

1

Classifier-Guided Sampling for Discrete Variable, Discontinuous

Design Space Exploration: Convergence and Computational

Performance

Peter B. Backlund, David W. Shahan, and Carolyn C. Seepersad*

Peter B. Backlund
R&D Scientist and Engineer
Sandia National Laboratories
pbbackl@sandia.gov

David W. Shahan
Research Scientist
HRL Laboratories, LLC
dwshahan@hrl.com

Carolyn C. Seepersad*

Associate Professor
Department of Mechanical Engineering
University of Texas at Austin
ccseepersad@mail.utexas.edu

* Corresponding author

SAND2013-10292J

2

Classifier-Guided Sampling for Discrete Variable, Discontinuous

Design Space Exploration: Convergence and Computational

Performance

Abstract

A classifier-guided sampling (CGS) method is introduced for solving
engineering design optimization problems with discrete and/or continuous
variables and continuous and/or discontinuous responses. The method merges
concepts from metamodel-guided sampling and population-based optimization
algorithms. The CGS method uses a Bayesian network classifier for predicting
the performance of new designs based on a set of known observations or
training points. Unlike most metamodeling techniques, however, the classifier
assigns a categorical class label to a new design, rather than predicting the
resulting response in continuous space, and thereby accommodates non-
differentiable and discontinuous functions of discrete or categorical variables.
The CGS method uses these classifiers to guide a population-based sampling
process towards combinations of discrete and/or continuous variable values with
a high probability of yielding preferred performance. Accordingly, the CGS
method is appropriate for discrete/discontinuous design problems that are ill-
suited for conventional metamodeling techniques and too computationally
expensive to be solved by population-based algorithms alone. The rates of
convergence and computational properties of the CGS method are investigated
when applied to a set of discrete variable optimization problems. Results show
that the CGS method significantly improves the rate of convergence towards
known global optima, on average, when compared to genetic algorithms.

Keywords: Classifier-guided sampling, sequential sampling, metamodeling,
direct search, stochastic optimization, Bayesian classification

1 Introduction

Many engineering design optimization problems involve discrete variables and

discontinuous responses and are governed by simulation models of non-trivial

complexity. There are many forms of discrete variable design problems, as noted by

Huang and Arora [1]. The most challenging type involves variables that are not only

discrete but also categorical in value, accompanied by responses that are

discontinuous and non-differentiable. For example, the design of a suspension system

requires selecting the types of components and their connectivity. Similarly, the

system-wide design of a ship's power generation and storage capabilities and

supporting infrastructure requires selection of component types, quantities, and

3

connectivity, and responses such as energy consumption and reliability are

discontinuous functions of these discrete and categorical variables [2]. In many of

these engineering design problems, the system models are too computationally

expensive to support search algorithms that require large populations of solutions.

In response to this challenge, a classifier-guided sampling (CGS) method is

introduced in this paper for solving engineering design optimization problems with

discrete and/or continuous variables and continuous and/or discontinuous responses.

The method merges concepts from metamodel-guided sampling and population-based

optimization algorithms. The CGS method uses a Bayesian network classifier, in

place of a metamodel, for predicting the performance of new designs based on a set of

known observations or training points. However, the classifier assigns a categorical

class label to a new design, rather than predicting the resulting response in continuous

space. The CGS method uses these classifiers to guide a population-based sampling

process towards combinations of continuous and/or discrete variable values with a

high probability of yielding preferred performance. Accordingly, the CGS method is

appropriate for discrete/discontinuous design problems that are ill-suited for

conventional metamodeling techniques and too computationally expensive to be

solved by population-based algorithms alone.

The CGS method is similar to metamodel-based design because it uses a

surrogate model, in the form of a classifier, to guide the search for preferred design

solutions. The general procedure for metamodel-based design is to generate an initial

set of designs or training points, evaluate them with a computationally expensive

simulation model, and then use them to train a metamodel to predict the performance

of alternative designs [3,4]. Many different metamodeling techniques have been

developed and compared [5-11]; some of the most frequently studied techniques for

engineering design applications include polynomial regression, support vector

regression (SVR) [12], kriging [13], multivariate adaptive regression splines (MARS)

[14], NURBs-based metamodels [15], and radial basis functions (RBF). Since the

metamodel is computationally inexpensive relative to the underlying simulation, it is

4

useful for efficiently searching for better designs, provided it is sufficiently accurate.

Metamodel-based design optimization strategies, as reviewed by Wang and Shan [3],

typically incorporate sequential sampling of the design space [16] to improve the

accuracy of the metamodel and/or the quality of the resulting solutions. Optimization

could be performed on the metamodel itself [17-19], or the metamodel could be used

to guide a process of sampling towards optimal designs [20,21]. The focus of this

paper is on the latter strategy.

One of the challenges in applying metamodel-guided sampling and

optimization methods to discrete/discontinuous design problems is that metamodel-

based methods are typically restricted to approximating responses that are smooth and

continuous [22]. Methods have been developed to accommodate either discrete input

variables or discontinuous responses, but not both. For example, Meckesheimer et al.

[23], introduce a metamodeling approach for approximating models with continuous

variables and a response with combined discontinuous/continuous behavior. Multiple

metamodels are combined to model the entire response in a piecewise manner, with a

state selecting “logic function” to determine which metamodel to use based on the

values of the input variables. This method is effective on problems in which there are

multiple regions of continuous responses, separated by discontinuities. Sharif, et al.

introduce the discrete-variable mode pursuing sampling (D-MPS) method [24]. D-

MPS is a direct sampling method that uses a metamodel to generate a set of so-called

“cheap points”. A cumulative distribution function (CDF) is used to sample from

these points, based on the likelihood of resulting in high performance responses. The

D-MPS method is best suited for problems with underlying behavior that is

sufficiently continuous to support interpolation of the response across the discrete

input variable values.

The CGS method focuses on design problems for which discrete and

categorical input variables, combined with discontinuous responses, do not allow

commonly used metamodeling techniques to interpolate between design points. For

solving these types of problems, a classifier-guided method is developed that shares

5

the adaptive sequential sampling approach of metamodel-based design but also

utilizes a combinatorial search technique with similarities to population-based

stochastic search algorithms.

There are several types of stochastic search algorithms that are appropriate for

discrete/discontinuous design problems, including simulated annealing [25] and

genetic algorithms [26,27]. Like sequential sampling approaches, genetic algorithms

maintain a set or population of candidate designs and seek to improve that population

with each iteration of the algorithm. Unlike metamodel-based sequential sampling

approaches, however, they do not use explicit models of the expected performance of

candidate designs to select the next generation of candidate designs and rely on

simple rules, such as crossover and mutation, instead. As a result, these algorithms

often require large numbers of underlying function evaluations to identify high quality

solutions. Metamodels are sometimes used to reduce the computational expense (e.g.,

[28]), but they are not suitable for discrete/discontinuous problems, as discussed

previously.

In response to this challenge, a class of methods called estimation of

distribution algorithms (EDAs) have been developed [29]. EDAs are based upon the

genetic algorithm paradigm in that they operate on a population of solutions.

However, they generate the offspring that constitute the next generation by sampling

from a probability distribution that is based upon the highest performers. These

methods vary primarily in the probability distributions that they use. The simpler

methods, such as the compact genetic algorithm, assume independence between the

design variables, leading to simple distributions whose parameters are easily

determined [30]. The more sophisticated methods, such as the Bayesian optimization

algorithm, can model interdependencies between design variables and consequently

take longer to construct [31].

The method presented in this paper differs from existing EDAs in two

important ways. First, it is based upon classifiers, which are models that seek to

explicitly predict if a candidate design is in one of two or more categories, or classes,

6

based upon a set of points of known class called the training set. The classifier is used

to guide the search towards promising solutions based on these categorical predictions

of the quality of candidate designs. The resulting method is analogous to metamodel-

guided sampling and optimization methods, except classifiers are used in place of

other metamodeling techniques to accommodate discrete and categorical variables

and discontinuous responses. Second, the classifier has a more sophisticated memory

than GAs or EDAs, because it is trained on the entire set of training points, rather than

limiting itself exclusively to the points in the current generation, resulting in less

likelihood of converging to a local minimum. Specifically, the use of multiple classes

with a probabilistic Bayesian network classifier allows the algorithm to distinguish

between solutions with a high probability of preferred performance, solutions with a

high probability of poor performance, and solutions for which the class membership is

uncertain. The CGS method uses this information to explore the design space broadly

in the early stages of the search process and then to guide the sequential sampling

process increasingly towards combinations of continuous and/or discrete design

variables with a high probability of yielding preferred performance. The search

process occurs in a series of stages that are similar to the generations in population-

based algorithms.

The details of the CGS method are described in Section 3, following a

discussion of Bayesian network classifiers in Section 2. The rates of convergence of

the CGS method for a set of standard test problems are presented in Section 4,

followed by a discussion of these results in Section 5. Lastly, time complexities of

the CGS method are investigated in Section 6.

2 Bayesian Network Classifiers

In machine learning, a classifier is used to assign categorical class labels to

test points that have known feature attributes but unknown class labels [32]. The

classifier is trained using a set of feature vector / class label pairs that are generally

obtained experimentally. There are numerous methods available for classification,

7

including decision trees [33], learned rules [34], neural networks [35], Bayesian

network classifiers [36], and support vector machines [37]. In this section, we present

the details of a classifier that uses Bayesian networks (BN) [38] to create probability

distributions that can be used for classification. Bayesian network classifiers are

selected for use in the CGS method because they are a probabilistic method that

provides the user with a probability for each class, in addition to a simple class label

as an output. This property is critical to the sampling step of the CGS method that is

explained in Section 3.

Using probability distributions for classification has a theoretical foundation in

Bayesian decision theory [39]. Consider a K category classification, where ck

represents class k and k = [1,2,…,K]. The classification is over a bounded D-

dimensional design space for which a single design instance can be represented by a

vector, x = [xi = 1…D]T. If we can express the class conditional probability of a design

instance given a category, P(x|ck), then Bayes formula can be used to find the

posterior probability of the class ck given design parameters x, P(ck|x), according to:

()
() ()

()

() ()

() ()
1

| |
|

|

k k k k

k K

k kk

P c P c P c P c
P c

P P c P c
=

= =

∑
x x

x
x x

(1)

Design x is classified as a member of the class ck that has the highest P(ck|x)

when compared to all other P(c|x). There are two key parameters of the classifier: the

prior probability, P(ck), and the class conditional probability, P(x|ck).

In general, the user may define the prior probabilities of each class however

they see fit. For example, if there is no reason to believe that one class is more

probable than any other, each P(ck) can be set equal for all k. In this research, the

prior probabilities, P(ck), are estimated using the frequency of occurrence of each

class in the training set according to

()
1k

k

N
P c

N K

+
≅

+
 (2)

8

where N is the total number of training points, Nk is the total number of training points

for class k, and K is the total number of classes. Equation (2), known as the “rule of

succession” [40], precludes prior probabilities of zero that can result from small

sample sizes by adding a single observation of each class prior to sampling. Equation

(2) is appropriate for this application because there is prior knowledge that K classes

are represented in the pool of unevaluated candidate solutions. For the task of

estimating the class conditional probability, P(x|c), Bayesian Networks are described

next.

Bayesian networks (BN) encode a factored joint probability distribution as a

directed acyclic graph (DAG) where the edges from the parent nodes to a child node

mean that the child node’s probability is conditionally independent of its non-

descendants, given its parent nodes [38]. In other words, setting the values of a

node’s parents makes that node dependent only upon its descendent nodes, i.e. the

nodes that are reachable following any chain of arcs from that node.

Two extreme cases of network connectivity represent very well studied

classifiers: the fully independent Bayesian network, also known as “Naïve Bayes”

(NB), and the fully dependent case. Figure 1 depicts the graphical representation of

the fully dependent BN classifier where the dependency on class is represented by the

root C node of the graph.

x2

x1 xD

C

Figure 1: Fully dependent BN classifier

In the case of the fully connected BN classifier, the class conditional

probability is given by

() () () ()1 1 2 1 1| | ..., , ... | , |D DP c P x x x c P x x c P x c−=x (3)

9

A drawback of the fully dependent case is that estimation of the class

conditional probabilities is not practical in high dimensional space when a limited

number of training points is available. The problem is greatly simplified by assuming

the design variables are independent given the class, resulting in the Naïve Bayes

classifier, as shown in Figure 2.

x2x1 xD

C

Figure 2: Naïve Bayes classifier

By assuming independence among all design variables, the class conditional

probability is given by

() () () ()2 1| | ... | |DP c P x c P x c P x c=x (4)

Although the assumption of independence is often incorrect, the NB classifier

frequently performs well in practice because its classification decision may be correct

even if its class conditional probability estimates are inaccurate [41]. Furthermore,

Zhang [42] showed that NB is optimal even when dependencies exist if those

dependencies cancel each other out. For the reasons described above, along with the

need to estimate class conditional probabilities with relatively few training points, the

NB classifier is used for the tests performed in this research. Frequency-based

multinomial distributions are used to estimate the values of each P(xi|ck). There are D

distributions for each class, where D is the number of design variables.

3 The Classifier-Guided Sampling Method

The classifier-guided sampling (CGS) method uses a Bayesian network

classifier to provide predictions of total design space performance. The classifier

prediction is based on a set of training points from the expensive base model. Unlike

a metamodel, a classifier cannot provide quantitative predictions on a continuous

scale; however, it can provide a qualitative estimate of an objective function value by

10

pairing each candidate solution with a categorical class label. A classifier is used in

the CGS method to assess a large set of candidate solutions quickly without requiring

an expensive simulation for each point. The classifier outputs are used to guide the

sampling process towards optimal or near optimal solutions. This method is

especially useful for cases in which the concept of distance between points is

irrelevant or undefined.

The CGS method (Figure 3) begins by executing expensive simulations for a

set of randomly generated training points. The outputs of the expensive base

simulation are assigned qualitative class labels (e.g. ‘low’ / ‘high' quality) based on

their objective function values. This task is achieved by defining a class threshold,

TC, which serves as a decision boundary for assigning class labels to training points

based on their objective function values. If the design goal is to maximize an

objective function and the training point has an objective function value higher than

TC, it is given a class label of ‘high’ quality. A training point is given a class label of

‘low’ quality if it is less than TC. The rule is reversed for minimization problems in

which case a training point is given a class label of ‘high’ if it is less than TC.

11

Termination

Criteria Met?

START:

Training Points

Sample Points for

Expensive Evaluation

Based on Classifications

Train / Update Classifier

with All Expensive

Points

Yes

No

Expensive

Simulation
Assign Classes to

Expensive Points

Use Classifier to Predict

Classes of All Candidate

Solutions

All

Candidate

Solutions

END: Best of

all Expensive

Points

Figure 3: Classifier-guided sampling method

The class threshold, TC, can remain fixed throughout the solution process, but

performance is improved by allowing it to change as the classifier learns more about

the performance space. In this research, TC is allowed to change to help the classifier

better differentiate between ‘high’ and ‘low’ quality solutions. When candidate points

are evaluated by the classifier, no points are classified as ‘high’ if there are no points

in the training set with this class label. Therefore, TC is initially set so that 5% of the

training points are assigned a class label of ‘high’ to give the classifier a sample of the

characteristics of higher quality solutions. As more training points become available

from expensive function evaluations and the current best known solution improves,

the threshold is made more stringent to reduce the number of candidate points that are

assigned a class label of ‘high’. Conversely, if zero or very few candidate points are

classified as ‘high’ at an intermediate iteration, TC is made less stringent to allow

12

more points to be allocated to the ‘high’ class. This strategy of changing TC is

intended to avoid fixation on suboptimal solutions or local minima. The effect is

similar to that of an annealing or cooling schedule in simulated annealing algorithms.

The classifier is trained using training point pairs that include both the training

point design variable values and the corresponding class labels. After training, the

classifier is used to predict the classes of all candidate solutions. For each unexplored

point in the set of candidate solutions, the classifier returns the class label as an

output. These so-called ‘cheap points’ provide categorical predictions of the quality

of all candidate solutions that have not been evaluated with the expensive simulation.

Once the set of cheap points is generated using the classifier, their class labels

and posterior probabilities, P(ck|x), are used to determine which unexplored points are

to be sampled for the next batch of expensive simulations. In general, priority should

be given to the points that are classified as ‘high’. However, it is also important,

especially early in the solution process, to sample points throughout the entire design

space to improve classifier accuracy. The classifier is trained with a relatively small

number of points, and it may not predict high quality solutions reliably without more

knowledge of the design space. Therefore, three types of points are designated for

sampling to achieve the necessary balance between depth and breadth of the search:

high-certainty high-class points, high-certainty low-class points, and uncertain points.

The high-certainty points are those with posterior probabilities greater than 0.6 for

that particular class. For example, a point for which P(chigh|x) = 0.75 and P(clow|x) =

0.25 is considered a high-certainty high-class point. Likewise, a point with P(chigh|x)

= 0.10 and P(clow|x) = 0.90 is considered a high-certainty low-class point. However, a

point for which P(chigh|x) = 0.55 and P(clow|x) = 0.45 is considered an uncertain point.

Uncertain points can be from either class, as long as the maximum P(ck|x) of both

classes is less than or equal to 0.6.

These three types of points are strategically sampled to infuse both depth and

breadth into the sampling step of the CGS method. Let Ns be the number of points to

be sampled during each iteration. In the CGS method, Ns is composed almost entirely

13

of high-certainty high-class points and uncertain points. The percentage of high-

certainty high-class points in Ns is designated Phs, and its value can change with each

iteration. One possible progression of Phs is shown in Figure 4. The user defines the

value of Phs for the first iteration, and its value increases linearly to a maximum of

90% with subsequent iterations. If several iterations occur with no improvement to

the current best known solution, Phs is adjusted to 50% or less and continues to

increase linearly to 90% with each subsequent iteration. High-certainty high-class

points are sampled randomly up to the prescribed proportion of Ns, and the remaining

Ns points are selected randomly from the pool of cheap points that meet the criteria

for uncertain points. Sampling of the third type of point, the high-certainty low-class

points, is rare. These points are only sampled in the unusual event that the total

number of high-certainty high-class points and uncertain points in the entire pool of

cheap points is less than Ns. In this case, the high-certainty low-class points are

sampled randomly until there are Ns points selected for expensive simulation in the

next step of the CGS algorithm. Deliberately sampling low-certainty low-class

solutions may seem counterintuitive, because the goal of optimization is to pursue the

highest performing solutions with the least number of function evaluations. However,

like many heuristic methods, CGS must implement a balance between exploration and

exploitation in its search process. With CGS, exploration is especially important

because it improves the accuracy of the classifier and enables it to better distinguish

between high-performance and low-performance solutions. Therefore, low-certainty

low-class points are sampled in this rare case to keep Ns constant and continuously

improve the accuracy of the classifier.

14

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

P
e
rc
e
n
ta
g
e
 S
a
m
p
le
d
 (
%
)

CGS Iterations

CGS Sampling Strategy

High-Certainty

High Points

Uncertain

Points

Figure 4: Sampling strategy

Once the expensive simulations are performed, termination criteria are

evaluated. Some options for termination criteria include upper limits on the number

of expensive simulation evaluations or algorithm iterations, or achievement of a

desired objective function value. The CGS algorithm repeats until the termination

criteria are met, at which point the best known solution is provided as the output.

The CGS method shares many of the same characteristics as direct sampling

metamodel-based design optimization (MBDO) algorithms. The key difference in the

CGS method is that a classifier is used to provide categorical estimates of the fitness

of candidate solutions, while a metamodel is used in direct sampling MBDO

algorithms to approximate a continuous function and provide quantitative estimates of

the fitness of candidate solutions. In many combinatorial problems, the discrete

variables have a discontinuous, non-differentiable effect on the response. A classifier

is appropriate as an approximation of such functions because it provides categorical

outputs that are discontinuous by nature.

The CGS method is a direct search optimization algorithm, similar to

simulated annealing, genetic algorithms, and tabu search. That is, it requires no

explicit knowledge of an analytical objective function. The unique property of the

CGS method is its use of a classifier to reduce the total number of evaluations of the

expensive base simulation. The CGS method uses a classifier as a substitute, or

15

surrogate of the base model. Although the classifier is unable to provide a

quantitative estimate of the objective function output, it can give a qualitative estimate

of the fitness of a candidate solution. Therefore, the hypothesized advantage of the

CGS method is that it is able to reduce expensive base function evaluations by

limiting expensive simulations to points that are predicted by the classifier to result in

favorable objective function values.

The CGS method is a tool for rapid design space exploration for finding

acceptable solutions quickly. It is best described as a direct sampling metamodel-

based design method for discrete variable / discontinuous response problems, in

which a classifier is used in place of a traditional continuous variable metamodel. In

the following sections, the performance of the CGS method is compared to genetic

algorithms when applied to discrete variable optimization problems.

4 Test Problems

In this section, the CGS method is applied to a selection of discrete variable,

discontinuous response optimization problems. Genetic algorithms (GAs) and

random search are also applied to the test problems and performance comparisons are

made. These problems are selected to provide a broad range of problem types on

which to test the CGS method. The problems feature a variety of variable types,

including binary variables (knapsack problem), combinatorial variables (traveling

salesperson problem), and a mix of categorical variables and continuous variables that

are constrained to discrete values (welded beam problem). Each test problem features

discrete variables that have a discontinuous effect on the problem’s objective

function, thus making them suitable for testing the performance of CGS.

4.1 20-Item Knapsack Problem

The objective of the knapsack problem is to select items from a set of

available items that will maximize the combined value, V, of all selected items

without exceeding a total weight limit, W. In the knapsack problem used in this study,

there are 20 different items, and there is only one of each type of item available for

16

selection. Denoting a vector of binary variables x = (x1, x2,…,x20) to represent the

selection of items, the problem is formulated as follows:

Maximize ()
1

n

i i

i

V v x
=

=∑x (5)

Subject to
1

,
n

i i

i

w x W
=

≤∑ { }0,1ix ∈

(6)

where vi and wi are the value and weight of item i, respectively. W is chosen to be

50% of the total weight of all available items. The weights and values of the 20

available items are given in Table A.1 in Appendix A.

4.2 11-City Traveling Salesperson Problem

The traveling salesperson problem (TSP) is a frequently studied combinatorial

optimization problem. Given a set of cities and their Cartesian coordinates, the

objective is to find the shortest possible tour that visits each city exactly once and

returns to the city of origin. If there are n cities to visit, there are n! possible solutions

to this problem. The problem size is reduced to (n-1)!/2 by specifying a city of origin

at which the tour will always begin and end and by assuming symmetry, i.e. the

distance between any two cities is the same regardless of direction traveled. A tour is

represented by a vector of integer variables x = (x1, x2,…,x10) where xi is an integer

from one to ten and each integer value can appear only once in each solution. By

specifying the variables in this way, the objective function can be formulated as:

Minimize () () () ()
2

1 1 10

1

,
n

o i i o

i

D d x d x x d x
−

+

=

= + +∑x (7)

where d is the Euclidean distance between cities xi and xi+1 and do is the distance from

the city of origin to the first or last city in the tour. The Cartesian coordinates of the

origin and the 10 visited cities are given in Table A.2 in Appendix A.

17

4.3 Welded Beam Design Problem

The welded beam design problem, adapted from [43] and [44], is an

engineering optimization problem that combines categorical and quantitative discrete

variables. A rectangular bar is welded at one end and serves as a cantilever beam to

carry a point load at the opposite end. The objective is to select the weld type,

material, and geometric parameters that minimize the cost of fabrication. The two

weld types and geometric parameters are shown in Figure 5.

Figure 5: Welded beam problem [44]

The weld configuration is binary and describes whether two (x1 = 0) or four

(x1 = 1) of the contact edges between the beam and base are to be welded. The weld

and beam material is represented by one of four integers: x2 = 1 (steel), x2 = 2 (cast

iron), x2 = 3 (brass), and x2 = 4 (aluminum). The geometric parameters are the

thickness of the weld (x3 = h), the width of the beam (x4 = t), the thickness of the

beam (x5 = b), and the length of the welded portion of the beam (x6 = l). The variables

that describe the geometric parameters are restricted to a finite set of discrete values

(Table 1):

Table 1: Welded beam geometric parameter ranges
Variable Symbol Min (in.) Max (in.) Step Size (in.)

x3 h 0.0625 0.5000 0.0625

x4 t 7.500 10.000 0.125

x5 b 0.0625 1.0000 0.0625

x6 l 0.125 3.000 0.125

If the six design variables described above are represented by the vector x =

(x1, x2, x3, x4, x5, x6), the objective function and constraints are given by

18

Minimize () () () ()2

1 3 6 1 4 2 4 5 61f c x x x x c x x L x= + + + +x (8)

Subject to

() ()

() ()

() ()

() ()

1

2

3 max

4

0

0

0

0.577 0

c

g S

g P F

g

g S

σ

δ δ

τ

 = − ≥


= − ≥


= − ≥


= − ≥

x x

x x

x x

x x

(9)

where c1 and c2 are material costs and g1, g2, g3, and g4 are constraints on the bending

stress σ(x), buckling load Pc(x), beam deflection δ(x), and weld shear stress τ(x),

respectively. The force of the load F is 6,000 lb., the extended length L of the beam is

14 in., and the maximum allowable deflection δmax is 0.25in. The material costs and

properties are provided in the Appendix.

4.4 Test Metholology and Implementation Details

Performance comparison of the CGS method and a GA is achieved by

executing a set of rate of convergence tests in which the current best solution versus

the number of objective function evaluations is recorded. This test provides a visual

measure of how quickly each method converges towards known global optima.

The performance of the CGS method and the GA depends in part on user-

defined tuning parameters. Care must be taken when selecting these parameters to

ensure that a fair comparison is conducted and presented. For the CGS method, the

three parameters of interest are the number of training points in the initial training set,

Ntr, the number of new points to sample for expensive evaluation at each iteration, Ns,

and the initial value of the percentage of high-certainty high-class points to sample

from the pool of cheap points, Phs. For the GA used in this study, the three

parameters of interest are the population size, N, the percentage of population

members selected for reproduction via crossover operations, Pc, and the percentage of

encoded bits to mutate in each generation, Pm.

The optimal settings for these parameters are highly problem-specific. For

example, there is a tradeoff between the size of the initial CGS training set and overall

rate of convergence. This phenomenon is a direct result of the fact that the initial

19

CGS training points in this study are selected randomly and without guidance from

the classifier. If the size of the initial training set is too small, the classifier used in

the first iteration does not have sufficient information about the behavior of the design

space and may be unable to effectively guide subsequent sampling. If the initial

training set is large, a significant amount of time may be wasted searching the design

space ineffectively (randomly), because during this phase the classifier is not yet

being leveraged to guide the search towards superior solutions.

For both CGS and GAs, each parameter is evaluated at three different levels

for each test problem, resulting in 27 possible parameter combinations. Each of the

27 parameter combinations are tested ten times for each test problem, and the

parameter combinations that enable the GA or CGS to identify a predetermined

objective function value with the fewest function evaluations, on average, are selected

for inclusion in the main comparison study. The three parameters levels for each test

problem are shown in Tables 2 and 3. The parameter values in boldface are those for

which the CGS method and GA identify a predetermined objective function value

with the fewest function evaluations on average.

Table 2: Classifier-guided sampling user-defined parameters
Test Problem Ntr Ns Phs

Knapsack [50, 100, 200] [50, 100, 200] [0.1, 0.5, 0.9]

Traveling Salesperson [100, 200, 400] [100, 200, 400] [0.1, 0.5, 0.9]

Welded Beam [50, 100, 200] [50, 100, 200] [0.1, 0.5, 0.9]

Table 3: Genetic algorithm user-defined parameters
Test Problem N Pc Pm

Knapsack [25, 50, 100] [0.6, 0.8, 1] [0.005, 0.010, 0.015]

Traveling Salesperson [25, 50, 100] [0.6, 0.8, 1] [0.005, 0.010, 0.015]

Welded Beam [25, 50, 100] [0.6, 0.8, 1] [0.005, 0.010, 0.015]

A detailed discussion of the GA encodings, selection method, crossover, and mutation

method is provided by [2].

In addition to the parameters described above, the Bayesian network structure

must be selected. For the knapsack and the welded beam problems, the Naïve Bayes

(NB) classifier is used in the CGS algorithm. This Bayesian network structure is

chosen because relatively few training points are needed to populate the class

20

conditional probability distributions with adequate density. Furthermore, although the

assumption of independence is often incorrect, the Naïve Bayes classifier frequently

performs well in practice because its classification decision may be correct even if its

class conditional probability estimates are inaccurate [41]. Furthermore, Zhang [42]

shows that Naïve Bayes is optimal even when dependencies exist, if those

dependencies cancel each other out.

Due to the strong conditional dependence among variables in the TSP, the NB

classifier does not provide adequate classification accuracy, and the CGS method fails

to converge towards the known global optimum in some trials. This result is directly

related to the strong assumption of independence built into the Naïve Bayes classifier.

In light of the above discussion, an Augmented Naïve Bayes (ANB) network structure

[42] is used for the TSP in this research. In the ANB classifier, each variable node is

conditionally dependent on its adjacent variable node (Figure 6). While this BN

structure does not capture the highly dependent nature of the variables in the TSP, it

improves performance by enabling the classifier to recognize dependencies between

adjacent cities in the TSP tour.

x2x1 x3

c

xD

Figure 6: Bayesian network structure for the TSP

As was discussed in Section 3, the CGS class threshold, Tc, is allowed to

evolve to improve performance. In these studies, if the number of high-certainty

high-class points is greater than Ns, then the class threshold for the next iteration,

Tc,i+1 is reduced (for minimization problems) or increased (for maximization

problems) by half the difference between the current class threshold, Tc,i, and the

current best known solution:

21

()*

, , ,0.5c i+1 c i c iT T T f= − − (10)

where f* is the current best known solution. Likewise, if the number of high-certainty

high-class points is less than or equal to 10% of Ns, then the class threshold is

increased (for minimization problems) or reduced (for maximization problems) by 5%

of the difference between the current class threshold and the initial class threshold:

(), , ,0 ,0.05c i+1 c i c c iT T T T= + − (11)

where Tc,0 is the initial class threshold, set so that 5% of the initial training set is

assigned a class label of “high.” If neither of these conditions are true, the class

threshold does not change.

In addition to the class threshold, the percentage of high-certainty high-class

points, Phs, can also change with each iteration. In these experiments, the user defines

the value of Phs for the first iteration according to the values indicated in Table 2. Its

value increases linearly by 20% with each iteration up to a maximum of 90%. If two

iterations occur with no improvement to the current best known solution, Phs is

adjusted to 50% and continues to increase linearly to 90% with subsequent iterations.

A purely random search is also performed on the three test problems to

provide an additional comparison. For the random search method, each new trial

begins with the set of all possible solutions. Samples are randomly pulled from the

exhaustive solution space without being replaced to avoid repeat evaluations of

identical solutions. As the iterations proceed, the solution with the best objective

function value is retained until a solution with a better objective function value is

randomly sampled.

Random number generation is a key element of the solution process in all

three of the compared methods, and performance varies with each repeat solution of

the same test problem. Therefore, the convergence rate tests are repeated 50 times for

each method on all test problems, and the primary performance comparison is based

on the mean performance. In addition to the mean performance, the 10th and 90th

22

percentiles of all 50 tests are calculated at select points to provide an indication of the

extent to which performance varies about the mean.

For benchmarking purposes, the global optima for each test problem are

identified using exhaustive enumeration. The 20-item knapsack problem has two

optima with identical objective function values, while the TSP and welded beam

problem have single global optima.

4.5 Results

The results for the rate of convergence tests for the knapsack, traveling

salesperson, and welded beam problems are shown in Figures 6-8. The error bars at

select function evaluation values represent the 10th/90th percentiles. The percentiles

are slightly offset from each other to prevent overlapping and improve visual clarity.

Figure 7: Knapsack problem convergence test results with 10th/90th percentile bars

23

Figure 8: 11-city TSP convergence test results with 10th/90th percentile bars

Figure 9: Welded beam problem convergence test results with 10th/90th percentile bars

Initially, for the first few function evaluations, the CGS method performs no

better than random search. This behavior is expected because the first batch of points

24

selected for function evaluation is selected randomly to serve as the initial training set

for the classifier. Once the CGS becomes active after evaluating the initial training

set (100 function evaluations for the knapsack and TSP, 50 function evaluations for

the welded beam), the average best known solution approaches the known optimum

rapidly compared to random search. This behavior can be seen on all three of the test

problems.

For the 20-item knapsack problem (Figure 7), the CGS method converges on

one of the two global optima with just over 400 function evaluations, while it takes

the GA over 1,200 function evaluations, on average. In addition to faster average rate

of convergence, the CGS method is less prone to fixation on suboptimal solutions.

One of the two global optima is found with the CGS method with fewer than 1,200

function evaluations in all 50 of the trials. However, in three of the 50 trials the GA

fails to find the optimal solution in fewer than 2,500 function evaluations.

For the 11-city TSP (Figure 8), the performances of the CGS method and the

GA are similar up to about the first 1000 function evaluations. However, beyond this

point the GA begins to flatten out while the CGS method continuous to converge

towards the optimal solution. The CGS method finds the global optimum with fewer

than 3,000 function evaluations in the majority of the 50 trials, and in all 50 trials it

does so in fewer than 8,000 function evaluations. However, in many of the trials the

GA fails to converge on the global optimum with fewer than 10,000 function

evaluations.

For the welded beam problem (Figure 9), the CGS method drastically

outperforms the GA, and the GA only marginally outperforms random search. In

most cases the CGS method identifies the global optimum in fewer than 800 objective

function evaluations. However, in three of the 50 trials the CGS method fails to find

the optimum with fewer than 2,000 function evaluations. The GA struggles with the

welded beam problem; the average best solution it identifies in 2,000 function

evaluations is equal to that which the CGS method is able to find with about 450

function evaluations.

25

The 10th/90th percentile bars exhibit similar behavior for all three test

problems. Early in the solution process, the CGS solutions in the 10th percentile are

inferior to the GA solutions in the 90th percentile. This trend indicates that if a

limited number of function evaluations are allowed, the CGS method would

outperform the GA in most, but not all cases. However, as the number of function

evaluations increases, the CGS solutions that are in the 10th percentile are superior or

equal to the GA solutions that are in the 90th percentile. Therefore, given an adequate

number of function evaluations, the CGS method will perform better than the GA in

most cases, and equal to the GA in a few select cases.

5 Discussion

The results of this study show that the CGS method converges to the known

global optima with significantly fewer objective function evaluations. These results

support the hypothesis that a discrete variable classifier can be used in place of a

continuous variable metamodel to solve computationally expensive, discrete variable /

discontinuous response design problems.

Although the CGS method is effective for solving the test problems presented

in this study, the number of initial training points and the average number of function

evaluations required to find the optimal solution are high. A minimum of several

hundred function evaluations is required to achieve convergence to a global optimum

in the problems tested here. If hundreds of function evaluations are required for

accurate classification and convergence toward a global optimum, then the method

would be useful only for problems of moderate computational expense (i.e., with

execution times on the order of minutes, rather than days).

Convergence to a precise known global optimum is not the only measure of

optimization algorithm performance. In many practical situations, designers are

tasked with identifying performance-improving solutions in a limited amount of time.

In such cases, a more meaningful measure of optimization algorithm performance is

how close the algorithm can get to the global optimum with a fixed number of

26

allowable objective function evaluations. By this measure, the CGS method performs

favorably for the problems presented here. For example, for the welded beam

problem in Figure 9, the CGS method converges to within approximately 10% of the

global optimum with only 400 function evaluations, on average, whereas the GA

requires over 1500 function evaluations, on average, to reach a similar solution.

The superior performance of the CGS method compared to the GA can be

partially attributed to the lack of repeated objective function evaluations for identical

solutions. Repeat evaluations are completely avoided with the CGS method for the

particular problems solved here, because all possible candidate solutions can be

enumerated in the initial list of unevaluated points, also referred to as “cheap points.”

When a cheap point is sampled for expensive evaluation with the guidance of the

classifier, it is removed from the list of cheap points and appended to the list of

expensive points that are used to train the classifier. Therefore, it is impossible for

previously sampled points to be sampled and evaluated with the objective function

more than once.

In contrast to the CGS method, repeat evaluations are a common occurrence

with the traditional implementation of the GA, which is used in this research. For the

50 trials that are performed on the three test problems in this study, there is an

average of 394.3 repeats during the first 1,200 function evaluations for the knapsack

problem, 3,379 repeats during the first 8,000 function evaluations for the TSP, and

802.5 repeats during the first 2,000 function evaluations for the welded beam

problem. The cause of many of these repeat evaluations is that, in several of the

trials, the GA’s population has become largely composed of identical solutions.

When this occurs, mating of two identical parent solutions results in two identical

children solutions that are also identical to the parents. Therefore, subsequent

generations are very similar to the previous ones, and solutions that have already been

evaluated are reevaluated. The homogeneity of the candidate solution pool that

results often persists for generations unless a well-placed mutation operation

introduces an improvement to the current best solution. As a result, the GA expends a

27

significant amount of computational resources as it evaluates and reevaluates

solutions, introducing minor mutations, in an attempt to reintroduce diversity into the

population.

The Bayesian classifier gives the CGS method the ability to simultaneously

exploit high performance solutions (depth search) and explore regions of the design

space that are uncertain (breadth search), while avoiding points that have a high

probability of resulting in low performance. By continuously training and updating

the classifier before the start of each new iteration, the CGS method is able to use

knowledge gained from all of the previously evaluated candidate points to inform the

search for improved solutions. In contrast, GAs rely only on the solutions contained

in the most recent generation to inform the search process using a “survival of the

fittest” strategy, in which only solutions that are already known to be high performers

have the highest chance of being included in subsequent generations. Therefore, the

GA has no memory of previously evaluated solutions other than a small number of

“elites” that are guaranteed to survive from the previous generation.

In this research, training points are sampled randomly and no effort is made to

develop a training set that provides the classifier with a variety of solution classes. In

practice, however, every attempt should be made to provide the classifier with a

training set that contains solutions from all qualitative classes. Even a very large

training set will not result in a useful classifier if high quality solutions are absent

from the set. Therefore, when generating the initial training set, practitioners should

take advantage of any information or intuitions that are available about the problem to

be solved. Previous design experience could be used to seed the initial training set

with solutions that are known to result in favorable or unfavorable objective function

values, thus giving the classifier an early indicator of the characteristics of high

quality solutions.

28

6 Computational Time and Complexity of the Classifier-Guided Sampling

Method

The CGS method identifies high-quality solutions with fewer objective

function evaluations than genetic algorithms when applied to the three test problems

in the previous section. When the objective function is expensive to evaluate, the

time savings of the CGS method are considerable. However, there is additional

computational expense associated with the process of training the classifier,

classifying the unevaluated test points, and sampling for subsequent expensive

evaluation. In most cases, these operations require more computational time than the

GA selection, crossover, and mutation steps. In this section, the time complexity of

the CGS method is studied to gain an understanding of when it may and may not be

worthwhile, from the perspective of computational time, to use the CGS method. If

the objective function is inexpensive to evaluate, it may not be worthwhile to use the

CGS algorithm, because doing so would take more time than using a faster algorithm

even if the competing method requires more objective function evaluations, on

average, to achieve the same result.

The knapsack problem, traveling salesperson problem (TSP), and the welded

beam problem are used to test the computational expense of the CGS algorithm. For

each test problem, the CGS algorithm is run with 500 initial training points (Ntr), 500

new points sampled at each iteration (Ns), and a total of 10,000 objective function

evaluations. Three measurements are taken at each iteration: training time,

classification time, and sampling time. The training time is the time it takes to train

the classifier with the 'expensive' points, which are points from the current iteration

that have been evaluated with the objective function. Training time does not include

the time needed to evaluate the objective function. The classification time is the time

required to use the classifier to classify each 'cheap' point in the set of all candidate

solutions that has not yet been evaluated with the expensive objective function.

Lastly, the sampling time is the time required to use the outputs from the classifier

(classes and posterior probabilities) to sample points from the set of cheap points for

29

subsequent objective function evaluation. All experiments are performed using

MATLAB on a high-performance computing Linux machine with two dual-core,

3.33GHz processors and 24 GB of physical memory.

In Figure 10, the training time versus the number of training points is shown

for the three test problems. In all test cases, the training time increases linearly with

the number of training points. This behavior is expected, because the classifier does

not become more complex with each new training point. That is, there are no

additional terms or parameters in the classifier equations, and the increase in expense

should be proportional only to the number of training points. The test problem with

the slowest training time is the knapsack problem, followed by the TSP, and the

problem with the fastest training times is the welded beam problem. The problem-

specific training time, in this case, is correlated with the number of independent

variables for each respective problem (20 for the knapsack problem, 10 for the TSP,

and 6 for the welded beam problem). For each independent variable, the training

function must cycle through all of the training points and count the number of times

each variable in the training set assumes a specific discrete value. When a variable is

conditionally dependent on one or more other variables (i.e., has parent nodes in the

Bayesian network), the training function must count the number of times a specific

combination of variable and parent variable values appear. The connectivity of the

Bayesian network has a slight, but relatively inconsequential, impact on the time

complexity of this counting process because the values for a particular variable and its

parents can be counted simultaneously in a single step.

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2000 4000 6000 8000 10000

T
ra

in
in

g
 T

im
e

 (
s)

Training Points

CGS Training Time

Knapsack

TSP

Welded Beam

Figure 10: Training time versus number of training points

The number of training points has an insignificant effect on the classification

and sampling times. However, the number of cheap points has a significant effect on

these metrics. The number of cheap points changes very slightly from one iteration to

the next, because it decreases by an amount equal to the number of points sampled for

expensive evaluation, and this number is very small compared to the total number of

iterations. Therefore, it is not very useful or informative to plot the classification and

sampling times versus the number of cheap points. Instead, the average classification

and sampling times of the 20 iterations performed in this time complexity study

versus the average numbers of cheap points at each iteration are calculated and

plotted, as shown in Figure 11. In general, the classification and sampling times

increase linearly with the number of cheap points. This trend is expected, because the

amount of work performed by the classifier and the sampling step of the CGS

algorithm is directly proportional to the number of cheap points that need to be

classified and considered for sampling.

31

0

2

4

6

8

10

12

14

16

18

0.00E+00 5.00E+05 1.00E+06 1.50E+06 2.00E+06

T
im

e
 (

s)

Cheap Points

Classification and Sampling Time

Classification Time

Sampling Time

Welded Beam

Knapsack

TSP

Figure 11: Classification time and sampling time versus number of classified points

In Figure 12, the total CGS computational time is decomposed into its

constituents. Most of the computational expense in the CGS algorithm is associated

with the cheap point classification and sampling steps. Training time is a very small

percentage of the total time required by the CGS algorithm, while the classification

time and sampling time are approximately equal and make up the remaining

percentages. Classification and sampling times are large due to the large number of

cheap points that must be handled in these steps. For the classification time, all of the

cheap points must be evaluated with the classifier, and this takes a significant amount

of time when there are a large number of these points. The sampling step is also

somewhat computationally intensive, because all of the cheap points must be checked

to determine if they qualify as high-certainty high-class points, high-certainty low-

class points, or uncertain points.

32

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Knapsack TSP Welded Beam

Percentages of Total CGS Time

Sampling Time

Classification Time

Training Time

Figure 12: Percentages of total CGS time

The accumulated computational expense of the CGS algorithm over all

iterations in a single run is highly dependent on the user defined parameter Ns, which

is the number of points that are sampled for objective function evaluation at each

iteration. When this parameter is small, more CGS iterations can be performed for a

fixed number of objective function evaluations. Accumulated computational time of

the CGS algorithm increases in this case, because the large set of cheap points must

be classified and sampled at each iteration. On the other hand, choosing larger Ns

values may have adverse effects on the rate of convergence towards optimal solutions.

During the first few CGS iterations, the number of training points in the classifier is

small, and the classifier may not be providing accurate predictions of categorical

solution quality. If Ns is set to a large value, a large number of points are sampled

based on the outputs of an inaccurate classifier. Larger Ns values may result in an

inefficient search of the design space, and the total number of function evaluations

may be increased. Therefore, smaller values of Ns are generally preferred, especially

when the objective function is expensive to evaluate.

The CGS algorithm is more computationally expensive than a typical GA,

because a GA’s selection, crossover, and mutation operations involve simple

manipulations of strings of integers. However, the CGS method converges towards

the known global optima of the test problems significantly faster than GAs. If the

33

objective function is very fast and inexpensive, it may require less total time to use a

GA even if more objective function evaluations are required. On the other hand, if

the objective function is expensive to operate, the benefit of rapid convergence

offered by the CGS method outweighs the drawback of the additional computational

expense of the CGS algorithm. For a given problem, there is a specific level of

objective function computational expense above which it is worthwhile to use the

CGS method over GAs.

Estimations of these values for the three test problems, herein referred to as

the “Expensive Evaluation Payoff Times,” are provided next. For each test problem,

the CGS and GA processes are terminated after a predetermined number of objective

function evaluations. On average, the GA does not converge to the known global

optima before the maximum number of evaluations are performed. The best objective

function value found with the GA, on average, is designated as a “desired” objective

function value. Next, the number of function evaluations needed by the CGS method

to achieve these desired values is identified. This information is used in conjunction

with the results of this time complexity study to estimate the expensive evaluation

payoff time for each of these test problems. The number of training points and the

number of points sampled at each iteration are the same as those for the rate of

convergence tests in Section 4. The results of this process are presented in Table 4.

Table 4: Expensive evaluation payoff time of the CGS method

Test Problem
GA Objective

Function
Evaluations

Average Best GA
Objective

Function Value

Evaluations Needed by
CGS to Find Equivalent

Objective Function Value

Expensive
Evaluation

Payoff Time (s)

Knapsack 1200 788.34 350 0.10

TSP 8000 344.81 1900 0.08

Welded Beam 2000 $2.08 450 0.02

For all three test problems, the expensive evaluation payoff time of the

objective function is very small (less than or equal to one tenth of a second). That is,

if the time required for each objective function evaluation is greater than the

expensive evaluation payoff times in Table 4, then it takes the CGS algorithm less

computational time than the GA to identify a solution with an equivalent objective

function value. In other words, even though the CGS algorithm is more expensive to

34

run than a GA, the time saved by identifying better solutions with fewer objective

function evaluations is significant enough to warrant its use. In this analysis, it is

assumed that the GA can be run in zero time. When the actual time of the GA is

accounted for, the expensive evaluation payoff time would be even smaller.

7 Conclusions and Future Work

The CGS method was presented for performing design optimization and

design space exploration on computationally expensive, discrete variable,

discontinuous response problems. The CGS method uses a Bayesian classifier to

provide estimates of system performance. The classifier assigns each candidate

solution a categorical class label, and these class labels are used to guide the search

process towards combinations of design variables that have high probabilities of

yielding performance improvements. The method is compared to GAs and random

search using three discrete variable test problems. When compared to GAs, the CGS

method converges to known global optima with significantly fewer function

evaluations. Furthermore, the GGS method is significantly more robust than the GA

in all test cases. The CGS method consistently identifies the known global optima of

the test functions across multiple trial applications for each test problem, whereas the

GA is shown to be prone to fixation on local, suboptimal solutions.

As an optimization technique, the CGS method is very user-friendly. There

are no problem-specific encodings of solutions to master, and constraints are handled

by simply assigning infeasible solutions a “low quality” class label. Other user-

defined parameters, such as the number of expensive points to sample on each

iteration and the initial proportion of “high quality” solutions to sample, have an

effect on how quickly the CGS method converges on an optimal or near optimal

solution. However, if these parameters are not set perfectly, the CGS method still

performs well and converges to global optima in most cases.

35

The CGS method presented here is applied to problems with relatively small

design spaces that range from approximately 500,000 possible solutions for the

welded beam problem to approximately 1.8 million possible solutions for the 11-city

traveling salesperson problem. For each iteration of the CGS algorithm, the classifier

assigns categorical class labels to all possible solutions when the problems are this

size. However, many engineering problems have design spaces that are so large that

classification of the entire space is prohibitively time consuming. This issue could be

addressed in future work by direct sampling of the probability distributions on which

the classifier is based, thus eliminating the need to classify the entire unevaluated

design space.

Choosing an appropriate Bayesian network structure for the classifier is also

critical. In this research, the fully independent, or Naïve Bayes, structure is used for

all problems except for the traveling salesperson problem. When a Naïve Bayes

structure is used, the dimensionalities of each variable’s class conditional probabilities

are low, and fewer training points are required to populate the distribution. For many

problems, a more accurate classifier will result if a more sophisticated Bayesian

network classifier is used. A careful understanding of the problem and the conditional

dependencies of the variables involved could be used to manually construct a more

appropriate Bayesian network structure, or network building algorithms could be used

to automatically construct the Bayesian network and consequentially improve the

ability of the classifier to predict solution classes accurately.

Lastly, the CGS method has strong potential to be applied to multi-objective

optimization problems. This capability could be realized by following the traditional

approach of aggregating the objectives into a single objective in the form of a

weighted sum. Alternatively, a novel and possibly more efficient approach could be

to utilize the classifier outputs to sample only the candidate solutions that are believed

to be Pareto optimal.

36

Acknowledgements

Support from the Office of Naval Research under the auspices of the Electric Ship
Research and Development Consortium is gratefully acknowledged. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the sponsors.

References

[1] Huang, M. W. and J. S. Arora, 1997, “Optimal Design with Discrete Variables:
Some Numerical Examples,” International Journal for Numerical Methods in
Engineering, Vol. 40, pp. 165-188.

[2] Backlund, P. B., 2012, "A Classifier-Guided Sampling Method for Early-Stage
Design of Shipboard Energy Systems," Ph.D. Dissertation, Mechanical Engineering
Dep., University of Texas at Austin, Austin, TX.

[3] Wang, G. G. and S. Shan, 2007, “Review of Metamodeling Techniques in Support
of Engineering Design Optimization,” Transactions of the ASME, Vol. 129, pp. 370-
380.

[4] Simpson, T. W., V. Toropov, V. Balabanov and F. A. C. Viana, 2008, "Design and
Analysis of Computer Experiments in Multidisciplinary Design Optimization: A
Review of How Far We Have Come – or Not," 12th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Victoria, British Columbia, 10-12 September,
2008.

[5] Giunta, A. and L. T. Watson, 1998, "A Comparison of Approximation Modeling
Techniques: Polynomial Versus Interpolating Models," 7th AIAA/USAF/ISSMO
Symposium on Multidisciplinary Analysis & Optimization, St. Louis, MO, AIAA,
Vol. 1, pp.392-404. AIAA-98-4758.

[6] Simpson, T. W., T. M. Mauery, J. J. Korte and F. Mistree, 1998, “Comparison of
Response Surface and Kriging Models for Multidisciplinary Design Optimization,”
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Vol. 1, pp. 381-391.

[7] Jin, R., W. Chen and T. W. Simpson, 2001, “Comparative Studies of
Metamodelling Techniques Under Multiple Modelling Criteria,” Structural and
Multidisciplinary Optimization, Vol. 23, pp. 1-13.

[8] Clarke, S. M., J. H. Griebsch and T. W. Simpson, 2005, “Analysis of Support
Vector Regression for Approximation of Complex Engineering Analyses,” Journal of
Mechanical Design, Vol. 127, pp. 1077-1087.

[9] Fang, H., M. Rais-Rohani, Z. Liu and M. F. Horstemeyer, 2005, “A Comparative
Study of Metamodeling Methods for Multiobjective Crashworthiness Optimization,”
Computers and Structures, Vol. 83, pp. 2121-2136.

[10] Ely, G. R. and C. C. Seepersad, 2009, "A Comparative Study of Metamodeling
Techniques for Predictive Process Control of Welding Applications," International

37

Manufacturing Science and Engineering Conference, West Lafayette, Indiana,
ASME, Paper Number MSEC2009-84189.

[11] Kim, B.-S., Y.-B. Lee and D.-H. Choi, 2009, “Comparison Study on the
Accuracy of Metamodeling Technique for Non-Convex Functions,” Journal of
Mechanical Science and Technology, Vol. 23, pp. 1175-1181.

[12] Vapnik, V., S. Golowich and A. Smola, 1997, “Support Vector Method for
Function Approximation, Regression Estimation, and Signal Processing,” Advances in
Neural Information Processing Systems, Vol. 9, pp. 281-287.

[13] Sacks, J., S. B. Schiller and W. J. Welch, 1989, “Designs for Computer
Experiments,” Technometrics, Vol. 31, No. 1, pp. 41-47.

[14] Friedman, J. H., 1991, “Multivariate Adaptive Regression Splines,” The Annals
of Statistics, Vol. 19, No. 1, pp. 1-67.

[15] Turner, C. J., R. H. Crawford and M. I. Campbell, 2007, “Global optimization of
NURBs-based metamodels,” Engineering Optimization, Vol. 39, No. 3, pp. 245-269.

[16] Jin, R., W. Chen and A. Sudjianto, 2002, "On Sequential Sampling for Global
Metamodeling in Engineering Design," ASME Design Engineering Technical
Conferences, Montreal, Canada, Paper Number DETC2002/DAC-3492.

[17] Osio, I. G. and C. H. Amon, 1996, “An Engineering Design Methodology with
Multistage Bayesian Surrogates and Optimal Sampling,” Research in Engineering
Design, Vol. 8, No. 4, pp. 189-206.

[18] Rodriguez, J. F., V. M. Pérez, D. Padmanabhan and J. E. Renaud, 2001,
“Sequential Approximate Optimization Using Variable Fidelity Response Surface
Approximations,” Structural and Multidisciplinary Optimization, Vol. 22, pp. 24-44.

[19] Wang, G. G., Z. Dong and P. Aitchison, 2001, “Adaptive Response Surface
Method - A Global Optimization Scheme for Computation-intensive Design
Problems,” Engineering Optimization, Vol. 33, No. 6, pp. 707-734.

[20] Wang, L., S. Shan and G. G. Wang, 2004, “Mode-Pursuing Sampling Method for
Global Optimization on Expensive Black-Box Functions,” Engineering Optimization,
Vol. 36, No. 4, pp. 419-438.

[21] Shan, S. and G. G. Wang, 2005, “An Efficient Pareto Set Identification Approach
for Multi-objective Optimization on Black-box Functions,” Journal of Mechanical
Design, Vol. 127, pp. 866-874.

[22] Forrester, A. I. J. and A. J. Keane, 2009, “Recent Advances in Surrogate-Based
Optimization,” Progress in Aerospace Sciences, Vol. 45, pp. 50-79.

[23] Meckesheimer, M., R. R. Barton, T. W. Simpson, F. Limayem and B. Yannou,
2001, “Metamodeling of Combined Discrete/Continuous Responses,” AIAA Journal,
Vol. 39, No. 10, pp. 1950-1959.

38

[24] Sharif, B., G. G. Wang and T. Y. ElMekkawy, 2008, “Mode Pursuing Sampling
Method for Discrete Variable Optimization on Expensive Black-Box Functions,”
Journal of Mechanical Design, Vol. 130, pp. 021402-1-11.

[25] Aarts, E. H. L. and J. H. M. Korst, 1989, Simulated Annealing and Boltzmann
Machines, John Wiley and Sons.

[26] Holland, J. H., 1975, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence, University of Michigan Press, Ann Arbor.

[27] Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, MA.

[28] Li, M., G. Li and S. Azarm, 2008, “A Kriging Metamodel Assisted Multi-
objective Genetic Algorithm for Design Optimization,” Journal of Mechanical
Design, Vol. 130, No. 3, pp. 031401 (10 pages).

[29] Pelikan, M., D. E. Goldberg and F. G. Lobo, 2002, “A Survey of Optimization by
Building and Using Probabilistic Models,” Computational Optimization and
Applications, Vol. 21, No. 1, pp. 5-20.

[30] Harik, G., G. G. Lobo and D. E. Goldberg, 1999, “The Compact Genetic
Algorithm,” IEEE Transactions on Evolutionary Computation, Vol. 3, No. 4, pp. 287-
297.

[31] Pelikan, M., D. E. Goldberg and E. Cantu-Paz, 2000, “Linkage Problem,
Distribution Estimation, and Bayesian Networks,” Evolutionary Computation, Vol. 8,
No. 3, pp. 311-340.

[32] Kotsiantis, S. B., 2007, “Supervised Machine Learning: A Review of
Classification Techniques,” Informatica, Vol. 31, pp. 249-268.

[33] Murthy, S. K., 1998, “Automatic Construction of Decision Trees from Data: A
Multi-Disciplinary Survey,” Data Mining and Knowledge Discovery, Vol. 2, pp. 345-
389.

[34] Furnkranz, J., 1999, “Separate-and-Conquer Rule Learning,” Artificial
Intelligence Review, Vol. 13, pp. 3-54.

[35] Zhang, G. P., 2000, “Neural Networks for Classification: A Survey,” IEEE
Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews,
Vol. 30, No. 4, pp. 451-462.

[36] Friedman, N., D. Geiger and M. Goldszmidt, 1997, “Bayesian Network
Classifiers,” Machine Learning, Vol. 29, pp. 131-163.

[37] Burges, C. J. C., 1998, “A Tutorial On Support Vector Machines for Pattern
Recognitions,” Data Mining and Knowledge Discovery, Vol. 2, pp. 121-167.

39

[38] Pearl, J., 1988, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kauffman Publishers, Inc., San Francisco.

[39] Duda, R. O., P. E. Hart and D. G. Stork, 2001, Pattern Classification, John
Wiley and Sons, New York.

[40] Zabell, S. L., 1989, “The Rule of Succession,” Erkenntnis, Vol. 31, No. 2-3, pp.
283-321.

[41] Rish, I., 2001, "An Empirical Study of the Naive Bayes Classifier," IJCAI 2001
Workshop on Empirical Methods in Artificial Intelligence.

[42] Zhang, H., 2004, "The Optimality of Naive Bayes," Proceeding of the
Seventeenth International Florida Artificial Intelligence Research Society
Conference, AIAA Press, Maimi Beach.

[43] Reklaitis, G. V., A. Ravindran and K. M. Ragsdell, 1983, Engineering
Optimization: Methods and Applications, John Wiley and Sons, New York.

[44] Deb, K. and M. Goyal, 1997, "Optimizing Engineering Designs Using a
Combined Genetic Search," Proceedings of the Seventh International Conference on
Genetic Algorithms, (Morgan Kauffman Publishers, San Francisco), pp. 521-528.

40

Appendix: Test Problem Parameters

20-Item Knapsack Problem Parameters

Table A.1: 20-Item knapsack problem parameters
Item Weight (wi) Value (vi)

1 94 3

2 70 41

3 90 22

4 97 30

5 54 45

6 31 99

7 82 75

8 97 76

9 1 79

10 58 77

11 96 41

12 96 98

13 87 31

14 53 28

15 62 58

16 89 32

17 68 99

18 58 48

19 81 20

20 83 3

Traveling Salesperson Problem Parameters

Table A.2: 11-City TSP city coordinates
City Abscissa Ordinate

Origin 14.8 42.7

1 98.6 29.8

2 5.0 4.5

3 39.9 12.0

4 28.0 22.6

5 57.0 79.2

6 26.2 90.7

7 67.9 55.1

8 76.0 47.1

9 86.4 67.5

10 47.3 98.5

Welded Beam Design Problem Material Properties and Costs

Table A.3: Welded beam problem material properties and costs [44]

Material S (kpsi) E (Mpsi) G (Mpsi) c1 ($/in.3) c2 ($/in.3)

Steel 30 30 12 0.1047 0.0481

Cast Iron 8 14 6 0.0489 0.0224

Aluminum 5 10 4 0.5235 0.2405

Brass 8 16 6 0.5584 0.2566

In Table A.3, S is the design stress, E is the Young’s modulus, and G is the

shear modulus.

