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THE BIPOLAR BEHAVIOR OF THE RICHTMYER-MESHKOV INSTABILITY
Fernando F. Grinstein, [1] Akshay A. Gowardhan, [1] and J. Ray Ristorcelli [2]

[1]: XCP-4, Los Alamos National Laboratory, Los Alamos, NM
[2] : CCS-2, Los Alamos National Laboratory, Los Alamos, NM

A numerical study of the evolution of the multimode planar Richtmyer-Meshkov
instability (RMI) in a light-heavy (air-SF6, Atwood number A=0.67) configuration
involving a Mach number Ma=1.5 shock is carried out. Our results demonstrate
that the initial material interface morphology controls the evolution characteristics
of RMI (for fixed A, Ma), and provide a significant basis to develop metrics for
transition to turbulence. Depending on initial rms slope of the interface, RMI
evolves into linear or nonlinear regimes, with distinctly different flow features and
growth rates, turbulence statistics, and material mixing rates. We have called this
the bipolar behavior of RMI. Some of our findings are not consistent with heuristic
notions of mixing in equilibrium turbulence: more turbulent flow—as measured by
spectral bandwidth, can be associated with higher material mixing but,
paradoxically, to lower measures of turbulent kinetic energy and integral mixing
layer width.

Funded by LANL LDRD-DR Program on “Turbulence by Design”.
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Motivation

 Characterize Initial condition effects
on transition and mixing

» Goal: control instability
New results

» Bipolar behavior of the RM instability

» challenges to modeling

* reshock effects on first shock

instantaneous material mixing

» Los Alamos LANL LDRD-DR Program on “Turbulence by Design”
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Shqck Driven Turbulent Mixmg Experiments =
SR Richtmyer-Meshkov Instabllﬁy shocks & turbulence | ="~

ILES RAGE simulations 2D HYDRA simulation of NIF-scale

SF4 mass fraction distributions ignition double shell capsule
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planar single-interface (v&s 95, Caltech)

 Understand Effects of Initial Material Interface Conditions
« Practical Goal: control (promote or inhibit) RM instability
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Shock-Driven Turbulence Simulations

X-Computational Physics Division

Wall

» shocks and turbulence, transitional flow

» wide range of length and time scales,
non-linear interactions

Un-shocked SFs | > Implicit Large Eddy Simulation (ILES),
e.g., ILES book, 2" printing: 2010

Shocked Air (M=1.5)
* planar (Vetter & Sturtevant ‘95, ....), gas curtain (Prestridge et al., LANL P-23)

 Hybrid WENO / classical LES, Pullin et al. 2006, ..., 2011

* ILES, 2002 - 2011: Cohen et al. (FV-PPM), ... Schilling et al. (FD-WENO),
Youngs, Drikakis et al. (FV-LR, FV-Godunov), Leinov et al. (FV-ALE), ...

 |ILES-RAGE; FV-Godunov, van Leer limiter, no interface treatment, AMR
planar V-S expts., PoF March 2011;
I planar Bipolar RM, PoF Letters July 2011; AIAA-Hawaii-2011 / ETC13 - PoF
shocked (double interface) gas-curtains, J. Turbulence 2011, in press.



S (| ‘DR D | ILES RAGE — Planar RM Expts.
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X-Computational Physics Division Spectral IC effects on material m|x|ng
Grinstein, Gowardhan, and Wachtor, PoF, March 2011
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Initial material interface parameterization =0
(no initial “egg-crate”, no reshock...) |
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Bipolar Behavior of planar RM P
Ma=1.5, air/SF, — no egg-crate, no reshock LDRD

SRS C I U Gowardhan, Ristorcelli and Grinstein; PoF Letters, July 2011

Los Alamos National Laboratory

Initial rms slope 7,=x,9, of Initial Material Interface _ A, =21k,

Beyond Richtmyer ( growth = constant x 1, ):
-> bipolar RM behavior vs. IC morphology "
= different instability mechanisms & late-time flow

Dimensional results

Non-Dimensional “Bipolar” results
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Characterizing Small-Scale Production G

innovation for our nation’

-> zero-crossing wavenumber k (e.g., Sreenivasan et al. '83)

YSF6

K is the “zero crossing”
wavenumber of the mass
density fluctuation
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Spectral bandwidth of the turbulence

spectral bandwidth proxy

‘LDRD

innovation for our nation”

Spec_:tral bandwidth proxy 8(1) Integral scale
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Higher initial n_, leads to higher 7(¢) at late times




Turbulence metrics

turbulent kinetic energy enstrophy
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 MORE enstrophy — LESS turbulent kinetic energy

 IC challenge: enstrophy and energy -- different deposition mechanisms



Turbulence metrics: isotropy ‘‘ORD

Lumley’s anisotropy tensor analysis
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Higher n_, — more mixing, more isotropy



Consequences of Bliolar RM Behavior (L?I:TﬁD

- reshock effects ~ first shock effects inpovaton or s ton’
AIAA-Hawau 2011 { ETC13-Warsaw-2011 > PoF
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Planar Shock-Driven Turbulence @L@D’ RD

Grinstein, Gowardhan, and Wachtor, PoF, 2011; Gowardhan, Ristorcelli and Grinstein; PoF Letters, 2011 novation Iereucnstice’
Shocked (double interface) Gas Curtain = Gowardhan and Grinstein, J. of Turb. 2011, in press

: non-linear, mode coupling , mix-width 6 ~t 2
- transition to turbulence suggested

- more material mixing & smaller scales

* Reshock effects on first shock, if n, > 1

 The modeler’s (initial condition) challenge
» two different instabilities & growth trends

- —asn, 1 enstrophyl isotropyl TKE! 6~t] ALLGROW withn,

- —as 1, | enstrophy! isotropy! GROW withn,
TKE| &~t"*] DECREASE with n,




