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Abstract—This paper proposes scalable models and algorithms
for the PMU placement problem (PPP). Existing approaches have
difficulty scaling to full-scale systems, and are not guaranteed to
be resilient to multiple component failures. This paper expands
PPP to a more general k-resilient PPP, where any k PMUs and/or
lines can fail without jeopardizing the full supervision criterion.
Our PPP model — a novel formulation based on maximum-
flow network design — is unique in that it is amenable to
efficient decomposition, which significantly improves tractability
and scalability. We present two cutting plane algorithms to
support this decomposition – the first such algorithms for the
PPP to our knowledge. The improvements in computational
efficiency afforded by the network decomposition suggests that
our approach has the potential to solve large-scale systems.

I. INTRODUCTION

Phasor measurement units (PMUs) are instruments that
are placed at electric buses in order to provide real-time
monitoring, data measurement, and supervision capabilities.
These devices are increasingly used by system designers and
engineers to measure voltage- and current- phasors across the
grid. The data provided by these units support system analysis
studies, reliability assessments in normal operating scenarios,
and contingency operations during failure scenarios. They can
also be utilized for monitoring purposes in security scenarios
where the integrity of the grid is under threat by an adversary
– for example, in the context of a cyber security attack.

To support these uses, individual PMUs must be placed
across a grid at locations necessary to provide the requisite
supervision. A PMU provides voltage phasors at the installed
bus and current phasors for incident lines. Because electric
grids are considered safety-critical systems, it is desirable to
ensure that a sufficient number of PMUs are placed within the
grid to provide full supervision. This is generically referred to
as the PMU placement problem (PPP) [4].

Direct measurement of all system states is possible if
PMUs are placed at all buses. However, this approach is
unnecessarily expensive and cumbersome in that it provides
excessive redundant measurement data that must be captured
and processed by the supervisory control system.

A more novel approach is to identify a minimum number
of PMUs to installed in order to satisfy the condition of com-
plete supervision. Existing approaches to this problem have
presented integer programming formulations that are variants

of cover problems like the Dominating Set Problem (DSP) [4],
[9]. Solution approaches vary from search algorithms (e.g., [5],
[11]), to heuristics (e.g., [10]), to solving linear integer pro-
grams directly (e.g., [2], [6], [7], [15]). Furthermore, because it
is desirable to maintain full supervision in the event of failing
or compromised PMUs and/or lines, several variants of this
problem have been cast as contingency-constraint problems
where full supervision is maintained in the event of a single-
element contingency scenario (e.g., [2], [12]). However, these
existing variants of PPP are only capable of guaranteeing full
supervision when no more than one system component fails.

This paper makes several advances to PPP. First, we present
a more general k-failure resilient variant of PPP, referred to as
RPPP. This model advances previous approaches by generating
PMU placement schemes that will maintain full supervision
in the event of any k PMUs and/or lines failures. Second, we
present an alternative formulation, which yields linear second-
stage problems, and therefore, convex recourse functions. To
the best of our knowledge, this paper is the first to propose a
new formulation for RPPP based on maximum-flow network
design, as most existing approaches in literature formulate
RPPP (for k = 1) as variants of DSP. The maximum-flow
formulation supports efficient decomposition, and thus, has the
potential to solve large-scale systems, even if k is non-trivial.
In contrast, existing models cannot be decomposed efficiently,
meaning that the integer programs that must be solved are
exponentially large in terms of the number of variables and
constraints. Third, this paper presents two cutting plane algo-
rithms to support this decomposition. These algorithms are, to
the best of our knowledge, the first decomposition algorithms
for the PPP and the RPPP. The empirical results presented show
significant improvements in computational efficiency in terms
of both speed and memory. This promising result suggests
that our approach has the potential to solve regional, or even
national, scale systems.

II. PMU PLACEMENT FORMULATIONS

A power system instance is represented by an undirected
graph G(V,E). For notational convenience, we may write
e = {u, v} to denote the fact that lines are defined between
buses u, v ∈ V . Since a PMU placed at bus u can measure
the current phasors of an incident line e = {u, v}, we define
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G(V,A) to be the digraph that is obtained by introducing a
pair of antiparallel arcs e+ = (u, v) and e− = (v, u) for every
line e = {u, v} ∈ E and self-joining arcs (v, v) for all v ∈ V .
Therefore, A := {e+ = (u, v), e− = (v, u)|e = {u, v} ∈
E} ∪ {(v, v)|v ∈ V } and let a be its index.

In consideration of contingency constraints, let the set of all
size k contingencies be defined as follows.

C =

{
d̃ ∈ {0, 1}|E|+|V |

∣∣∣∑
e∈E

d̃e +
∑
v∈V

d̃v = k

}
(1)

Let d̃
c
∈ {0, 1}|E|+|V | be the contingency vector, for all c =

1, · · · , |C| and let C be the contingency-scenario index set.
For all models, δ+G(v) and δ−G(v) denote arcs of graph G

that have v as their source and target node, respectively. The
measurement limitation of bus v is given by m̃v . z̃v is a binary
parameter that takes value 1 if bus v is a zero-injection bus.
d̃cv and d̃ce are binary parameters that takes value 1 if the PMU
at bus v and line e are part of contingency c and 0 otherwise,
respectively. Finally let xv be binary variable that takes value
1 if a PMU is installed at node v and 0 otherwise. Let ya be
binary variable that takes value 1 if the PMU installed at the
source node of arc a is used to observe the target node of arc
a and 0 otherwise. Let wa be binary variable that takes value
1 if zero-injection property of the source node of arc a is used
to observed the target node of arc a and 0 otherwise.

The contingency-constrained formulation with consideration
for zero-injection buses and measurement limitations, Resilient
Dominating Set Problem (RDS), is as follows.

min
w,x,y

∑
v∈V

xv (2a)

s.t.
∑

a∈δ−
G(v)

wca +
∑

a∈δ−
G(v)

yca ≥ 1 ∀v ∈ V, c ∈ C, (2b)

∑
a∈δ+

G(v)

yca ≤ z̃v ∀v ∈ V, c ∈ C, (2c)

∑
a∈δ+

G(v)

wca ≤ m̃vxv(1− d̃cv) ∀v ∈ V, c ∈ C, (2d)

wce+ , w
c
e−

yce+ , y
c
e−

}
≤ (1− d̃ce) ∀e ∈ E, c ∈ C, (2e)

wca ∈ {0, 1} ∀a ∈ A, c ∈ C, (2f)
yca ∈ {0, 1} ∀a ∈ A, c ∈ C, (2g)
xv ∈ {0, 1} ∀v ∈ V. (2h)

The objective (2a) is to minimize the number of PMUs
installed. For each contingency scenario c ∈ C, a set
of constraints enforce the full system supervision criterion.
Constraints (2b) are observability constraints for each bus-
contingency pair. Bus v is observable by a local PMU, a
PMU installed at an incident bus via wca, or through the
zero-injection bus property via yca. Constraints (2d) enforce
measurement limitations at each bus. If a line fails, constraints
(2e) state that PMU(s) installed at the from bus and/or to bus
of e cannot be used to measure the current phasors of the

line. Analogously, the zero injection property cannot be used
to infer the voltage phasors of an incident bus.
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Fig. 1. L-shaped block structure with integer contingency scenario blocks.

Practically, the number of contingencies grows so quickly
that RDS (2) is likely to be intractable, even for modest-
sized systems and k . Additionally, despite the L-shaped
block structure of its constraint matrix, Figure (1), the integer
second-stage problems associated with each scenario yields
a non-convex recourse function and standard decomposition
methods are not directly applicable.

Next, we present an alternative formulation, based on net-
work design, with a linear recourse function.

A. Maximum-Flow Network Design

The network design problem is defined on a directed graph
D(V ′, A′). For clarity of exposition, we first demonstrate the
reformulation using a simple 4-bus system (Figure 2). We
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Fig. 2. A 4-bus power system with zero-injection bus 2.

begin by defining the key components of this reformulation,
two special nodes, a source node s and a terminal node t, and
two sets of directed arcs. For each bus v ∈ V in the original
power system, define arc (s, pv) with a flow capacity of m̃v

and arc (tv, t) with unit flow capacity. Arc (s, pv) represents
PMU installation at bus v ∈ V . A unit flow on arc (tv, t)
represents observability of bus v. The augmented maximum-
flow network of the 4-bus system is shown in Figure 3. Due to
space constraints, we summarize the descriptions of all other
arcs and nodes in Table I. In the augmented network (3),
each arc into terminal node t has unit capacity, thus, if the
cumulative flow into node t equals 4 units then all buses are
observable. If arc (s, p1) is selected (exits), up to m1 units
can flow from s to p1. A unit flow on path s − p1 − t1 − t
corresponds to using the PMU installed at bus 1 to measure
bus 1. A unit flow on the path s − p1 − o12 − d12 − t2 − t
corresponds to using the PMU installed at bus 1 to measure
bus 2. However, if transmission line {1, 2} fails, that is if
arc (o12, d12) fails, path s − p1 − o12 − d12 − t2 − t is no
longer viable. A unit flow on path s − z2 − p2 − t2 − t
corresponds to using the zero-injection bus property of bus



p2 

z2 

t1 

t2 

m1 

p1 

o12 d12 

p3 

t3 

m2 t s 

m3 

o23 d23 

o13 d13 

d34 o34 p4 t4 

m4 

Fig. 3. Maximum-flow network expansion for 4-bus example. With the
exception of arcs (s, pv) for all v ∈ V , all other arcs have unit flow capacity.

2 to infer the voltage phasors of bus 2. A unit flow along path
s − z2 − o12 − d12 − t1 − t corresponds to using the zero-
injection bus property of bus 2 to infer the voltage phasors of
bus 1. Let D(V ′, A′) represent the augmented network and let

TABLE I
TRANSFORMATION FROM THE ORIGINAL POWER SYSTEM TO THE

AUGMENTED NETWORK

Original System Augmented Network Capacity Faillable
G(V,E) D(V ′, A′)

N
od

es

v ∈ V s, t - No
pv ∀v ∈ V - No
tv ∀v ∈ V - No
oe ∀e ∈ E - No
de ∀e ∈ E - No
zv ∀v ∈ Z - No

E
dg

es
/A

rc
s e ∈ E (s, pv) ∀v ∈ V m̃v Yes

(tv, t) ∀v ∈ V 1 No
(pv, tv) ∀v ∈ V 1 No
(oe, de) ∀e ∈ E 1 Yes

(pu, oe) ∀e = {u, v} ∈ E 1 No
(pv, oe) ∀e = {u, v} ∈ E 1 No
(de, tu) ∀e = {u, v} ∈ E 1 No
(de, tv) ∀e = {u, v} ∈ E 1 No

(s, zv) ∀v ∈ Z 1 No
(zv, oe) ∀e ∈ ρG(v), v ∈ Z 1 No

(zv, pv) ∀v ∈ Z 1 No

A′p, A
′
d and A′r represent the sets of PMU placement arcs, line

arcs, and residual arcs, A′r := A′ \ {A′p ∪ A′d}, respectively.
Let fa be the flow on arc a. Then, RPPP can be formulated as
a resilient maximum-flow network design problem (RND).

min
x,f≥0

∑
a∈Ap

xa (3a)

s.t. f ca = 1 ∀a ∈ δ−D(t), c ∈ C, (3b)∑
a∈δ+

D(v)

f ca =
∑

a∈δ−
D(v)

f ca ∀v ∈ V ′ \ {s, t}, c ∈ C, (3c)

f ca ≤ m̃axa(1− d̃ca) ∀a ∈ A′p, c ∈ C, (3d)

f ca ≤ 1− d̃ca ∀a ∈ A′d, c ∈ C, (3e)
f ca ≤ 1 ∀a ∈ A′r, c ∈ C, (3f)
xa ∈ {0, 1} ∀a ∈ A′p. (3g)

The objective (3a) is minimize the number of PMU “arcs”
built. For each contingency scenario c, define a set of con-
straints to enforce observability of all buses by forcing a unit

flow on arcs into terminal node t (3b). Constraints (3c) are
flow balance constraints for all nodes other than nodes s and
t. Constraints (3d) enforce measurement limitations at each
bus. If a transmission line fails, constraints (3e) state that flow
on arc a ∈ A′d must be zero. Finally, constraints (3f) enforce
capacity constraints on the rest of the arcs. Figure 4 depicts
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Fig. 4. L-shaped block structure with linear contingency blocks.

the structure of the constraint matrix of RND (3). In contrast
to the RDS structure (Figure 1), the new formulation yields
linear second-stage problems.

III. SOLUTION APPROACHES

RDS and RND will typically have extremely large number
of variables and constraints because it grows with the number
of contingency scenarios, which increases exponentially with
|V |+|E| and k. For large power systems and/or a contingency
budget k greater than one, RDS and RND rapidly become
computationally intractable for increasing system size.

A. Benders Decomposition

We now briefly discuss an alternative formulation with only
|V | binary variables but possibly an exponential number of
constraints. We use linear programming duality to generate
valid inequalities for the projection of the natural formulation
onto the space of the PMU placement variables x.

Let z(x̃, d̃
c
) represent the maximum-flow given candidate

PMU placement x̃ and contingency scenario prescribed by
d̃
c
. z(x̃, d̃

c
) ≥ |V | should be satisfied for all c ∈ C. Thus

contingency feasibility conditions can be restated as follows.∑
a∈A′p

ma(x̃a − d̃ca)+β`a +
∑
a∈A′d

ma(1− d̃ca)γ`a (4)

+
∑

a∈δ−
D(t)

maπ
`
a +

∑
a∈A′r

maε
`
a ≥ |V |, ∀` ∈ Lc, c ∈ C.

where Lc is the set of extreme points of the dual of constraints
(3c) - (3f). We enforce all constraints for the no failure scenario
explicitly. For all contingency scenarios c ∈ C, constraint set
(4) ensures that the system is fully observable. By using a
Benders decomposition (BD), we are able to decompose the
extremely large formulation (3) into a master problem and
multiple subproblems. In theory, this enables us to solve larger
instances, which would not be possible by a direct solution of
RDS and RND. For a detailed treatment of BD please refer to
[3].



B. Implicit Contingency Screening
Given a non-trivial k, the sizes of most systems in operation

may preclude direct solution of (3). Even using BD may
not be tractable because each contingency scenario must be
considered explicitly. Our goal is to instead use a separation
oracle that implicitly evaluates all contingency scenarios and
either identifies a violated one, a contingency with k failures
that renders a part of the system unobservable, or certificatifies
that no such contingency scenario exists.

1) Maximum Flow Separation Problem: Given x̃, we solve
a Maximum-Flow Separation Problem (MSP) to determine
the maximum observability under the worst-case contingency
scenario with k failures. In this bilevel program, the upper-
level decisions d correspond to binary contingency-selection
decisions and the lower-level decisions f correspond to max-
imum flows relative to x̃ and d. MSP(x̃) is given as follows.

min
d

max
f≥0

∑
a∈δD(t)−

fa (5a)

s.t.
∑
a∈A′p

da +
∑
a∈A′d

da = k, (5b)

(α)
∑

a∈δ+
D(t)

fuv =
∑

a∈δ−
D(t)

fvu ∀v ∈ V ′ \ {s, t}, (5c)

(β) fa ≤ m̃ax̃a(1− da) ∀a ∈ A′p, (5d)

(γ) fa ≤ 1− da ∀a ∈ A′d, (5e)

(π) fa ≤ 1 ∀a ∈ δ−D(t), (5f)

(ε) fa ≤ 1 ∀a ∈ A′r, (5g)

d ∈ {0, 1}|E|+|V |. (5h)

The objective (5a) is to minimize the maximum flow into
terminal node t. Given d, the goal of the system operator
(inner minimization) is to determine the optimal flow such that
system observability is maximized. Constraint (5b) limits the
total number of system elements that can be in a contingency.
Next, we outline an algorithm for solving RND that combines
a BD with the aid of the separation oracle given by (5).

Algorithm 1 Implicit Contingency Screening (ICS)
1: t← 0
2: Solve RMP and let x̃t be opt. solution if feasible
3: if RMP is infeasible
4: EXIT, RPPP is infeasible
5: else
6: Solve MSP(x̃t), let wt be opt. obj. value and d̃

t

7: be opt. contingency vector
8: if wt < |V | then
9: Solve PSP(x̃t, d̃

t
), add feasibility cut to RMP

10: t← t+ 1, go to step 2
11: else
12: x̃t is optimal, EXIT

At each iteration t, we iterate between solving a relaxed
master problem (RMP) to find a candidate PMU placement x̃t,

MSP(x̃t) to find the worst-case contingency d̃
t

and PSP(x̃t,dt)
to generate a feasibility cut. Either a contingency that renders
a part of the system unobservable is identified or no such con-
tingency exists, which means that the current PMU placement
is optimal and the algorithm terminates.

IV. NUMERICAL EXPERIMENTS

We implemented our approach in C++ and CPLEX 12.4-
ILOG Concert Technology 2.9. All experiments ran on a
machine with a 2.93 GHz Xeon processor and 32 GB memory.
We tested our approach on five systems: 30-bus, 57-bus, RTS
96, 118-bus, and WECC 240-bus [13] using m̃v = 3 ∀v ∈ V .
For each system, we considered contingency budgets k =
0, 1, 2 and enforced a maximum runtime of 7200 seconds.

In order to ensure feasibility for k = 2, we made the
simplifying assumption that PMUs installed at buses with less
than k + 1 incident lines cannot fail. We also added sets of
valid inequalities derived from connectivity requirements.

TABLE II
RUNTIMES FOR DIFFERENT SOLUTION APPROACHES

Solution time (secs) No.
System m k RDS RND BD ICS PMUs

0 0 0 0 0 0 8
30 71 1 0 1 1 0 16

2K+ 2 2 5 6 0 26
0 0 0 0 0 0 14

57 137 1 6 50 13 4 22
9K+ 2 12 249 122 2 47

0 0 0 0 0 0 22
96 193 1 30 120 13 2 34

18K+ 2 72 OM 98 6 57
0 0 0 0 0 0 36

118 304 1 10 74 19 2 61
46K+ 2 OM OM 802 14 104

0 0 0 0 0 0 65
240 588 1 9 221 124 6 132

172K+ 2 OM OM (239) 64 180

Table II provides the runtime, in CPU seconds, for each
instance under the four different approaches. The first two
approaches, RDS and RND, solve extensive forms of (2) and
(3), respectively. The latter two approaches solve RND using
BD and ICS algorithms. OM means that the approach exited
with a status of out-of-memory. Note that RDS and RND can
only solve the smaller instances. This is because of the sheer
size of the problem, in which a full recourse problem must
be embedded within the formulations for each scenario. As
the number of scenarios grows, these formulations quickly
becomes intractable. We are working with moderate-sized
systems here and target systems will be in the order of
thousands of elements, which will make monolithic math
programs such as RDS and RND intractable even sooner.

A BD algorithm bypasses the size problem via a delayed cut
generation. However, it still suffers from the combinatorial
growth in the number of contingency scenarios – for each
contingency a PSP must be solved to check for violated
feasibility cuts. We see that larger problem instances can be
solved, relative to RDS and RND, but the BD algorithm nonethe-
less cannot solve the largest problem instances. Paranthetical



number under column BD indicate the maximum number of
observable buses under the worst-case contingency scenario at
the end of the two-hour time limit.

With the ICS approach, we see that all instances can be
solved, in all cases in approximately 1 minute and frequently in
only a few seconds. This is the result of the combination of the
strength of the Benders cuts and the strengthening inequalities,
enabling the problem to be solved in a small number of itera-
tions, and also the fact that we are able to implicitly evaluate
all contingencies quickly and then find feasibility cuts by
solving a PSP. The final column of Table II show the number of
installed PMUs for each instance. Table III shows the optimal

TABLE III
DETAILED SOLUTIONS FOR 57-BUS AND RTS 96 SYSTEMS

System k no. PMUs PMU locations
0 14 1,6,12,13,15,19,25,29,32,38,41,51,54,56

57 1 22 1,2,6,9,12,15,18,20,25,27,29,30,32,33,38,41,47,50,
53,54,56

2 47 1,2,3,5,6,9,10,12,14,15,16,17,18,19,20,21,23,25,26,
27,28,29,30,31,32,33,34,35,38,39,40,41,42,43,44,
45,46,47,49,50,51,52,53,54,55,56,57

0 22 2,5,8,9,15,16,17,25,26,32,36,39,41,43,49,50,56,60,
64,67,69

96 1 34 1,2,3,7,9,10,15,16,17,20,21,26,27,28,29,31,32,34,
38,39,41,43,44,45,49,50,55,56,57,58,64,67,69,70

2 57 1,2,3,4,5,6,7,8,9,10,14,15,16,17,18,19,20,21,22,24,
25,26,27,28,29,30,31,33,34,37,38,39,40,41,42,43,
44,45,46,48,49,50,52,53,54,55,57,58,61,62,64,65,
66,67,68,69,70,72,73

PMU placements for the 57-bus and RTS 96 systems. In going
from the no-contingency to the single-element contingency,
there is a moderate increase in the number of PMUs installed.
However, to protect against two-element failures the number
of PMUs installed increased considerable. These results follow
intuition since power system topologies are typically sparse
[14], thus as contingency budget increases more PMUs must
be installed locally. Finally, Figure 5 shows that to maintain
full observability under two-element failures, PMUs must be
installed at over 86% of the buses. The four buses with no
PMUs are buses 6, 9, 25 and 28.
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Fig. 5. An optimal 2-failure resilient PMU placement for 30-bus system.

V. CONCLUSION

The ability to solve large-scale RPPP is of high consequence
– especially as attention on modernizing electric grids has

increased. However, the best exact approaches to date consider
only single-element failures and cannot scale to practical
power-system sizes. This paper makes three key contributions.
First, we present a more general k-failure resilient model for
PPP called RDS. By supporting PMU layouts that are provably
resilient to any k component failures, critical electric grids
can be operated with more flexible margins of safety and
security, per the needs of individual system operator. Second,
we present an alternative formulation for RDS called RND.
This formulation, which to the best our knowledge is the
first formulation for PPP based on network design rather than
variants of cover problems, permits efficient decomposition.
Third, we present two cutting plane algorithms for solving
RND, which are the first such decomposition algorithms in this
domain. Computational results show that systems of moderate
sizes can be solved efficiently, in all cases in about one minute,
which provide evidence that the approach may be tractable for
large-scale regional and national systems.
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