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Motivation

▶ Thermal diffusion in magnetized systems is anisotropic.
▶ This results in important physical phenomena, e.g.

▶ Magnetothermal Instability
▶ Inhibiting radial energy transport in MAGLIF

▶ χ⊥ ≃ 10−5χ∥ in the compressed fuel in MAGLIF point design.

▶ For χ⊥ ≤ 10−2χ∥ solutions can violate the entropy condition.

▶ Heat flows from cold to hot zones!

▶ Implicit algorithms are presented for solving highly anisotropic
thermal diffusion that satisfy the entropy condition.



Outline

▶ Motivate this work and characterize solution accuracy:

1. Heat flow in a flux tube
2. Evolution of a sinusoidal temperature perturbation

▶ Tests will be run with 4 different algorithms

1. Centered Difference
2. Implicit version of Sharma & Hammett JCP 227, 123 (2007).
3. Flux limited Finite Volume
4. Flux limited Discontinuous Galerkin

▶ Flux based diffusion

▶ Monotonicity Constraint



Heat Flow in a Flux Tube

▶ χ∥ = 10−2, χ⊥ = 0

▶ Tcold = 0.1, Thot = 10

▶ Cross-field diffusion is
unresolved and temperature
is discontinuous

▶ Heat should remain confined
by magnetic field.

▶ L1 error in thermal energy
outside of flux tube captures
cross-field diffusion.

Parrish & Stone ApJ 633, 334 (2005).



Centered Difference Tmin Error

▶ Regions interior to red contours have T < Tmin.

▶ Tmin / Tmax solution errors increase with resolution.

Time = 20, CFL = 10, θ = 1

0 5 10 15 20
Time

-0.4

-0.3

-0.2

-0.1

0

0.1

N = 64
N = 128
N = 256

Min Temperature



Perpendicular Heat Flux Error

▶ Perpendicular diffusion is reduced by 2− 3 × relative to
Centered Difference.

▶ Sharma & Hammett JCP 227, 123 (2007) algorithm is
comparable to the limited Finite Volume algorithm.

Time = 20, CFL = 10, θ = 1
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Sinusoidal Temperature Perturbation

▶ χ∥ = 10−2, χ⊥ = 0

▶ Bx = By = 1, Bz = 0

▶ T = T0+T1 sin(k · x)

▶ kx = 2π cos(α), ky = 2π sin(α) where α ∼ 63.4 ◦

▶ Solution T1 = δT exp(−γt) where γ =
χ∥(k·b)2

ρCv

▶ Temperature error is easily computed as a function of time.

▶ We’ll use Crank-Nicholson integration at CFL=1.

▶ Assess the impact of monotonicity constraints by varying
(B, k).



Sinusoidal Temperature Evolution
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▶ Discontinuous Galerkin solution is an improvement over
Centered Difference.

▶ Flux Limited Finite Volume is nearly identical to Centered
Difference.

▶ Sharma & Hammett’s algorithm shows slightly higher errors
than Centered Difference due to limiting at extrema.



Flux Based Diffusion

▶ Starting with the thermal diffusion equations

∂ϵ

∂t
+∇ · q = 0

q = −
(
χ∥bb + χ⊥(1− bb)

)
· ∇T

▶ Define the time-integrated heat flux

Q =

∫ t

tn
q(t ′)dt ′

▶ The thermal diffusion equations change roles, becoming

ϵ− ϵn +∇ · Q = 0

∂Q

∂t
= −

(
χ∥bb + χ⊥(1− bb)

)
· ∇T



Relaxation Operator

▶ Construct a predictor / corrector relaxation scheme as

1

χ∥

∂Q

∂t
+∇T c =

(
χ∥ − χ⊥

χ∥

)
(1− bb) · ∇T p

▶ Formally consider ∂tQ → 0

∇T c =

(
χ∥ − χ⊥

χ∥

)
(1− bb) · ∇T p

b · ∇T c = 0

(1− bb) · ∇T c =

(
χ∥ − χ⊥

χ∥

)
(1− bb) · ∇T p



Relaxation with Flux Limiting

▶ At an interface with normal n and tangential τ directions

1

χ∥

∂Qn

∂t
+∇nT

c = Sn + Sτ

Sn =

(
χ∥ − χ⊥

χ∥

)
(1− b2n)∇nT

p

Sτ = −

(
χ∥ − χ⊥

χ∥

)
bnbτ · ∇T p

▶ Sn is evaluated with the same discretization as ∇nT
c .

▶ Sτ is evaluated using limited Finite Volume gradients,
Discontinuous Galerkin gradients, Moments, etc.

▶ Sτ is limited to enforce monotonicity.

▶ Temperature Monotonicity → Qn+1 bounds → Sτ bounds



Conclusions

▶ Implicit algorithms for anisotropic thermal diffusion that
satisfy the entropy condition were presented.

▶ These methods behave well for 0 ≤ χ⊥ ≤ χ∥ .

▶ These are effective for wide ranging CFL ∼ (10, 102, 103, . . . )

▶ Discontinuous Galerkin formulation is generally more accurate
than the Finite Volume formulation.

▶ This solution algorithm is generally applicable to any
conductivity tensor.

▶ Multigrid methods are effective for acceleration.
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