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# Motivation

» Thermal diffusion in magnetized systems is anisotropic.
» This results in important physical phenomena, e.g.

» Magnetothermal Instability
» Inhibiting radial energy transport in MAGLIF

> X, 10_5xH in the compressed fuel in MAGLIF point design.

» For x, < 10*2X|| solutions can violate the entropy condition.
» Heat flows from cold to hot zones!

» Implicit algorithms are presented for solving highly anisotropic
thermal diffusion that satisfy the entropy condition.
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%' Outline
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Motivate this work and characterize solution accuracy:

1. Heat flow in a flux tube
2. Evolution of a sinusoidal temperature perturbation

v

Tests will be run with 4 different algorithms

1. Centered Difference

2. Implicit version of Sharma & Hammett JCP 227, 123 (2007).
3. Flux limited Finite Volume

4. Flux limited Discontinuous Galerkin

Flux based diffusion

Monotonicity Constraint
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Heat Flow in a Flux Tube

v

X, = 1072, x, =0
> Tcold = 0.]., Thot =10

» Cross-field diffusion is
unresolved and temperature
is discontinuous

» Heat should remain confined
by magnetic field.

» L1 error in thermal energy
outside of flux tube captures
cross-field diffusion.

Parrish & Stone ApJ 633, 334 (2005).
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# Centered Difference T,,;, Error

» Regions interior to red contours have T < T\i,.

» Thinin / Tmax solution errors increase with resolution.
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;/’ Perpendicular Heat Flux Error

» Perpendicular diffusion is reduced by 2 — 3 X relative to
Centered Difference.

» Sharma & Hammett JCP 227, 123 (2007) algorithm is
comparable to the limited Finite Volume algorithm.

Time =20, CFL=10,0=1
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Sinusoidal Temperature Perturbation

1.10

1.00
0.95
0.90

ki = 2mcos(a), k, = 2msin(«) where o ~ 63.4°
h)2
Solution T3 = 6T exp(—~t) where v = X”,()chb)

Temperature error is easily computed as a function of time.
We'll use Crank-Nicholson integration at CFL=1.

Assess the impact of monotonicity constraints by varying
(B, k).

> X, = 1072, x, =0
>BX: y:]_, BZZO
» T = To+ Tysin(k - x)
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? Sinusoidal Temperature Evolution

Temperature Error Temperature Solution (time = 5)
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» Discontinuous Galerkin solution is an improvement over
Centered Difference.

» Flux Limited Finite Volume is nearly identical to Centered
Difference.

» Sharma & Hammett's algorithm shows slightly higher errors
than Centered Difference due to limiting at extrema. @ﬁ:ﬁﬂﬁal
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ip‘ Flux Based Diffusion

» Starting with the thermal diffusion equations

q:—(X“bb—i—XL(l—bb)) VT

» Define the time-integrated heat flux

t
Q= / q(t')dt’
tn
» The thermal diffusion equations change roles, becoming
e—€e"+V-Q=0

0
a—f =— (X”bb+xl(1 - bb)) VT
@Egl?f%éﬂes
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} Relaxation Operator

» Construct a predictor / corrector relaxation scheme as

1 @—FVTC: <X|_XJ_

3 1 - bb)- VTP
y, ot )( )

X

» Formally consider 9:Q — 0

VT = <—X' _ XL) (1—bb)-VTP
X

b-VT =0

(1-bb) VTE = ("';—Xj (1—bb) VTP
I
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# Relaxation with Flux Limiting

» At an interface with normal n and tangential 7 directions

iaQn
X ot

Sp= (X' — XL) (1- B2V, TP
X

S — <X| _X¢> byb, - VTP
X

» S, is evaluated with the same discretization as V, T°€.

+V,T =5,+5;

» S, is evaluated using limited Finite Volume gradients,
Discontinuous Galerkin gradients, Moments, etc.

» S, is limited to enforce monotonicity.

» Temperature Monotonicity — Q"' bounds — S, bounds @Sﬂm’iﬂ
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% Conclusions

» Implicit algorithms for anisotropic thermal diffusion that
satisfy the entropy condition were presented.

» These methods behave well for 0 < x, < X -
» These are effective for wide ranging CFL ~ (10, 102, 103, ...)

» Discontinuous Galerkin formulation is generally more accurate
than the Finite Volume formulation.

» This solution algorithm is generally applicable to any
conductivity tensor.

» Multigrid methods are effective for acceleration.
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