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electrodes

Reducing the dimensionality of composite

* Platform development:

realcathode
« Simplified metal-oxide/carbon iy ‘\

electrode

« Structure-activity relationships at
the individual nanoparticle level, in
situ

+ Application:
* Role of structure and interface in

activity of B-MnO,-graphite system
using EC-AFM
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An active metal-oxide test case: -MnO,

Specific Capacity/ mAh g
. Why B-MnO,? ol w m
Thermodynamically stable phase
» Active cathode material for Li-insertion
» Activity is size/structure dependent
« Li-insertion accompanied by substantial lattice
change (16% for a)

E vs (LULI*YV

xin Li B-MnO,
Bach, Electrochim. Acta 2011 *
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graphite

Directed 3-MnO, nanostructure growth on

Low-flux metal oxide growth on carbon support

HOPG

Mn

<—— 20-60 nm ———>

MnO, composition confirmed by Auger spectroscopy
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Island distribution governed by surface mobility.
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stable B-phase, as confirmed by TEM
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B-MnO, islands exhibit substrate
registration: c-axis in plane with HOPG
terrace, a axis normal to surface
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Controlling high temperature nucleation/growth via
oxygen functionalization

Oxygen functionalization routes:

+ Atomic oxygen: Mn deposition in O/O, background

+ lonic oxygen: O,* irradiation prior to Mn deposition in O,
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Generate oxygenated defects to act as covalent linkers

XPS and Raman illustrate confirm perturbation of surface
layers via increased disorder and oxidation
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Functionalization controls particle size,
number density, adhesion strength...

Functionalization Trends

O Synthesis O," Synthesis
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+ Tunable terrace structure size, packing density, adhesion strength
* Trade-off between particle isolation and adhesion Sandia
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+ Can grow isolated islands, semicontinuous films and continuous nanoribbons

* Can go after activity as a function of structural form and interface Laboratories



In-situ characterization of B-MnO, lithiation

In-situ AFM provides information regarding particle lithiation
and delithiation response
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expansion

Quantifying particle/ribbon activity via lattice

In-situ height measurement to detect a/b expansion:

—_—

Az ~12-16%

Mean AZ vs. Delithiated State

Potential dependent lithium insertion/extraction for step-edge
B-MnO, nanoribbons
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Potentiostatic switching experiments demonstrate large activity variation + statistical

noise
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Structure/interface-activity differences

Functionalized graphite B-MnO, voltammetric response is swamped by
background - confirms low overall lithiation activity
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Total anodic charge would correspond to x = 0.17

Why the activity difference?

» Structural form - ribbons vs. islands
» Z-dimension restriction

* Differences in particle-substrate wiring - step-edge (line defect) vs. terrace (point defect) linkage
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Determining particle-substrate wiring

CAFM . Particle contact area: a = pi*d2/4 Current-Force spectroscopy convoluted by tip
. ) contact mechanics
d~45nm
| a~ 10" cm? -0.30
R, @ 5 Gohm ~ 0.05 ohm*cm? 0.25 -100 mV tip bias
3 R, ~ Low contact area, low compliance z
5 < -0.20
S = Graphite MnQ@, (ptep-edge)
= c
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CAFM wiring statistics from I-F spectroscopy: Ribbons require 70-80 nN, islands require 100 nN.
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Enabling in situ characterization beyond AFM

SPM electronic property measurements Deposition of LiMn,0, on graphene TEM grids

STM band mapping of B—MnO,
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Summary

Demonstrated development of a simplified composite electrode system for
in situ characterization of metal-oxide nanostructures

« Exercised control over the formation of B-MnO, nanostructures on HOPG through
oxygen functionalization

Performed in situ characterization of Li-insertion activity in individual B-
MnO, nanostructures

 Demonstrated activity differences between step-edge nanorods and terrace nano-
islands, and suggested via CAFM that differences in the MnO,-C interfacial
resistance plays a role

Further application of in situ techniques to the interrogation of these
systems is underway

Sandia
National
Laboratories



Backup Material

Table 1: Formation energy E; and relative concentrations of common intrinsic defects

Defect Type Eg, eV Equlibrium defect concentrations for synthesis
atT=1200 K (CVD) at T=3000K (plasma)

MONQO-Vacancy 70-738 107 10"

di-vacancy 8.7 (HOPG) 1078 1076
45-55(SWNT) 10 107

interstitial or other 5.5 10 107"

covalent sp’ adduct

Stone Wales 5-7-7-5 3.5 10" 10

single 5-7 defect 3.4 (SWNT) 107" 10°

Young’s moduli:

Pt~ 170 GPa

Graphite ~ 36 GPa (out of plane)
MnO, ~ ?
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Controlling nucleation and growth of -MnO,

Nucleation/growth model at high temperature: critical cluster size is B-MnO,:Graphene oxide
reached only at step-edges 0 b RS

o

Oxygen functionalization presents many nucleation sites on
graphite terraces

U T&x /j/
(m

» Surface mobility dictated by potential energy landscape

+ Ad-atoms diffuse rapidly across terraces and along step
edges (line defects)

» Particle density builds in defect-rich zones until critical
cluster sizes are reached (nucleation)
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Why only 3-4%?

Orthorhombic
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' '
} Comments

« Acknowledgements to background info collaborators

* Indicate/discuss dimensional changes of nanoribbon -
line scans illustrating growth

* Further placement of height change measurements in
context of literature

 Include voltammetry data as evidence of low particle
activity

 See if particle activity depends on height

* Further study of 13% height change case

« Study TEM lattice parameters to look for
consistencies in lattice parameter across particle
height
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