V Vbias = 0.2 V

KFM of RuO2

Goal: measure/map state of 
charge for either individual 
structures or populations of 
structures

Deposition of LiMn2O4 on graphene TEM grids



Summary

• Demonstrated development of a simplified composite electrode system for 
in situ characterization of metal-oxide nanostructures

• Exercised control over the formation of β-MnO2 nanostructures on HOPG through 
oxygen functionalization

• Performed in situ characterization of Li-insertion activity in individual β-
MnO2 nanostructures

• Demonstrated activity differences between step-edge nanorods and terrace nano-
islands, and suggested via CAFM that differences in the MnO2-C interfacial 
resistance plays a role

• Further application of in situ techniques to the interrogation of these 
systems is underway



Backup Material

Young’s moduli:
Pt ~ 170 GPa
Graphite ~ 36 GPa (out of plane)
MnO2 ~ ?



Controlling nucleation and growth of β-MnO2

Nucleation/growth model at high temperature: critical cluster size is 
reached only at step-edges
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• Surface mobility dictated by potential energy landscape

• Ad-atoms diffuse rapidly across terraces and along step 
edges (line defects)

• Particle density builds in defect-rich zones until critical 
cluster sizes are reached (nucleation)

-MnO2:Graphene oxide
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Oxygen functionalization presents many nucleation sites on 
graphite terraces



Why only 3-4%? 
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Comments

• Acknowledgements to background info collaborators

• Indicate/discuss dimensional changes of nanoribbon -
line scans illustrating growth

• Further placement of height change measurements in 
context of literature

• Include voltammetry data as evidence of low particle 
activity

• See if particle activity depends on height

• Further study of 13% height change case

• Study TEM lattice parameters to look for 
consistencies in lattice parameter across particle 
height


