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What is the Dreaded Surface Effect?

Example: Isotropic-Ordinary Model

The following related aspects contribute to the above mismatch.

Geometric surface effects

Nonlocal model (dilatation on surface) and model properties

Discretization error

This talk is about working towards a practical solution.



Ordinary peridynamic models

Dreaded Surface Effect

Key manifestations

# On simple problems, computed solutions conflict with expectations

# Surface effects induce a different boundary value problem

Proposed Corrections

# DSF: Position aware scalar correction (March 2013)

# PALS: Today’s presentation

Model Problem

# Simple shear (more later)



Ordinary peridynamic models

Dreaded Surface Effect

Causes relate to material points near surface

# Mathematical models assume all points are in the bulk

∗ Points near surface are missing bonds

∗ Missing bonds imply and induce incorrect material properties

∗ In the bulk mathematical models are consistent

# Isotropic ordinary materials have a dilatation defect at the surface



Mesh Refinement Study

Horizon is tied to mesh element size h: δ = 3h

?



Model problem: simple shear

Ordinary isotropic material model: energy density

Consider simple shear: u = γ̃ y; v = 0; w = 0; WL = 1
2

µγ̃2

µ = 6.923×1011; K = 1.5×1012; γ̃ = 1.0×10−6; WL ≈ .34615



Outline

# Compare models: LPS with PALS

# Selecting/creating/evaluating influence functions

# matching deformations: dilatation, deviatoric

# Examples



Isotropic ordinary elastic models

Compare LPS with PALS

Kinematics

Linear peridynamic solid model

W =
1

2
Kθ2 +

α

2
(ωε)• ε, θ =

3

m
(ω |X|)• e

m = ω |X| • |X|, α =
15µ

m

PALS model

W =
1

2
Kθ2 +µ(σε)• ε, θ = (ω |X|)• e



Selecting influence functions

Compare LPS with PALS

Linear peridynamic solid model

# ω is given and used for every point in mesh

PALS model

# ω , σ are computed for each point in mesh

# Initial influence functions ω0, σ0 given

# Select ω , σ as best approximations to ω0,σ0 subject to kinematic

constraints: matching deformations ek〈ξ 〉= ξ ·Hkξ
|ξ |

I(ω ,λ 1:6) =
1

2
(ω −ω0)• (ω −ω0)−

6

∑
k=1

λ k(ω |X| • ek −Tr(Hk))

J(σ ,τ1:6) =
1

2
(σ −σ0)• (σ −σ0)−

6

∑
k=1

τk[(σεk)• εk −|dev symm Hk|2]



Matching deformations

Probe operator ek〈ξ 〉= ξ ·Hkξ
|ξ |

Dilatation

Let probe ∆ be denoted by ∆ = XX = YY = ZZ





XX 0 0

0 0 0

0 0 0





︸ ︷︷ ︸

H1





0 0 0

0 YY 0

0 0 0





︸ ︷︷ ︸

H2





0 0 0

0 0 0

0 0 ZZ





︸ ︷︷ ︸

H3

Let bond ξ components be denoted by {a,b,c}

e1 =
∆a2

|ξ |
e2 =

∆b2

|ξ |
e3 =

∆c2

|ξ |



Matching deformations

Probe operator ek〈ξ 〉= ξ ·Hkξ
|ξ |

Deviatoric

Let probe ∆ be denoted by ∆ = XY = XZ = YZ





0 XY 0

XY 0 0

0 0 0





︸ ︷︷ ︸

H4





0 0 XZ

0 0 0

XZ 0 0





︸ ︷︷ ︸

H5





0 0 0

0 0 YZ

0 YZ 0





︸ ︷︷ ︸

H6

Let bond ξ components be denoted by {a,b,c}

e4 =
2ab∆

|ξ |
e5 =

2ac∆

|ξ |
e6 =

2bc∆

|ξ |



Model problem: simple shear

PALS versus LPS: expectation dilatation θ = 0



Model problem: simple shear

PALS versus LPS



Model problem: simple shear

PALS versus LPS
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Model problem: simple shear bar

PALS versus LPS: Applied deformation



Model problem: simple shear bar

PALS versus LPS: Applied deformation

Estimated stress along top surface; Resultant force
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Model problem: simple shear bar

PALS versus LPS: Applied deformation

Estimated stress along top surface; Resultant force
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Mesh Refinement Study

Horizon is tied to mesh element size h: δ = 3h

?



What do the Pals influence functions look like?

Horizon



Pals dilatation influence function
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Pals dilatation influence function
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0.0

160.7

321.3

482.0

642.6

803.3

964.0

1124.6

Mesh

0.0

160.7

321.3

482.0

642.6

803.3

964.0

1124.6

Smooth



Pals dilatation influence function
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	Isotropic Ordinary Materials

