

Towards Addressing Surface Effects Ordinary Isotropic Peridynamics Position Aware Linear Solid (PALS)

SAND2013-10321C

John Mitchell & Stewart Silling

Sandia National Laboratories
Albuquerque, New Mexico

Sandia National Laboratories is a multi-program laboratory managed and operated, by Sandia Corporation a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL8500.

Sandia National Laboratories

John Mitchell

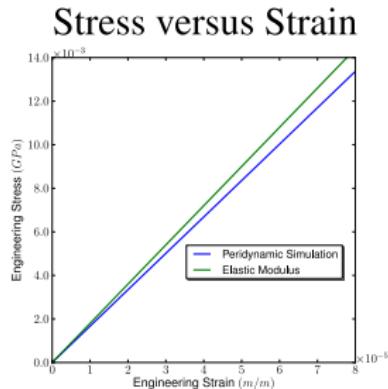
Acknowledgments

Thanks for the Help and Support

- **Dave Littlewood** – project support and generally helpful with running and developing within *Peridigm*
- **Stewart Silling** – PALS concepts, technical support and guidance
- **Mike Parks** – project support

What is the *Dreaded Surface Effect*? Example: Isotropic-Ordinary Model

Axial Displacement



Stored Elastic Energy

The following related aspects contribute to the above mismatch.

- Geometric surface effects
- Nonlocal model (dilatation on surface) and model properties
- Discretization error

This talk is about working towards a practical solution.

Sandia National Laboratories

John Mitchell

Ordinary peridynamic models

Dreaded Surface Effect

Key manifestations

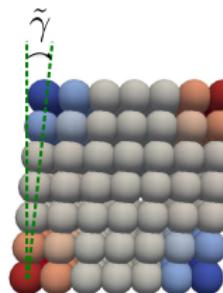
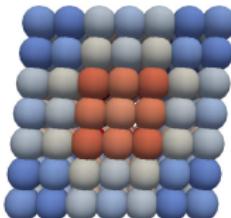
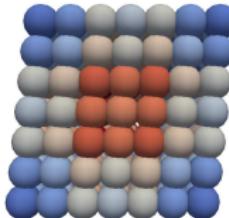
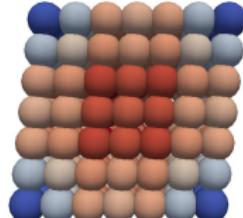
- ⊕ On simple problems, computed solutions conflict with expectations
- ⊕ Surface effects *induce* a different boundary value problem

Proposed Corrections

- ⊕ *DSF*: Position aware scalar correction (March 2013)
- ⊕ *PALS*: Today's presentation

Model Problem

- ⊕ Simple shear (more later)



Ordinary peridynamic models

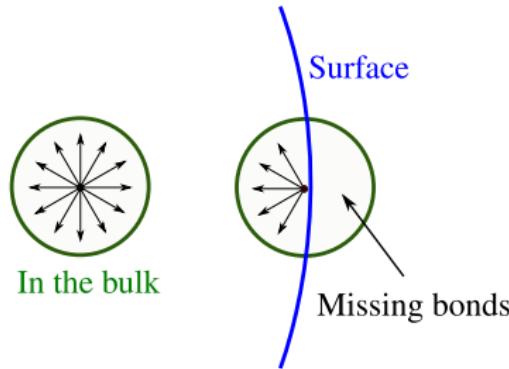
Dreaded Surface Effect

Causes relate to material points near surface

↳ Mathematical models assume all points are in the *bulk*

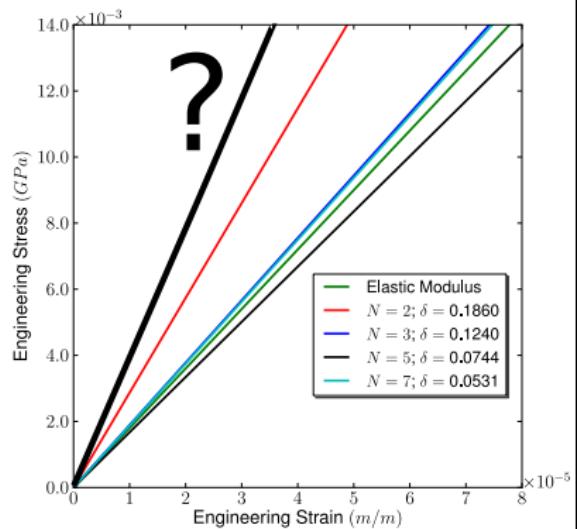
- * Points near surface are *missing bonds*
- * *Missing bonds* imply and induce incorrect material properties
- * In the bulk mathematical models are consistent

↳ Isotropic ordinary materials have a *dilatation defect* at the surface

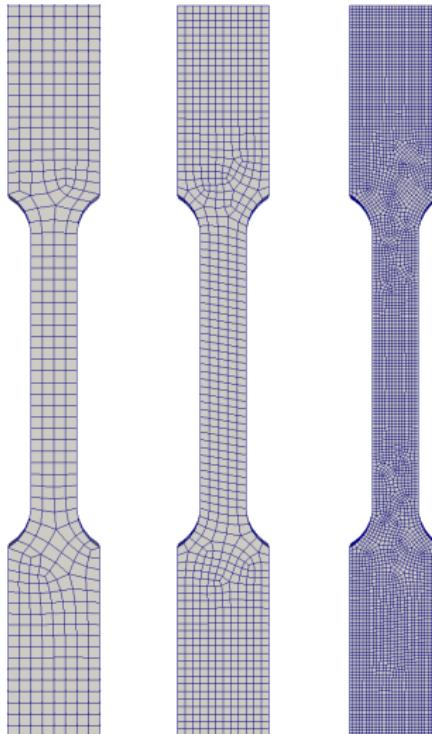


Mesh Refinement Study

Horizon is tied to mesh element size h : $\delta = 3h$



$N = 2$ $N = 3$ $N = 7$



Sandia National Laboratories

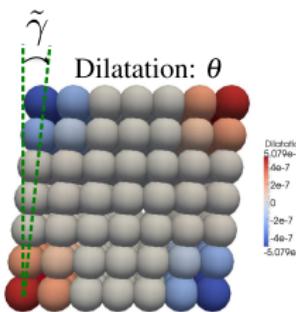
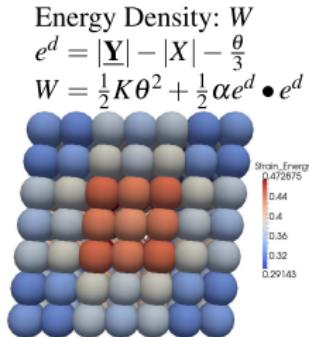
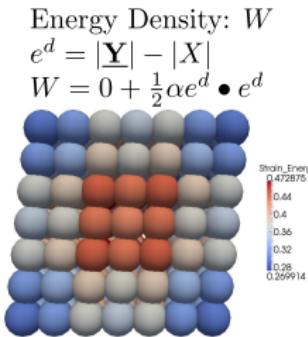
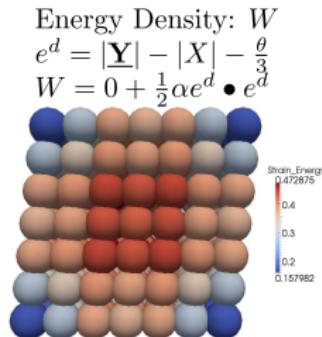
John Mitchell

Model problem: simple shear

Ordinary isotropic material model: energy density

Consider simple shear: $u = \tilde{\gamma}y; v = 0; w = 0; W_L = \frac{1}{2}\mu\tilde{\gamma}^2$

$$\mu = 6.923 \times 10^{11}; K = 1.5 \times 10^{12}; \tilde{\gamma} = 1.0 \times 10^{-6}; W_L \approx .34615$$



- ↪ Compare models: *LPS* with *PALS*
- ↪ Selecting/creating/evaluating influence functions
- ↪ *matching deformations*: dilatation, deviatoric
- ↪ *Examples*

Isotropic ordinary elastic models

Compare *LPS* with *PALS*

Kinematics

$$e = |\underline{\mathbf{Y}}| - |X| \quad \underline{\varepsilon} = e - \frac{\theta}{3} |X| \quad \text{Bond: } \xi = x' - x = X \langle \xi \rangle$$

Linear peridynamic solid model

$$W = \frac{1}{2} K \theta^2 + \frac{\alpha}{2} (\omega \underline{\varepsilon}) \bullet \underline{\varepsilon}, \quad \theta = \frac{3}{m} (\omega |X|) \bullet e$$

$$m = \omega |X| \bullet |X|, \quad \alpha = \frac{15\mu}{m}$$

PALS model

$$W = \frac{1}{2} K \theta^2 + \mu (\sigma \underline{\varepsilon}) \bullet \underline{\varepsilon}, \quad \theta = (\omega |X|) \bullet e$$

Selecting influence functions

Compare *LPS* with *PALS*

Linear peridynamic solid model

↪ ω is given and used for every point in mesh

PALS model

↪ ω, σ are computed for each point in mesh

↪ Initial influence functions ω_0, σ_0 given

↪ Select ω, σ as best approximations to ω_0, σ_0 subject to kinematic constraints: *matching deformations* $e^k \langle \xi \rangle = \frac{\xi \cdot H^k \xi}{|\xi|}$

$$I(\omega, \lambda^{1:6}) = \frac{1}{2}(\omega - \omega_0) \bullet (\omega - \omega_0) - \sum_{k=1}^6 \lambda^k (\omega |X| \bullet e^k - \text{Tr}(H^k))$$

$$J(\sigma, \tau^{1:6}) = \frac{1}{2}(\sigma - \sigma_0) \bullet (\sigma - \sigma_0) - \sum_{k=1}^6 \tau^k [(\sigma \varepsilon^k) \bullet \varepsilon^k - |\text{dev symm } H^k|^2]$$

Matching deformations

$$\text{Probe operator } e^k \langle \xi \rangle = \frac{\xi \cdot H^k \xi}{|\xi|}$$

Dilatation

Let probe Δ be denoted by $\Delta = XX = YY = ZZ$

$$\underbrace{\begin{bmatrix} XX & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{H^1} \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & YY & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{H^2} \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & ZZ \end{bmatrix}}_{H^3}$$

Let bond ξ components be denoted by $\{a, b, c\}$

$$e^1 = \frac{\Delta a^2}{|\xi|} \quad e^2 = \frac{\Delta b^2}{|\xi|} \quad e^3 = \frac{\Delta c^2}{|\xi|}$$

Matching deformations

$$\text{Probe operator } e^k \langle \xi \rangle = \frac{\xi \cdot H^k \xi}{|\xi|}$$

Deviatoric

Let probe Δ be denoted by $\Delta = XY = XZ = YZ$

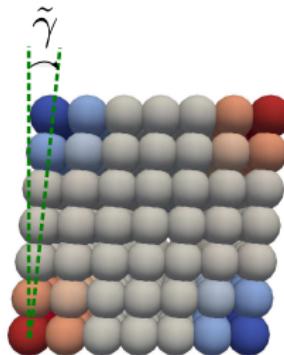
$$\underbrace{\begin{bmatrix} 0 & XY & 0 \\ XY & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{H^4} \underbrace{\begin{bmatrix} 0 & 0 & XZ \\ 0 & 0 & 0 \\ XZ & 0 & 0 \end{bmatrix}}_{H^5} \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & YZ \\ 0 & YZ & 0 \end{bmatrix}}_{H^6}$$

Let bond ξ components be denoted by $\{a, b, c\}$

$$e^4 = \frac{2ab\Delta}{|\xi|} \quad e^5 = \frac{2ac\Delta}{|\xi|} \quad e^6 = \frac{2bc\Delta}{|\xi|}$$

Model problem: simple shear

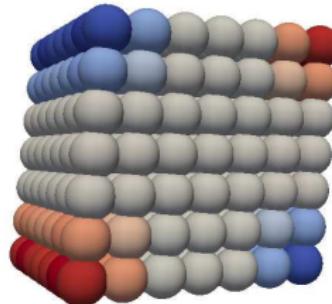
PALS versus LPS: expectation $dilatation \theta = 0$



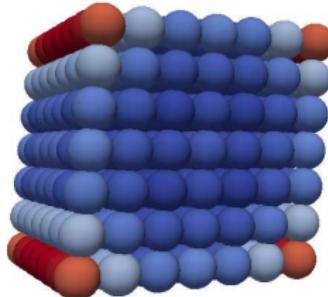
Simple shear

$$u = \tilde{\gamma}y; \quad v = 0; \quad w = 0; \quad \tilde{\gamma} = 1.0 \times 10^{-6}$$

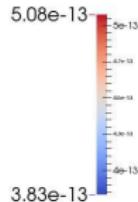
Dilatation



LPS



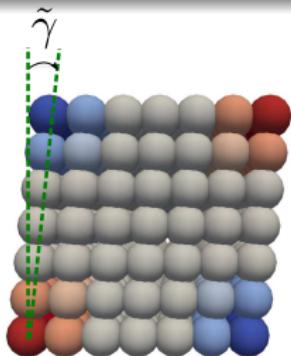
PALS



Sandia National Laboratories

John Mitchell

Model problem: simple shear PALS versus LPS

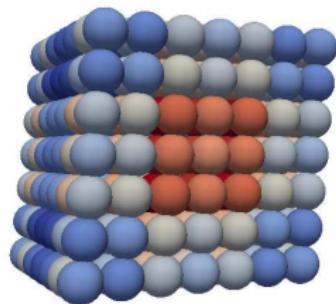
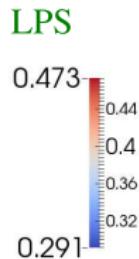
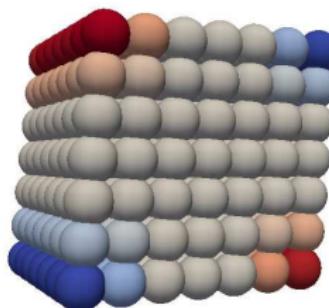


Simple shear

$$u = \tilde{\gamma}y; \quad v = 0; \quad w = 0; \quad \tilde{\gamma} = 1.0 \times 10^{-6}$$

$$W_L = \frac{1}{2}\mu\tilde{\gamma}^2; \quad \mu = 6.923 \times 10^{11}; \quad W_L \approx .34615$$

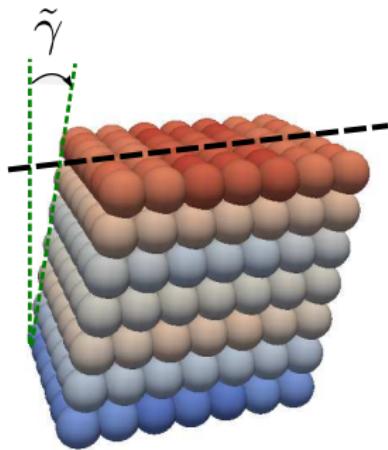
Stored elastic energy density



Sandia National Laboratories

John Mitchell

Model problem: simple shear PALS versus LPS



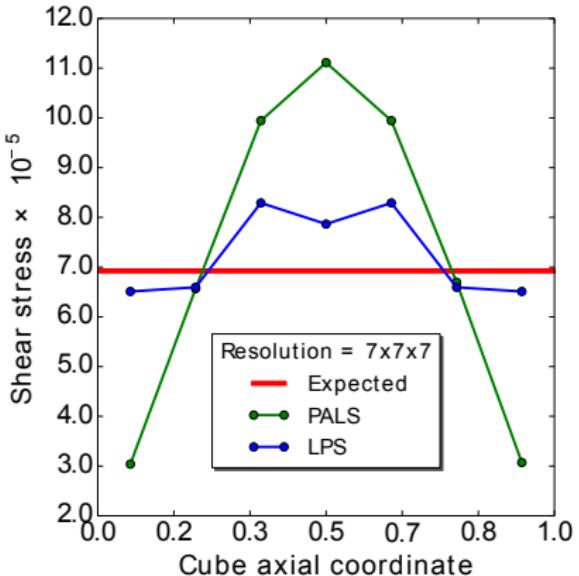
Simple shear *unit cube* $h = \frac{1}{7}$

Shear stress $\sigma_{xy} = \mu \tilde{\gamma} = 6.923 \times 10^5$

$u = \tilde{\gamma}y; v = 0; w = 0; \tilde{\gamma} = 1.0 \times 10^{-6}$

$\mu = 6.923 \times 10^{11}$

Estimated shear stress
 $\sigma_{xy} \approx \text{force density} \times h$



Model problem: simple shear bar

PALS versus LPS: Applied deformation

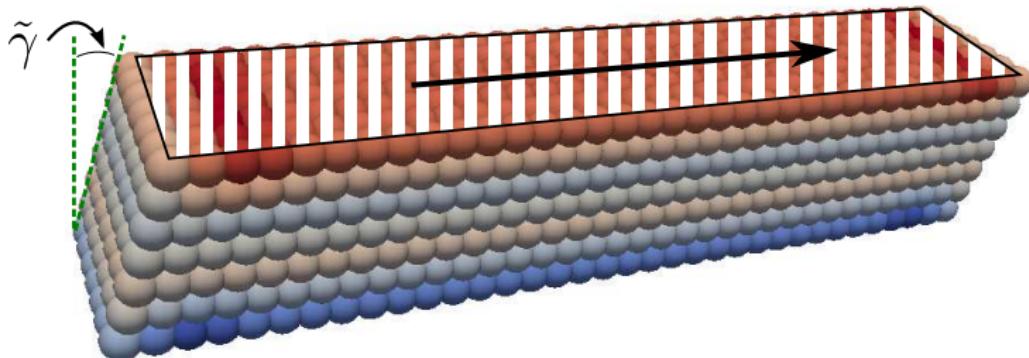
Dimension: $1 \times 1 \times 5$

Mesh resolution: $n_x \times n_y \times n_z = n_x \times n_x \times 5n_x$

Shear stress $\sigma_{xz} = \mu \tilde{\gamma} = 6.923 \times 10^5$

$u = 0; v = 0; w = \tilde{\gamma}y; \tilde{\gamma} = 1.0 \times 10^{-6}$

$f_z = 5 \times \sigma_{xz} \approx 3.4615 \times 10^6$



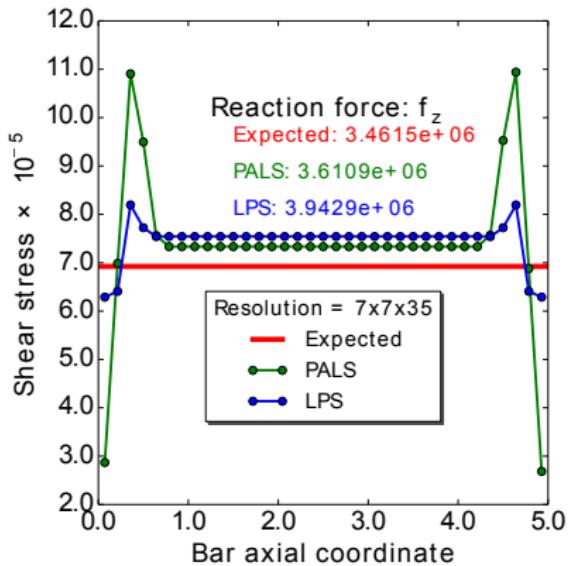
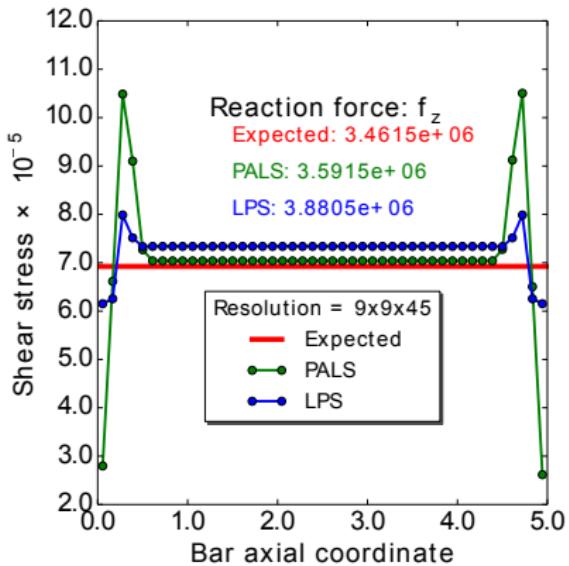
Sandia National Laboratories

John Mitchell

Model problem: simple shear bar

PALS versus LPS: Applied deformation

Estimated stress along top surface; Resultant force



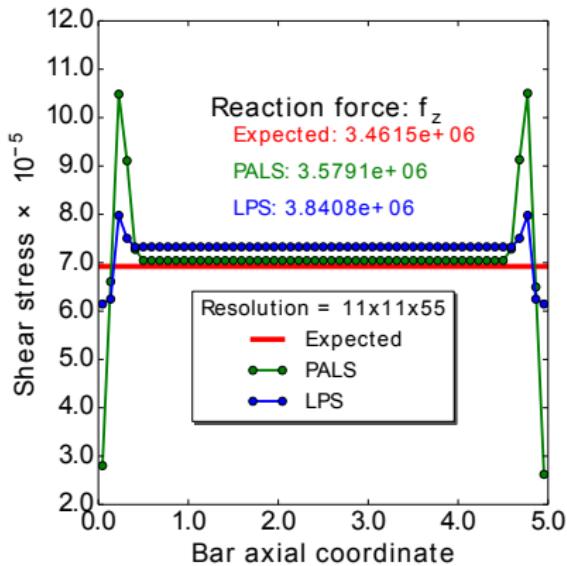
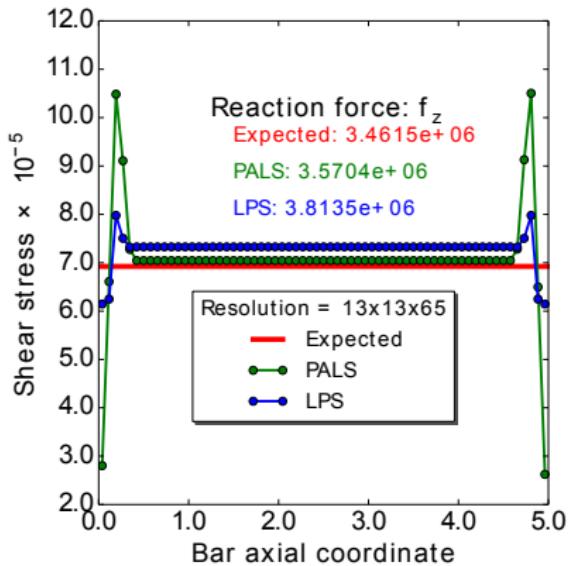
Sandia National Laboratories

John Mitchell

Model problem: simple shear bar

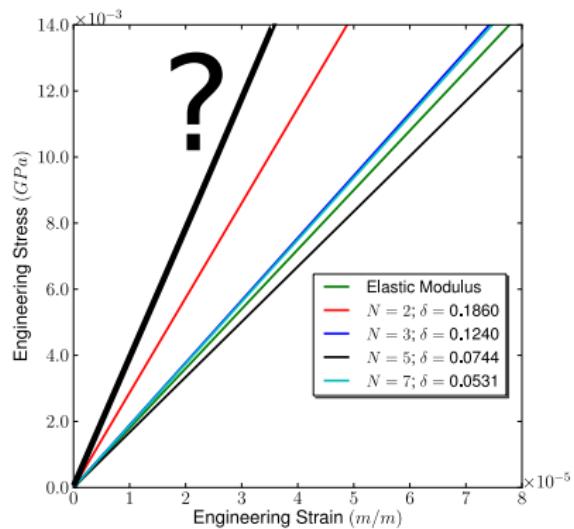
PALS versus LPS: Applied deformation

Estimated stress along top surface; Resultant force

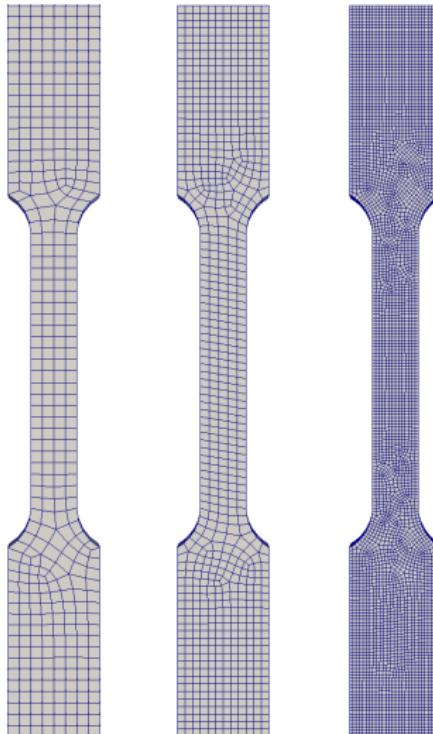


Mesh Refinement Study

Horizon is tied to mesh element size h : $\delta = 3h$



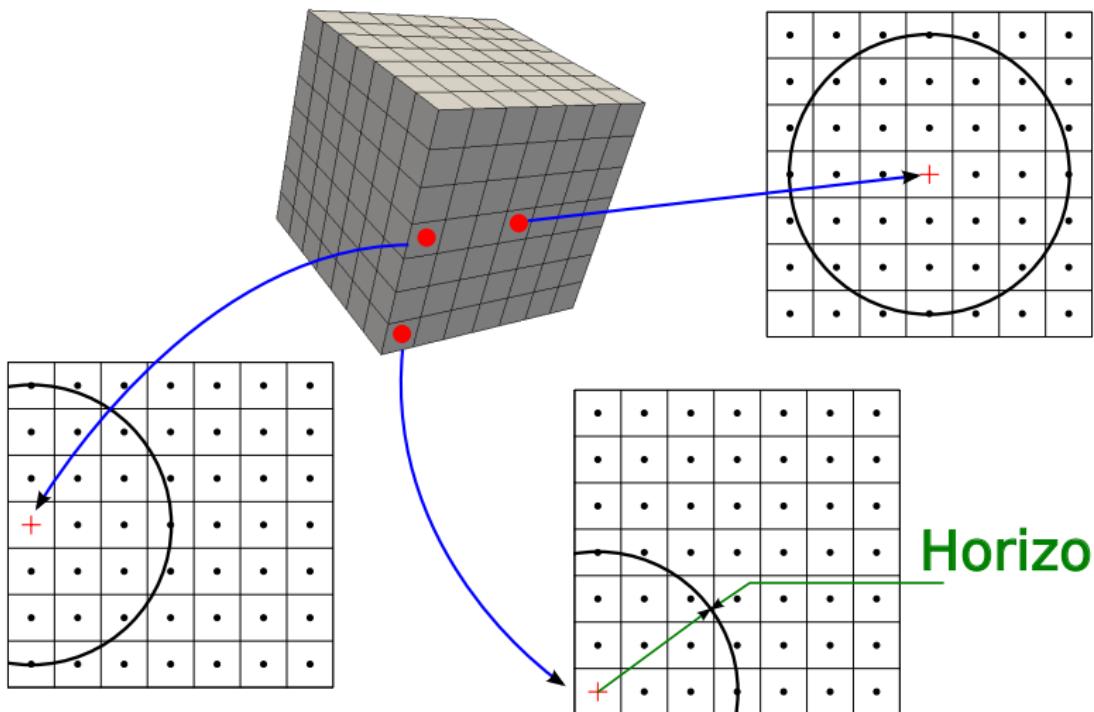
$N = 2$ $N = 3$ $N = 7$



John Mitchell

Sandia National Laboratories

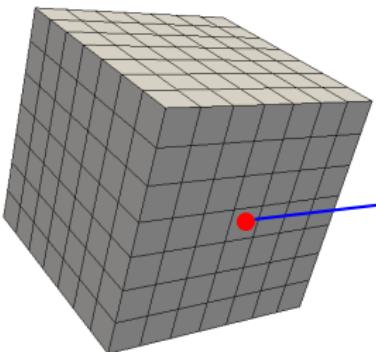
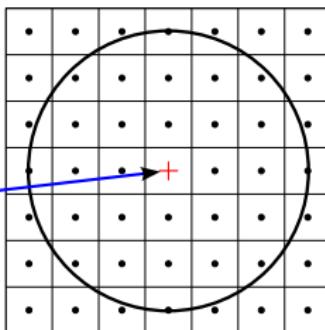
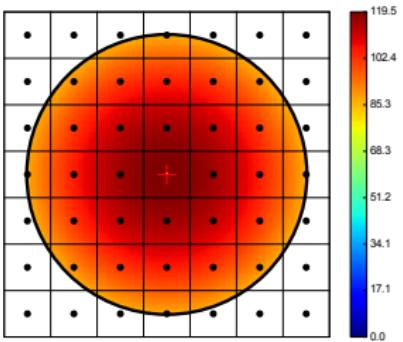
What do the *Pals* influence functions look like?



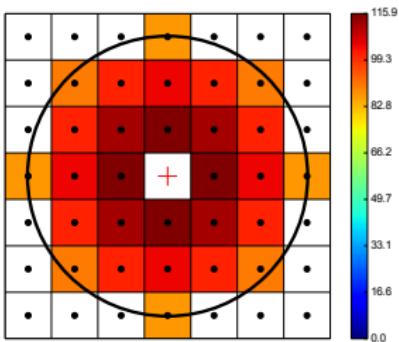
Sandia National Laboratories

John Mitchell

Pals dilatation influence function

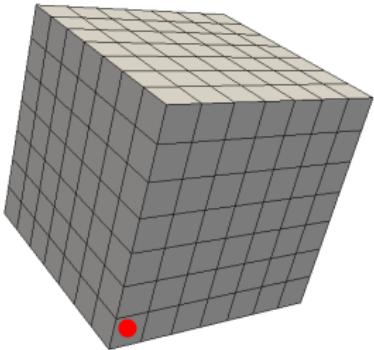


Smooth

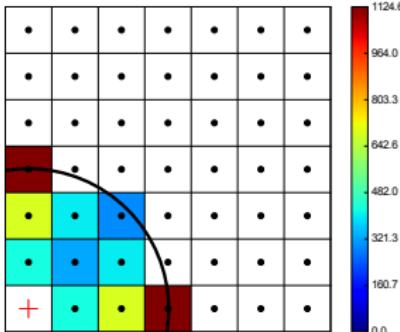
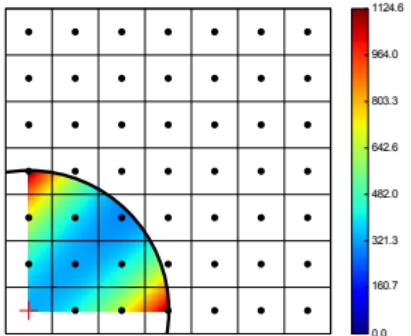


Mesh

Pals dilatation influence function

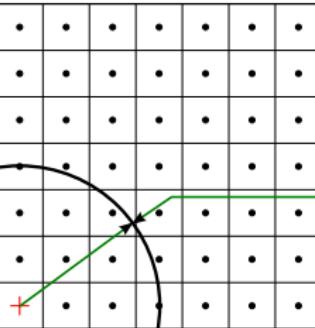


Mesh



Smooth

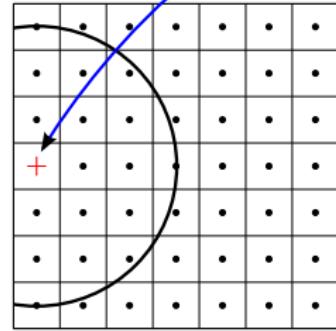
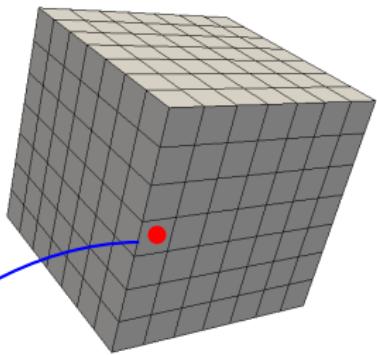
Sandia National Laboratories



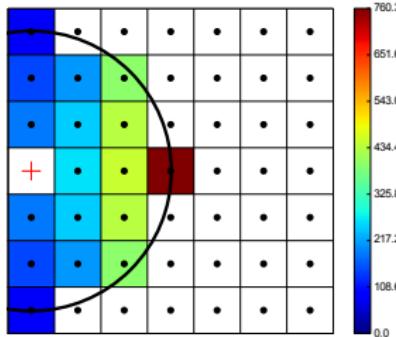
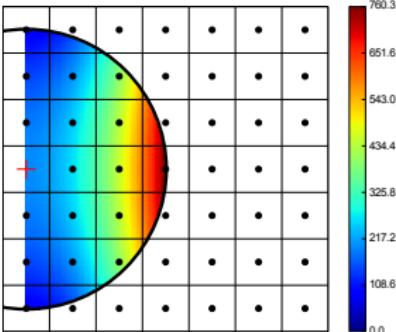
Horizon

John Mitchell

Pals dilatation influence function



Mesh



Smooth

Sandia National Laboratories

John Mitchell

