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Abstract

A classifier-guided sampling (CGS) method is introduced for solving
engineering design optimization problems with discrete and/or continuous
variables and continuous and/or discontinuous responses. The method merges
concepts from metamodel-guided sampling and population-based optimization
algorithms. The CGS method uses a Bayesian network classifier for predicting
the performance of new designs based on a set of known observations or
training points. Unlike most metamodeling techniques, however, the classifier
assigns a categorical class label to a new design, rather than predicting the
resulting response in continuous space, and thereby accommodates non-
differentiable and discontinuous functions of discrete or categorical variables.
The CGS method uses these classifiers to guide a population-based sampling
process towards combinations of discrete and/or continuous variable values with
a high probability of yielding preferred performance. Accordingly, the CGS
method is appropriate for discrete/discontinuous design problems that are ill-
suited for conventional metamodeling techniques and too computationally
expensive to be solved by population-based algorithms alone. The rates of
convergence and computational properties of the CGS method are investigated
when applied to a set of discrete variable optimization problems. Results show
that the CGS method significantly improves the rate of convergence towards
known global optima, on average, when compared to genetic algorithms.

Keywords: Classifier-guided sampling, sequential sampling, metamodeling,
direct search, stochastic optimization, Bayesian classification

1 Introduction

Many engineering design optimization problems involve discrete variables and
discontinuous responses and are governed by simulation models of non-trivial
complexity. There are many forms of discrete variable design problems, as noted by
Huang and Arora [1]. The most challenging type involves variables that are not only
discrete but also categorical in value, accompanied by responses that are
discontinuous and non-differentiable. For example, the design of a suspension system
requires selecting the types of components and their connectivity. Similarly, the
system-wide design of a ship's power generation and storage capabilities and

supporting infrastructure requires selection of component types, quantities, and



connectivity, and responses such as energy consumption and reliability are
discontinuous functions of these discrete and categorical variables [2]. In many of
these engineering design problems, the system models are too computationally
expensive to support search algorithms that require large populations of solutions.

In response to this challenge, a classifier-guided sampling (CGS) method is
introduced in this paper for solving engineering design optimization problems with
discrete and/or continuous variables and continuous and/or discontinuous responses.
The method merges concepts from metamodel-guided sampling and population-based
optimization algorithms. The CGS method uses a Bayesian network classifier, in
place of a metamodel, for predicting the performance of new designs based on a set of
known observations or training points. However, the classifier assigns a categorical
class label to a new design, rather than predicting the resulting response in continuous
space. The CGS method uses these classifiers to guide a population-based sampling
process towards combinations of continuous and/or discrete variable values with a
high probability of yielding preferred performance. Accordingly, the CGS method is
appropriate for discrete/discontinuous design problems that are ill-suited for
conventional metamodeling techniques and too computationally expensive to be
solved by population-based algorithms alone.

The CGS method is similar to metamodel-based design because it uses a
surrogate model, in the form of a classifier, to guide the search for preferred design
solutions. The general procedure for metamodel-based design is to generate an initial
set of designs or training points, evaluate them with a computationally expensive
simulation model, and then use them to train a metamodel to predict the performance
of alternative designs [3,4]. Many different metamodeling techniques have been
developed and compared [5-11]; some of the most frequently studied techniques for
engineering design applications include polynomial regression, support vector
regression (SVR) [12], kriging [13], multivariate adaptive regression splines (MARS)
[14], NURBs-based metamodels [15], and radial basis functions (RBF). Since the
metamodel is computationally inexpensive relative to the underlying simulation, it is
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useful for efficiently searching for better designs, provided it is sufficiently accurate.
Metamodel-based design optimization strategies, as reviewed by Wang and Shan [3],
typically incorporate sequential sampling of the design space [16] to improve the
accuracy of the metamodel and/or the quality of the resulting solutions. Optimization
could be performed on the metamodel itself [17-19], or the metamodel could be used
to guide a process of sampling towards optimal designs [20,21]. The focus of this
paper is on the latter strategy.

One of the challenges in applying metamodel-guided sampling and
optimization methods to discrete/discontinuous design problems is that metamodel-
based methods are typically restricted to approximating responses that are smooth and
continuous [22]. Methods have been developed to accommodate either discrete input
variables or discontinuous responses, but not both. For example, Meckesheimer ef al.
[23], introduce a metamodeling approach for approximating models with continuous
variables and a response with combined discontinuous/continuous behavior. Multiple
metamodels are combined to model the entire response in a piecewise manner, with a
state selecting “logic function” to determine which metamodel to use based on the
values of the input variables. This method is effective on problems in which there are
multiple regions of continuous responses, separated by discontinuities. Sharif, et al.
introduce the discrete-variable mode pursuing sampling (D-MPS) method [24]. D-
MPS is a direct sampling method that uses a metamodel to generate a set of so-called
“cheap points”. A cumulative distribution function (CDF) is used to sample from
these points, based on the likelihood of resulting in high performance responses. The
D-MPS method is best suited for problems with underlying behavior that is
sufficiently continuous to support interpolation of the response across the discrete
input variable values.

The CGS method focuses on design problems for which discrete and
categorical input variables, combined with discontinuous responses, do not allow
commonly used metamodeling techniques to interpolate between design points. For
solving these types of problems, a classifier-guided method is developed that shares
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the adaptive sequential sampling approach of metamodel-based design but also
utilizes a combinatorial search technique with similarities to population-based
stochastic search algorithms.

There are several types of stochastic search algorithms that are appropriate for
discrete/discontinuous design problems, including simulated annealing [25] and
genetic algorithms [26,27]. Like sequential sampling approaches, genetic algorithms
maintain a set or population of candidate designs and seek to improve that population
with each iteration of the algorithm. Unlike metamodel-based sequential sampling
approaches, however, they do not use explicit models of the expected performance of
candidate designs to select the next generation of candidate designs and rely on
simple rules, such as crossover and mutation, instead. As a result, these algorithms
often require large numbers of underlying function evaluations to identify high quality
solutions. Metamodels are sometimes used to reduce the computational expense (e.g.,
[28]), but they are not suitable for discrete/discontinuous problems, as discussed
previously.

In response to this challenge, a class of methods called estimation of
distribution algorithms (EDAs) have been developed [29]. EDAs are based upon the
genetic algorithm paradigm in that they operate on a population of solutions.
However, they generate the offspring that constitute the next generation by sampling
from a probability distribution that is based upon the highest performers. These
methods vary primarily in the probability distributions that they use. The simpler
methods, such as the compact genetic algorithm, assume independence between the
design variables, leading to simple distributions whose parameters are easily
determined [30]. The more sophisticated methods, such as the Bayesian optimization
algorithm, can model interdependencies between design variables and consequently
take longer to construct [31].

The method presented in this paper differs from existing EDAs in two
important ways. First, it is based upon classifiers, which are models that seek to
explicitly predict if a candidate design is in one of two or more categories, or classes,
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based upon a set of points of known class called the training set. The classifier is used
to guide the search towards promising solutions based on these categorical predictions
of the quality of candidate designs. The resulting method is analogous to metamodel-
guided sampling and optimization methods, except classifiers are used in place of
other metamodeling techniques to accommodate discrete and categorical variables
and discontinuous responses. Second, the classifier has a more sophisticated memory
than GAs or EDAs, because it is trained on the entire set of training points, rather than
limiting itself exclusively to the points in the current generation, resulting in less
likelihood of converging to a local minimum. Specifically, the use of multiple classes
with a probabilistic Bayesian network classifier allows the algorithm to distinguish
between solutions with a high probability of preferred performance, solutions with a
high probability of poor performance, and solutions for which the class membership is
uncertain. The CGS method uses this information to explore the design space broadly
in the early stages of the search process and then to guide the sequential sampling
process increasingly towards combinations of continuous and/or discrete design
variables with a high probability of yielding preferred performance. The search
process occurs in a series of stages that are similar to the generations in population-
based algorithms.

The details of the CGS method are described in Section 3, following a
discussion of Bayesian network classifiers in Section 2. The rates of convergence of
the CGS method for a set of standard test problems are presented in Section 4,
followed by a discussion of these results in Section 5. Lastly, time complexities of

the CGS method are investigated in Section 6.

2 Bayesian Network Classifiers

In machine learning, a classifier is used to assign categorical class labels to
test points that have known feature attributes but unknown class labels [32]. The
classifier is trained using a set of feature vector / class label pairs that are generally

obtained experimentally. There are numerous methods available for classification,



including decision trees [33], learned rules [34], neural networks [35], Bayesian
network classifiers [36], and support vector machines [37]. In this section, we present
the details of a classifier that uses Bayesian networks (BN) [38] to create probability
distributions that can be used for classification. Bayesian network classifiers are
selected for use in the CGS method because they are a probabilistic method that
provides the user with a probability for each class, in addition to a simple class label
as an output. This property is critical to the sampling step of the CGS method that is
explained in Section 3.

Using probability distributions for classification has a theoretical foundation in
Bayesian decision theory [39]. Consider a K category classification, where cx
represents class k and k = [1,2,...,K]. The classification is over a bounded D-
dimensional design space for which a single design instance can be represented by a
vector, X = [x; = 1..p]". If we can express the class conditional probability of a design
instance given a category, P(xlcr), then Bayes formula can be used to find the
posterior probability of the class cx given design parameters X, P(cxlx), according to:

P(xlc,)P(c,) P(xlc,)P(c,)

A= TS Pt Pl N

Design x is classified as a member of the class ¢, that has the highest P(cylx)
when compared to all other P(cIx). There are two key parameters of the classifier: the
prior probability, P(cy), and the class conditional probability, P(xlcy).

In general, the user may define the prior probabilities of each class however
they see fit. For example, if there is no reason to believe that one class is more
probable than any other, each P(cy) can be set equal for all k. In this research, the
prior probabilities, P(cy), are estimated using the frequency of occurrence of each

class in the training set according to
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where N is the total number of training points, Ny is the total number of training points
for class &, and K is the total number of classes. Equation (2), known as the “rule of
succession” [40], precludes prior probabilities of zero that can result from small
sample sizes by adding a single observation of each class prior to sampling. Equation
(2) is appropriate for this application because there is prior knowledge that K classes
are represented in the pool of unevaluated candidate solutions. For the task of
estimating the class conditional probability, P(xlc), Bayesian Networks are described
next.

Bayesian networks (BN) encode a factored joint probability distribution as a
directed acyclic graph (DAG) where the edges from the parent nodes to a child node
mean that the child node’s probability is conditionally independent of its non-
descendants, given its parent nodes [38]. In other words, setting the values of a
node’s parents makes that node dependent only upon its descendent nodes, i.e. the
nodes that are reachable following any chain of arcs from that node.

Two extreme cases of network connectivity represent very well studied
classifiers: the fully independent Bayesian network, also known as ‘“Naive Bayes”
(NB), and the fully dependent case. Figure 1 depicts the graphical representation of
the fully dependent BN classifier where the dependency on class is represented by the

root C node of the graph.

Figure 1: Fully dependent BN classifier

In the case of the fully connected BN classifier, the class conditional

probability is given by

P(xlc)=P(x,1x, s x,¢)..P(x, 1 x,¢) P(x, 1¢) 3)



A drawback of the fully dependent case is that estimation of the class
conditional probabilities is not practical in high dimensional space when a limited
number of training points is available. The problem is greatly simplified by assuming
the design variables are independent given the class, resulting in the Naive Bayes

classifier, as shown in Figure 2.

TONE

Figure 2: Naive Bayes classifier
By assuming independence among all design variables, the class conditional

probability is given by

P(xlc)=P(x,lc)..P(x,1c)P(x 1c) 4)
Although the assumption of independence is often incorrect, the NB classifier
frequently performs well in practice because its classification decision may be correct
even if its class conditional probability estimates are inaccurate [41]. Furthermore,
Zhang [42] showed that NB is optimal even when dependencies exist if those
dependencies cancel each other out. For the reasons described above, along with the
need to estimate class conditional probabilities with relatively few training points, the
NB classifier is used for the tests performed in this research. Frequency-based
multinomial distributions are used to estimate the values of each P(xilcy). There are D
distributions for each class, where D is the number of design variables.

3 The Classifier-Guided Sampling Method

The classifier-guided sampling (CGS) method uses a Bayesian network
classifier to provide predictions of total design space performance. The classifier
prediction is based on a set of training points from the expensive base model. Unlike
a metamodel, a classifier cannot provide quantitative predictions on a continuous

scale; however, it can provide a qualitative estimate of an objective function value by



pairing each candidate solution with a categorical class label. A classifier is used in
the CGS method to assess a large set of candidate solutions quickly without requiring
an expensive simulation for each point. The classifier outputs are used to guide the
sampling process towards optimal or near optimal solutions. This method is
especially useful for cases in which the concept of distance between points is
irrelevant or undefined.

The CGS method (Figure 3) begins by executing expensive simulations for a
set of randomly generated training points. The outputs of the expensive base
simulation are assigned qualitative class labels (e.g. ‘low’ / ‘high' quality) based on
their objective function values. This task is achieved by defining a class threshold,
T¢, which serves as a decision boundary for assigning class labels to training points
based on their objective function values. If the design goal is to maximize an
objective function and the training point has an objective function value higher than
Tc, it is given a class label of ‘high’ quality. A training point is given a class label of
‘low’ quality if it is less than T¢. The rule is reversed for minimization problems in

which case a training point is given a class label of ‘high’ if it is less than T¢.
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Figure 3: Classifier-guided sampling method

The class threshold, 7¢, can remain fixed throughout the solution process, but
performance is improved by allowing it to change as the classifier learns more about
the performance space. In this research, 7¢ is allowed to change to help the classifier
better differentiate between ‘high’ and ‘low’ quality solutions. When candidate points
are evaluated by the classifier, no points are classified as ‘high’ if there are no points
in the training set with this class label. Therefore, T¢ is initially set so that 5% of the
training points are assigned a class label of ‘high’ to give the classifier a sample of the
characteristics of higher quality solutions. As more training points become available
from expensive function evaluations and the current best known solution improves,
the threshold is made more stringent to reduce the number of candidate points that are
assigned a class label of ‘high’. Conversely, if zero or very few candidate points are

classified as ‘high’ at an intermediate iteration, 7 is made less stringent to allow
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more points to be allocated to the ‘high’ class. This strategy of changing T¢ is
intended to avoid fixation on suboptimal solutions or local minima. The effect is
similar to that of an annealing or cooling schedule in simulated annealing algorithms.

The classifier is trained using training point pairs that include both the training
point design variable values and the corresponding class labels. After training, the
classifier is used to predict the classes of all candidate solutions. For each unexplored
point in the set of candidate solutions, the classifier returns the class label as an
output. These so-called ‘cheap points’ provide categorical predictions of the quality
of all candidate solutions that have not been evaluated with the expensive simulation.

Once the set of cheap points is generated using the classifier, their class labels
and posterior probabilities, P(cklx), are used to determine which unexplored points are
to be sampled for the next batch of expensive simulations. In general, priority should
be given to the points that are classified as ‘high’. However, it is also important,
especially early in the solution process, to sample points throughout the entire design
space to improve classifier accuracy. The classifier is trained with a relatively small
number of points, and it may not predict high quality solutions reliably without more
knowledge of the design space. Therefore, three types of points are designated for
sampling to achieve the necessary balance between depth and breadth of the search:
high-certainty high-class points, high-certainty low-class points, and uncertain points.
The high-certainty points are those with posterior probabilities greater than 0.6 for
that particular class. For example, a point for which P(cpignlx) = 0.75 and P(cionlX) =
0.25 is considered a high-certainty high-class point. Likewise, a point with P(cpignlX)
=0.10 and P(ciwlx) = 0.90 is considered a high-certainty low-class point. However, a
point for which P(cpignlx) = 0.55 and P(ciwlx) = 0.45 is considered an uncertain point.
Uncertain points can be from either class, as long as the maximum P(c/x) of both
classes is less than or equal to 0.6.

These three types of points are strategically sampled to infuse both depth and
breadth into the sampling step of the CGS method. Let N, be the number of points to
be sampled during each iteration. In the CGS method, N is composed almost entirely
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of high-certainty high-class points and uncertain points. The percentage of high-
certainty high-class points in N; is designated Ppy, and its value can change with each
iteration. One possible progression of Py is shown in Figure 4. The user defines the
value of P, for the first iteration, and its value increases linearly to a maximum of
90% with subsequent iterations. If several iterations occur with no improvement to
the current best known solution, P, is adjusted to 50% or less and continues to
increase linearly to 90% with each subsequent iteration. High-certainty high-class
points are sampled randomly up to the prescribed proportion of Ny, and the remaining
N; points are selected randomly from the pool of cheap points that meet the criteria
for uncertain points. Sampling of the third type of point, the high-certainty low-class
points, is rare. These points are only sampled in the unusual event that the total
number of high-certainty high-class points and uncertain points in the entire pool of
cheap points is less than N,. In this case, the high-certainty low-class points are
sampled randomly until there are N points selected for expensive simulation in the
next step of the CGS algorithm. Deliberately sampling low-certainty low-class
solutions may seem counterintuitive, because the goal of optimization is to pursue the
highest performing solutions with the least number of function evaluations. However,
like many heuristic methods, CGS must implement a balance between exploration and
exploitation in its search process. With CGS, exploration is especially important
because it improves the accuracy of the classifier and enables it to better distinguish
between high-performance and low-performance solutions. Therefore, low-certainty
low-class points are sampled in this rare case to keep N, constant and continuously

improve the accuracy of the classifier.
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Figure 4: Sampling strategy

Once the expensive simulations are performed, termination criteria are
evaluated. Some options for termination criteria include upper limits on the number
of expensive simulation evaluations or algorithm iterations, or achievement of a
desired objective function value. The CGS algorithm repeats until the termination
criteria are met, at which point the best known solution is provided as the output.

The CGS method shares many of the same characteristics as direct sampling
metamodel-based design optimization (MBDO) algorithms. The key difference in the
CGS method is that a classifier is used to provide categorical estimates of the fitness
of candidate solutions, while a metamodel is used in direct sampling MBDO
algorithms to approximate a continuous function and provide quantitative estimates of
the fitness of candidate solutions. In many combinatorial problems, the discrete
variables have a discontinuous, non-differentiable effect on the response. A classifier
is appropriate as an approximation of such functions because it provides categorical
outputs that are discontinuous by nature.

The CGS method is a direct search optimization algorithm, similar to
simulated annealing, genetic algorithms, and tabu search. That is, it requires no
explicit knowledge of an analytical objective function. The unique property of the
CGS method is its use of a classifier to reduce the total number of evaluations of the

expensive base simulation. The CGS method uses a classifier as a substitute, or
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surrogate of the base model. Although the classifier is unable to provide a
quantitative estimate of the objective function output, it can give a qualitative estimate
of the fitness of a candidate solution. Therefore, the hypothesized advantage of the
CGS method is that it is able to reduce expensive base function evaluations by
limiting expensive simulations to points that are predicted by the classifier to result in
favorable objective function values.

The CGS method is a tool for rapid design space exploration for finding
acceptable solutions quickly. It is best described as a direct sampling metamodel-
based design method for discrete variable / discontinuous response problems, in
which a classifier is used in place of a traditional continuous variable metamodel. In
the following sections, the performance of the CGS method is compared to genetic
algorithms when applied to discrete variable optimization problems.

4 Test Problems

In this section, the CGS method is applied to a selection of discrete variable,
discontinuous response optimization problems. Genetic algorithms (GAs) and
random search are also applied to the test problems and performance comparisons are
made. These problems are selected to provide a broad range of problem types on
which to test the CGS method. The problems feature a variety of variable types,
including binary variables (knapsack problem), combinatorial variables (traveling
salesperson problem), and a mix of categorical variables and continuous variables that
are constrained to discrete values (welded beam problem). Each test problem features
discrete variables that have a discontinuous effect on the problem’s objective
function, thus making them suitable for testing the performance of CGS.

4.1 20-Item Knapsack Problem

The objective of the knapsack problem is to select items from a set of
available items that will maximize the combined value, V, of all selected items
without exceeding a total weight limit, W. In the knapsack problem used in this study,

there are 20 different items, and there is only one of each type of item available for

15



selection. Denoting a vector of binary variables x = (xi, X,...,X20) to represent the

selection of items, the problem is formulated as follows:

Maximize V(X)= ZV,-X,- (5
=l

Subjectto Y, wix, <W, x.€{0,1} (6)
i=1

where v; and w; are the value and weight of item i, respectively. W is chosen to be
50% of the total weight of all available items. The weights and values of the 20

available items are given in Table A.1 in Appendix A.

4.2  11-City Traveling Salesperson Problem

The traveling salesperson problem (TSP) is a frequently studied combinatorial
optimization problem. Given a set of cities and their Cartesian coordinates, the
objective is to find the shortest possible tour that visits each city exactly once and
returns to the city of origin. If there are n cities to visit, there are n! possible solutions
to this problem. The problem size is reduced to (n-1)!/2 by specifying a city of origin
at which the tour will always begin and end and by assuming symmetry, i.e. the
distance between any two cities is the same regardless of direction traveled. A tour is
represented by a vector of integer variables x = (x, xp,...,X10) Where x; is an integer
from one to ten and each integer value can appear only once in each solution. By
specifying the variables in this way, the objective function can be formulated as:

n—2

Minimize  D(x)=d, (x)+ > d (%%, ) +d, (x,) (7)
i=1
where d is the Euclidean distance between cities x; and x;,; and d, is the distance from

the city of origin to the first or last city in the tour. The Cartesian coordinates of the

origin and the 10 visited cities are given in Table A.2 in Appendix A.
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4.3 Welded Beam Design Problem

The welded beam design problem, adapted from [43] and [44], is an
engineering optimization problem that combines categorical and quantitative discrete
variables. A rectangular bar is welded at one end and serves as a cantilever beam to
carry a point load at the opposite end. The objective is to select the weld type,
material, and geometric parameters that minimize the cost of fabrication. The two

weld types and geometric parameters are shown in Figure 5.

o i
.
1
1 =0 =1

Figure 5: Welded beam problem [44]

The weld configuration is binary and describes whether two (x; = 0) or four
(x1 = 1) of the contact edges between the beam and base are to be welded. The weld
and beam material is represented by one of four integers: x, = 1 (steel), x, = 2 (cast
iron), x, = 3 (brass), and x, = 4 (aluminum). The geometric parameters are the
thickness of the weld (x3 = h), the width of the beam (x4 = f), the thickness of the
beam (x5 = b), and the length of the welded portion of the beam (x5 = [). The variables
that describe the geometric parameters are restricted to a finite set of discrete values

(Table 1):

Table 1: Welded beam geometric parameter ranges

Variable Symbol Min (in.) Max (in.) Step Size (in.)
X3 h 0.0625 0.5000 0.0625
X4 t 7.500 10.000 0.125
Xs b 0.0625 1.0000 0.0625
X6 l 0.125 3.000 0.125

If the six design variables described above are represented by the vector x =

(x1, x2, x3, x4, X5, X6), the objective function and constraints are given by




Minimize f(X) = (1"'01 ) x32 (xe +)qx4)+c2x4x5 (L+x6) ()

g (x)=S-0(x)20
g, (x)=P(x)-F=0

Subject to g}(x):é,max —§(x)20 9)
2,(x)=0.577S-7(x)=0

where c¢; and ¢, are material costs and g, g, g3, and g4 are constraints on the bending
stress o(x), buckling load P.(x), beam deflection &x), and weld shear stress 7(x),
respectively. The force of the load F is 6,000 Ib., the extended length L of the beam is
14 in., and the maximum allowable deflection Jdmax is 0.25in. The material costs and
properties are provided in the Appendix.

4.4 Test Metholology and Implementation Details

Performance comparison of the CGS method and a GA is achieved by
executing a set of rate of convergence tests in which the current best solution versus
the number of objective function evaluations is recorded. This test provides a visual
measure of how quickly each method converges towards known global optima.

The performance of the CGS method and the GA depends in part on user-
defined tuning parameters. Care must be taken when selecting these parameters to
ensure that a fair comparison is conducted and presented. For the CGS method, the
three parameters of interest are the number of training points in the initial training set,
N, the number of new points to sample for expensive evaluation at each iteration, Ny,
and the initial value of the percentage of high-certainty high-class points to sample
from the pool of cheap points, P,,. For the GA used in this study, the three
parameters of interest are the population size, N, the percentage of population
members selected for reproduction via crossover operations, P., and the percentage of
encoded bits to mutate in each generation, P,,.

The optimal settings for these parameters are highly problem-specific. For
example, there is a tradeoff between the size of the initial CGS training set and overall

rate of convergence. This phenomenon is a direct result of the fact that the initial
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CGS training points in this study are selected randomly and without guidance from
the classifier. If the size of the initial training set is too small, the classifier used in
the first iteration does not have sufficient information about the behavior of the design
space and may be unable to effectively guide subsequent sampling. If the initial
training set is large, a significant amount of time may be wasted searching the design
space ineffectively (randomly), because during this phase the classifier is not yet
being leveraged to guide the search towards superior solutions.

For both CGS and GAs, each parameter is evaluated at three different levels
for each test problem, resulting in 27 possible parameter combinations. Each of the
27 parameter combinations are tested ten times for each test problem, and the
parameter combinations that enable the GA or CGS to identify a predetermined
objective function value with the fewest function evaluations, on average, are selected
for inclusion in the main comparison study. The three parameters levels for each test
problem are shown in Tables 2 and 3. The parameter values in boldface are those for

which the CGS method and GA identify a predetermined objective function value

with the fewest function evaluations on average.

Table 2: Classifier-guided sampling user-defined parameters

Test Problem N, N, Py
Knapsack [50, 100, 200] [50, 100, 200] [0.1, 0.5, 0.9]
Traveling Salesperson [100, 200, 400] [100, 200, 400] [0.1, 0.5, 0.9]
Welded Beam [50, 100, 200] [50, 100, 200] [0.1, 0.5, 0.9]
Table 3: Genetic algorithm user-defined parameters
Test Problem N P, P,
Knapsack [25, 50, 100] [0.6, 0.8, 1] [0.005, 0.010, 0.015]
Traveling Salesperson [25, 50, 100] [0.6, 0.8, 1] [0.005, 0.010, 0.015]
Welded Beam [25, 50, 100] [0.6, 0.8, 1] [0.005, 0.010, 0.015]

A detailed discussion of the GA encodings, selection method, crossover, and mutation
method is provided by [2].

In addition to the parameters described above, the Bayesian network structure
must be selected. For the knapsack and the welded beam problems, the Naive Bayes
(NB) classifier is used in the CGS algorithm. This Bayesian network structure is

chosen because relatively few training points are needed to populate the class
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conditional probability distributions with adequate density. Furthermore, although the
assumption of independence is often incorrect, the Naive Bayes classifier frequently
performs well in practice because its classification decision may be correct even if its
class conditional probability estimates are inaccurate [41]. Furthermore, Zhang [42]
shows that Naive Bayes is optimal even when dependencies exist, if those
dependencies cancel each other out.

Due to the strong conditional dependence among variables in the TSP, the NB
classifier does not provide adequate classification accuracy, and the CGS method fails
to converge towards the known global optimum in some trials. This result is directly
related to the strong assumption of independence built into the Naive Bayes classifier.
In light of the above discussion, an Augmented Naive Bayes (ANB) network structure
[42] is used for the TSP in this research. In the ANB classifier, each variable node is
conditionally dependent on its adjacent variable node (Figure 6). While this BN
structure does not capture the highly dependent nature of the variables in the TSP, it

improves performance by enabling the classifier to recognize dependencies between

adjacent cities in the TSP tour.

° Q ° ) ) ’ Q

Figure 6: Bayesian network structure for the TSP
As was discussed in Section 3, the CGS class threshold, 7., is allowed to
evolve to improve performance. In these studies, if the number of high-certainty
high-class points is greater than N, then the class threshold for the next iteration,
T.i+; is reduced (for minimization problems) or increased (for maximization
problems) by half the difference between the current class threshold, 7,; and the

current best known solution:
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T.,=T,-05(T,-f) (10)

where f* is the current best known solution. Likewise, if the number of high-certainty
high-class points is less than or equal to 10% of N, then the class threshold is
increased (for minimization problems) or reduced (for maximization problems) by 5%

of the difference between the current class threshold and the initial class threshold:

T, =T,+005(T,~T,) (11)

ci+l —

where T, is the initial class threshold, set so that 5% of the initial training set is
assigned a class label of “high.” If neither of these conditions are true, the class
threshold does not change.

In addition to the class threshold, the percentage of high-certainty high-class
points, Py, can also change with each iteration. In these experiments, the user defines
the value of Py for the first iteration according to the values indicated in Table 2. Its
value increases linearly by 20% with each iteration up to a maximum of 90%. If two
iterations occur with no improvement to the current best known solution, Py is
adjusted to 50% and continues to increase linearly to 90% with subsequent iterations.

A purely random search is also performed on the three test problems to
provide an additional comparison. For the random search method, each new trial
begins with the set of all possible solutions. Samples are randomly pulled from the
exhaustive solution space without being replaced to avoid repeat evaluations of
identical solutions. As the iterations proceed, the solution with the best objective
function value is retained until a solution with a better objective function value is
randomly sampled.

Random number generation is a key element of the solution process in all
three of the compared methods, and performance varies with each repeat solution of
the same test problem. Therefore, the convergence rate tests are repeated 50 times for
each method on all test problems, and the primary performance comparison is based

on the mean performance. In addition to the mean performance, the 10™ and 90™
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percentiles of all 50 tests are calculated at select points to provide an indication of the
extent to which performance varies about the mean.

For benchmarking purposes, the global optima for each test problem are
identified using exhaustive enumeration. The 20-item knapsack problem has two
optima with identical objective function values, while the TSP and welded beam
problem have single global optima.

4.5 Results

The results for the rate of convergence tests for the knapsack, traveling
salesperson, and welded beam problems are shown in Figures 6-8. The error bars at
select function evaluation values represent the 10"/90™ percentiles. The percentiles

are slightly offset from each other to prevent overlapping and improve visual clarity.
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Figure 7: Knapsack problem convergence test results with 10"/90™ percentile bars
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11-City Traveling Salesperson Problem
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Figure 8: 11-city TSP convergence test results with 10"/90"™ percentile bars

Welded Beam Problem
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Figure 9: Welded beam problem convergence test results with 10"/90™ percentile bars
Initially, for the first few function evaluations, the CGS method performs no

better than random search. This behavior is expected because the first batch of points

23



selected for function evaluation is selected randomly to serve as the initial training set
for the classifier. Once the CGS becomes active after evaluating the initial training
set (100 function evaluations for the knapsack and TSP, 50 function evaluations for
the welded beam), the average best known solution approaches the known optimum
rapidly compared to random search. This behavior can be seen on all three of the test
problems.

For the 20-item knapsack problem (Figure 7), the CGS method converges on
one of the two global optima with just over 400 function evaluations, while it takes
the GA over 1,200 function evaluations, on average. In addition to faster average rate
of convergence, the CGS method is less prone to fixation on suboptimal solutions.
One of the two global optima is found with the CGS method with fewer than 1,200
function evaluations in all 50 of the trials. However, in three of the 50 trials the GA
fails to find the optimal solution in fewer than 2,500 function evaluations.

For the 11-city TSP (Figure 8), the performances of the CGS method and the
GA are similar up to about the first 1000 function evaluations. However, beyond this
point the GA begins to flatten out while the CGS method continuous to converge
towards the optimal solution. The CGS method finds the global optimum with fewer
than 3,000 function evaluations in the majority of the 50 trials, and in all 50 trials it
does so in fewer than 8,000 function evaluations. However, in many of the trials the
GA fails to converge on the global optimum with fewer than 10,000 function
evaluations.

For the welded beam problem (Figure 9), the CGS method drastically
outperforms the GA, and the GA only marginally outperforms random search. In
most cases the CGS method identifies the global optimum in fewer than 800 objective
function evaluations. However, in three of the 50 trials the CGS method fails to find
the optimum with fewer than 2,000 function evaluations. The GA struggles with the
welded beam problem; the average best solution it identifies in 2,000 function
evaluations is equal to that which the CGS method is able to find with about 450
function evaluations.
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The 10th/90th percentile bars exhibit similar behavior for all three test
problems. Early in the solution process, the CGS solutions in the 10th percentile are
inferior to the GA solutions in the 90th percentile. This trend indicates that if a
limited number of function evaluations are allowed, the CGS method would
outperform the GA in most, but not all cases. However, as the number of function
evaluations increases, the CGS solutions that are in the 10th percentile are superior or
equal to the GA solutions that are in the 90th percentile. Therefore, given an adequate
number of function evaluations, the CGS method will perform better than the GA in
most cases, and equal to the GA in a few select cases.

5 Discussion

The results of this study show that the CGS method converges to the known
global optima with significantly fewer objective function evaluations. These results
support the hypothesis that a discrete variable classifier can be used in place of a
continuous variable metamodel to solve computationally expensive, discrete variable /
discontinuous response design problems.

Although the CGS method is effective for solving the test problems presented
in this study, the number of initial training points and the average number of function
evaluations required to find the optimal solution are high. A minimum of several
hundred function evaluations is required to achieve convergence to a global optimum
in the problems tested here. If hundreds of function evaluations are required for
accurate classification and convergence toward a global optimum, then the method
would be useful only for problems of moderate computational expense (i.e., with
execution times on the order of minutes, rather than days).

Convergence to a precise known global optimum is not the only measure of
optimization algorithm performance. In many practical situations, designers are
tasked with identifying performance-improving solutions in a limited amount of time.
In such cases, a more meaningful measure of optimization algorithm performance is

how close the algorithm can get to the global optimum with a fixed number of
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allowable objective function evaluations. By this measure, the CGS method performs
favorably for the problems presented here. For example, for the welded beam
problem in Figure 9, the CGS method converges to within approximately 10% of the
global optimum with only 400 function evaluations, on average, whereas the GA
requires over 1500 function evaluations, on average, to reach a similar solution.

The superior performance of the CGS method compared to the GA can be
partially attributed to the lack of repeated objective function evaluations for identical
solutions. Repeat evaluations are completely avoided with the CGS method for the
particular problems solved here, because all possible candidate solutions can be
enumerated in the initial list of unevaluated points, also referred to as “cheap points.”
When a cheap point is sampled for expensive evaluation with the guidance of the
classifier, it is removed from the list of cheap points and appended to the list of
expensive points that are used to train the classifier. Therefore, it is impossible for
previously sampled points to be sampled and evaluated with the objective function
more than once.

In contrast to the CGS method, repeat evaluations are a common occurrence
with the traditional implementation of the GA, which is used in this research. For the
50 trials that are performed on the three test problems in this study, there is an
average of 394.3 repeats during the first 1,200 function evaluations for the knapsack
problem, 3,379 repeats during the first 8,000 function evaluations for the TSP, and
802.5 repeats during the first 2,000 function evaluations for the welded beam
problem. The cause of many of these repeat evaluations is that, in several of the
trials, the GA’s population has become largely composed of identical solutions.
When this occurs, mating of two identical parent solutions results in two identical
children solutions that are also identical to the parents. Therefore, subsequent
generations are very similar to the previous ones, and solutions that have already been
evaluated are reevaluated. The homogeneity of the candidate solution pool that
results often persists for generations unless a well-placed mutation operation
introduces an improvement to the current best solution. As a result, the GA expends a
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significant amount of computational resources as it evaluates and reevaluates
solutions, introducing minor mutations, in an attempt to reintroduce diversity into the
population.

The Bayesian classifier gives the CGS method the ability to simultaneously
exploit high performance solutions (depth search) and explore regions of the design
space that are uncertain (breadth search), while avoiding points that have a high
probability of resulting in low performance. By continuously training and updating
the classifier before the start of each new iteration, the CGS method is able to use
knowledge gained from all of the previously evaluated candidate points to inform the
search for improved solutions. In contrast, GAs rely only on the solutions contained
in the most recent generation to inform the search process using a “survival of the
fittest” strategy, in which only solutions that are already known to be high performers
have the highest chance of being included in subsequent generations. Therefore, the
GA has no memory of previously evaluated solutions other than a small number of
“elites” that are guaranteed to survive from the previous generation.

In this research, training points are sampled randomly and no effort is made to
develop a training set that provides the classifier with a variety of solution classes. In
practice, however, every attempt should be made to provide the classifier with a
training set that contains solutions from all qualitative classes. Even a very large
training set will not result in a useful classifier if high quality solutions are absent
from the set. Therefore, when generating the initial training set, practitioners should
take advantage of any information or intuitions that are available about the problem to
be solved. Previous design experience could be used to seed the initial training set
with solutions that are known to result in favorable or unfavorable objective function
values, thus giving the classifier an early indicator of the characteristics of high

quality solutions.
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6 Computational Time and Complexity of the Classifier-Guided Sampling
Method

The CGS method identifies high-quality solutions with fewer objective
function evaluations than genetic algorithms when applied to the three test problems
in the previous section. When the objective function is expensive to evaluate, the
time savings of the CGS method are considerable. However, there is additional
computational expense associated with the process of training the classifier,
classifying the unevaluated test points, and sampling for subsequent expensive
evaluation. In most cases, these operations require more computational time than the
GA selection, crossover, and mutation steps. In this section, the time complexity of
the CGS method is studied to gain an understanding of when it may and may not be
worthwhile, from the perspective of computational time, to use the CGS method. If
the objective function is inexpensive to evaluate, it may not be worthwhile to use the
CGS algorithm, because doing so would take more time than using a faster algorithm
even if the competing method requires more objective function evaluations, on
average, to achieve the same result.

The knapsack problem, traveling salesperson problem (TSP), and the welded
beam problem are used to test the computational expense of the CGS algorithm. For
each test problem, the CGS algorithm is run with 500 initial training points (N;,), 500
new points sampled at each iteration (N;), and a total of 10,000 objective function
evaluations. =~ Three measurements are taken at each iteration: training time,
classification time, and sampling time. The training time is the time it takes to train
the classifier with the 'expensive' points, which are points from the current iteration
that have been evaluated with the objective function. Training time does not include
the time needed to evaluate the objective function. The classification time is the time
required to use the classifier to classify each 'cheap' point in the set of all candidate
solutions that has not yet been evaluated with the expensive objective function.
Lastly, the sampling time is the time required to use the outputs from the classifier

(classes and posterior probabilities) to sample points from the set of cheap points for
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subsequent objective function evaluation. All experiments are performed using
MATLAB on a high-performance computing Linux machine with two dual-core,
3.33GHz processors and 24 GB of physical memory.

In Figure 10, the training time versus the number of training points is shown
for the three test problems. In all test cases, the training time increases linearly with
the number of training points. This behavior is expected, because the classifier does
not become more complex with each new training point. That is, there are no
additional terms or parameters in the classifier equations, and the increase in expense
should be proportional only to the number of training points. The test problem with
the slowest training time is the knapsack problem, followed by the TSP, and the
problem with the fastest training times is the welded beam problem. The problem-
specific training time, in this case, is correlated with the number of independent
variables for each respective problem (20 for the knapsack problem, 10 for the TSP,
and 6 for the welded beam problem). For each independent variable, the training
function must cycle through all of the training points and count the number of times
each variable in the training set assumes a specific discrete value. When a variable is
conditionally dependent on one or more other variables (i.e., has parent nodes in the
Bayesian network), the training function must count the number of times a specific
combination of variable and parent variable values appear. The connectivity of the
Bayesian network has a slight, but relatively inconsequential, impact on the time
complexity of this counting process because the values for a particular variable and its

parents can be counted simultaneously in a single step.
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Figure 10: Training time versus number of training points

The number of training points has an insignificant effect on the classification
and sampling times. However, the number of cheap points has a significant effect on
these metrics. The number of cheap points changes very slightly from one iteration to
the next, because it decreases by an amount equal to the number of points sampled for
expensive evaluation, and this number is very small compared to the total number of
iterations. Therefore, it is not very useful or informative to plot the classification and
sampling times versus the number of cheap points. Instead, the average classification
and sampling times of the 20 iterations performed in this time complexity study
versus the average numbers of cheap points at each iteration are calculated and
plotted, as shown in Figure 11. In general, the classification and sampling times
increase linearly with the number of cheap points. This trend is expected, because the
amount of work performed by the classifier and the sampling step of the CGS
algorithm is directly proportional to the number of cheap points that need to be

classified and considered for sampling.
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Figure 11: Classification time and sampling time versus number of classified points

In Figure 12, the total CGS computational time is decomposed into its
constituents. Most of the computational expense in the CGS algorithm is associated
with the cheap point classification and sampling steps. Training time is a very small
percentage of the total time required by the CGS algorithm, while the classification
time and sampling time are approximately equal and make up the remaining
percentages. Classification and sampling times are large due to the large number of
cheap points that must be handled in these steps. For the classification time, all of the
cheap points must be evaluated with the classifier, and this takes a significant amount
of time when there are a large number of these points. The sampling step is also
somewhat computationally intensive, because all of the cheap points must be checked
to determine if they qualify as high-certainty high-class points, high-certainty low-

class points, or uncertain points.
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Figure 12: Percentages of total CGS time

The accumulated computational expense of the CGS algorithm over all
iterations in a single run is highly dependent on the user defined parameter N,, which
is the number of points that are sampled for objective function evaluation at each
iteration. When this parameter is small, more CGS iterations can be performed for a
fixed number of objective function evaluations. Accumulated computational time of
the CGS algorithm increases in this case, because the large set of cheap points must
be classified and sampled at each iteration. On the other hand, choosing larger N;
values may have adverse effects on the rate of convergence towards optimal solutions.
During the first few CGS iterations, the number of training points in the classifier is
small, and the classifier may not be providing accurate predictions of categorical
solution quality. If Ny is set to a large value, a large number of points are sampled
based on the outputs of an inaccurate classifier. Larger N, values may result in an
inefficient search of the design space, and the total number of function evaluations
may be increased. Therefore, smaller values of N, are generally preferred, especially
when the objective function is expensive to evaluate.

The CGS algorithm is more computationally expensive than a typical GA,
because a GA’s selection, crossover, and mutation operations involve simple
manipulations of strings of integers. However, the CGS method converges towards

the known global optima of the test problems significantly faster than GAs. If the
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objective function is very fast and inexpensive, it may require less total time to use a
GA even if more objective function evaluations are required. On the other hand, if
the objective function is expensive to operate, the benefit of rapid convergence
offered by the CGS method outweighs the drawback of the additional computational
expense of the CGS algorithm. For a given problem, there is a specific level of
objective function computational expense above which it is worthwhile to use the
CGS method over GAs.

Estimations of these values for the three test problems, herein referred to as
the “Expensive Evaluation Payoff Times,” are provided next. For each test problem,
the CGS and GA processes are terminated after a predetermined number of objective
function evaluations. On average, the GA does not converge to the known global
optima before the maximum number of evaluations are performed. The best objective
function value found with the GA, on average, is designated as a “desired” objective
function value. Next, the number of function evaluations needed by the CGS method
to achieve these desired values is identified. This information is used in conjunction
with the results of this time complexity study to estimate the expensive evaluation
payoff time for each of these test problems. The number of training points and the
number of points sampled at each iteration are the same as those for the rate of

convergence tests in Section 4. The results of this process are presented in Table 4.

Table 4: Expensive evaluation payoff time of the CGS method

GA Objective | Average Best GA Evaluations Needed by Expensive
Test Problem Function Objective CGS to Find Equivalent Evaluation
Evaluations Function Value Objective Function Value | Payoff Time (s)
Knapsack 1200 788.34 350 0.10
TSP 8000 344.81 1900 0.08
Welded Beam 2000 $2.08 450 0.02

For all three test problems, the expensive evaluation payoff time of the
objective function is very small (less than or equal to one tenth of a second). That is,
if the time required for each objective function evaluation is greater than the
expensive evaluation payoff times in Table 4, then it takes the CGS algorithm less
computational time than the GA to identify a solution with an equivalent objective

function value. In other words, even though the CGS algorithm is more expensive to
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run than a GA, the time saved by identifying better solutions with fewer objective
function evaluations is significant enough to warrant its use. In this analysis, it is
assumed that the GA can be run in zero time. When the actual time of the GA is

accounted for, the expensive evaluation payoff time would be even smaller.

7  Conclusions and Future Work

The CGS method was presented for performing design optimization and
design space exploration on computationally expensive, discrete variable,
discontinuous response problems. The CGS method uses a Bayesian classifier to
provide estimates of system performance. The classifier assigns each candidate
solution a categorical class label, and these class labels are used to guide the search
process towards combinations of design variables that have high probabilities of
yielding performance improvements. The method is compared to GAs and random
search using three discrete variable test problems. When compared to GAs, the CGS
method converges to known global optima with significantly fewer function
evaluations. Furthermore, the GGS method is significantly more robust than the GA
in all test cases. The CGS method consistently identifies the known global optima of
the test functions across multiple trial applications for each test problem, whereas the
GA is shown to be prone to fixation on local, suboptimal solutions.

As an optimization technique, the CGS method is very user-friendly. There
are no problem-specific encodings of solutions to master, and constraints are handled
by simply assigning infeasible solutions a “low quality” class label. Other user-
defined parameters, such as the number of expensive points to sample on each
iteration and the initial proportion of “high quality” solutions to sample, have an
effect on how quickly the CGS method converges on an optimal or near optimal
solution. However, if these parameters are not set perfectly, the CGS method still

performs well and converges to global optima in most cases.
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The CGS method presented here is applied to problems with relatively small
design spaces that range from approximately 500,000 possible solutions for the
welded beam problem to approximately 1.8 million possible solutions for the 11-city
traveling salesperson problem. For each iteration of the CGS algorithm, the classifier
assigns categorical class labels to all possible solutions when the problems are this
size. However, many engineering problems have design spaces that are so large that
classification of the entire space is prohibitively time consuming. This issue could be
addressed in future work by direct sampling of the probability distributions on which
the classifier is based, thus eliminating the need to classify the entire unevaluated
design space.

Choosing an appropriate Bayesian network structure for the classifier is also
critical. In this research, the fully independent, or Naive Bayes, structure is used for
all problems except for the traveling salesperson problem. When a Naive Bayes
structure is used, the dimensionalities of each variable’s class conditional probabilities
are low, and fewer training points are required to populate the distribution. For many
problems, a more accurate classifier will result if a more sophisticated Bayesian
network classifier is used. A careful understanding of the problem and the conditional
dependencies of the variables involved could be used to manually construct a more
appropriate Bayesian network structure, or network building algorithms could be used
to automatically construct the Bayesian network and consequentially improve the
ability of the classifier to predict solution classes accurately.

Lastly, the CGS method has strong potential to be applied to multi-objective
optimization problems. This capability could be realized by following the traditional
approach of aggregating the objectives into a single objective in the form of a
weighted sum. Alternatively, a novel and possibly more efficient approach could be
to utilize the classifier outputs to sample only the candidate solutions that are believed

to be Pareto optimal.
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Appendix: Test Problem Parameters

20-1tem Knapsack Problem Parameters

Table A.1: 20-Item knapsack problem parameters

Item Weight (w;) Value (v;)
1 94 3
2 70 41
3 90 22
4 97 30
5 54 45
6 31 99
7 82 75
8 97 76
9 1 79
10 58 77
11 96 41
12 96 98
13 87 31
14 53 28
15 62 58
16 89 32
17 68 99
18 58 48
19 81 20

20 83 3

Traveling Salesperson Problem Parameters
Table A.2: 11-City TSP city coordinates

City Abscissa Ordinate
Origin 14.8 42.7
1 98.6 29.8
2 54 4.5
3 39.9 12.0
4 28.0 22.6
5 57.0 79.2
6 26.2 90.7
7 67.9 55.1
8 76.0 471
9 86.4 67.5
10 47.3 98.5

Welded Beam Design Problem Material Properties and Costs

Table A.3: Welded beam problem material properties and costs [44]

Material S (kpsi) E (Mpsi) G (Mpsi) 1 (8/in%) e (8/in.”)
Steel 30 30 12 0.1047 0.0481
Cast Iron 8 14 6 0.0489 0.0224
Aluminum 5 10 4 0.5235 0.2405
Brass 8 16 6 0.5584 0.2566

In Table A.3, S is the design stress, E is the Young’s modulus, and G is the

shear modulus.
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