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Six Degree-of-Freedom (6DOF) shaker tables represent a quantum leap in our ability to perform realistic 
random vibration testing.  In order to take full advantage of a 6DOF shaker table, the underlying test 
specifications must evolve from the traditional set of three independent, orthogonal autospectra to a fully 
coupled spectral density matrix.  This transition is hindered by the fact that we rarely have sufficient data 
channels present during a field test to specify the coupled inputs directly from the data.  This presentation 
describes a process that combines field test data with a system level Finite Element Model (FEM) in order 
to derive a set of Multi-Degree-of-Freedom (MDOF) specifications for a component riding on that system. 
 

INTRODUCTION 
 
The process can be divided into three steps: 1) the generation of the system transfer functions, 2) the 
generation of the system inputs, and 3) the derivation of the component inputs.  While the final process 
used in the derivation process will be the main focus of this paper, important lessons learned along the way 
are also discussed.  Two side studies are also included showing how well the derived test specifications 
were reproduced in the test lab, and how to independently scale the different terms in the matrix of input 
spectra. 
 

DESCRIPTION OF THE SYSTEM 
 
The environment of interest is the random vibration excitation associated with the powered flight maximum 
dynamic pressure (Max Q) events.  The system input points are assumed to be limited to the three pedestals 
as shown in Figure 1 (the pedestals will be designated as PA, PB, and PC).  Since the component is 
attached to the system using a circumferential bolt pattern it was decided that the component inputs should 
be defined using X, Y, and Z translations at four points aligned with the cardinal directions (0°, 90°, 180°, 
and 270°) as is also shown in Figure 1.  The response points on the structure corresponding to the 
component inputs will be designated as C1, C2, C3, and C4 respectively. 
 
Because the pedestals are bolted to the launch vehicle’s payload plate it was assumed that the local 
rotations associated with these points were negligible.  Therefore, the initial scope for the problem was 
based on allowing for X, Y, and Z translations at the base of each pedestal (i.e., 9 inputs) and allowing for 
the X, Y, and Z translations at the four points around the component (i.e., 12 responses).  This meant that in 
its most general form the matrix containing the system transfer functions, HCP, would have size 12x9 as 
shown in equation (1). 
 

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for 
the United States Department of Energy under Contract DE-AC04-94AL85000 
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Figure 1: System Layout 
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For random vibration the inputs and responses are presented in the form of Spectral Density Matrices 
(SDMs).  Therefore, equation (1) must be manipulated into the form shown in equation (2) where SPP and 
SCC are the input and response SDMs respective ly. 

ܵ஼஼ሺଵଶ௫ଵଶሻ ൌ ஼௉ሺଵଶ௫ଽሻܪ஼௉ሺଵଶ௫ଽሻܵ௉௉ሺଽ௫ଽሻܪ
ᇱ                                              (2) 

 

 
DEREVATION OF SYSTEM TRANSFER FUNCTIONS 

 
When dealing with flight test data it is often the case that one has internal response data but no input data.  
Therefore, it was initially intended to use a Multiple-Input-Multiple-Output (MIMO) analysis to derive an 
optimum set of inputs based on flight test data measured at points on the structure.  However, it turned out 
that in this case the response data measured during the Max Q portion of powered flight was so benign that 
it was considered too noisy to be of use.  Fortunately, we did have a sparse set of acceleration data 
measured during two flights at the base of the pedestals that could be used to define the inputs.  Therefore, 
the terms in HCP had to be provided as Acceleration/Acceleration Transmissibility Response Functions 
(TRFs). 
 
The system TRFs were generated using a FEM analysis.  The model was excited by applying a force to a 
large inertial mass attached to the base of each pedestal in succession.  In this manner the input acceleration 
could be obtained.  The full suite of TRFs were generated from each pedestal to each of the four component 
input points. 
 
  



DERIVATION OF SYSTEM INPUTS 
 
Data from two flights were used as the data base.  In this paper the acceleration measurement with the 
largest overall root mean square (rms) acceleration has been normalized to have a root mean square (rms) 
value of 1g. All the other measurements were scaled by the same factor. 
 
At this point it is useful to introduce the concept of the normalized SDM (NSDM).  The NSDM retains the 
diagonal terms, CII, “as is” but scales the off-diagonal terms, CIJ, as shown in equation (3).  The magnitude 
squared of each off-diagonal term, CIJN is the ordinary coherence, γ2, and the arctangent of the ratio of the 
imaginary part divided by the real part of an ff-d gonal term is the phase, φ. o ia

ூ௃ேܥ ൌ ஼಺಻
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                                                                          (3) 

 
The first flight provided data from a tri-axial accelerometer designated as VR10 X, Y & Z.  The NSDM for 
the three acceleration signals obtained from the first flight is shown as Figure 2. 
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Figure 2: Normalized SDM, 1st flight, VR10X, VR10Y, and VR10Z 

 
The second flight provided data from a set of three X-axis accelerometers with one accelerometer located at 
each pedestal base.  The NSDM for this flight is shown as Figure 3. As can be seen the coherence was quite 



high over significant frequency ranges while the phase was not always zero.  This suggests that there is 
some amount of rigid body rotations combined with the rigid body translations. 
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Figure 3: Normalized SDM, 2nd flight, VX10, VX11X, and VX12X 

 
In theory, combining the data from the two flights could define 5 rigid body modes (only rotation about the 
X-axis would be undefined).  Unfortunately, two potential problems exist. These problems are best 
explained by comparing the auto spectra from the three X-axis accelerometers present for the second flight 
(V10X, V11X, and V12X) and the lone X-axis accelerometer present for the first flight (V10X) as shown 
in Figure 4. 
 
The first problem is that the data from the second flight are clearly contaminated by noise at 300 Hz and the 
corresponding harmonics.  The second problem is that the magnitudes of the V10X signals are quite 
different for the two flights, which could make the combination of the data quite difficult.  Each of these 
problems could be overcome, but the objective of this study was just to demonstrate the technology and not 
to perform an actual qualification test.  Therefore, it was decided to leave these problems for future study.  
Hence, for this study the input spectra will be determined solely from the first flight data.  The low 
frequency portion of the data (< 30 Hz) was not omitted from the analysis so the rigid body rotations will 
not be a significant factor for this study.  It was also decided to generate test specifications using straight 
line segments as a practical consideration for the transmission of the test specifications.  Figure 5 compares 
the raw NSDM and straight line segment test specifications for the system inputs. 



 
Figure 4: X-Axis Auto Spectra from 1st and 2nd Flights 
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Figure 5: Comparison of System Input Raw Data and Straight Line Segment Test Specifications 



 
With regards to the autospectra the enveloping process was straight forward with the test specification 
designed to exceed the raw NSDM for all frequencies.  With regards to the coherence, the hashy nature of 
the coherence made it seem inappropriate to envelop the raw spectra.  Experience has shown that lower 
coherence values produce a more stable test.  Therefore, the test specifications were defined to envelop the 
raw coherence levels at low frequency where the coherence was relative smooth, to fair through the raw 
coherences in the mid frequency range, and to set the coherence to zero at high frequency for the XZ (1,3) 
and YZ (2,3) terms.  The phase tended to vary even more wildly than the coherence so the phases were set 
to zero (which is technically the faired value) for all but the low frequency portion of the XZ and YZ terms. 
 

DERIVATION OF COMPONENT INPUTS 
 
The next step was to compute the projected inputs to the component based on the system inputs and the 
TRFs.  The fact that it was only possible to define a common X, Y, and Z motion for all three pedestals by 
definition led to two simplifications in the complexity of the problem.  The first simplification was that the 
TRF matrix had to collapse to size 12x3 where the columns in HCP associated with a given translational 
direction for PA, PB, and PC were simply added together.  Equation (4) shows the resulting input/response 
formulation. 
 

ܵ஼஼ሺଵଶ௫ଵଶሻ ൌ ஼௉ሺଵଶ௫ଷሻܪ஼௉ሺଵଶ௫ଷሻܵ௉௉ሺଷ௫ଷሻܪ
ᇱ                                             (4) 

 
However, a somewhat less obvious consequence of using a 3x3 system input SDM is the fact that the 
computed 12x12 component input SDM was not positive definite, which is incompatible with performing a 
valid test.  The problem was attributed to the fact that one cannot generate more responses than one has 
independent inputs.  Therefore, it was necessary to define the response of the component using only three 
orthogonal “global” translations.  This was accom lished by applying the transformation, HT, shown in 
equation (5), to the 12x12 component input SDM u n in equation (6). 
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The test was now technically a 3DOF test, but the rotational degrees of freedom were allowed to respond in 
whatever manner the shaker control algorithms determined would produce the best match for the 3x3 
component input SDM (as opposed to constraining them to be zero). 
 
Figure 6 presents the corresponding component input SDM using the same format as was used to present 
the system input SDM in Figure 5.  While the autospectra are credible, the phase and coherence are 
considerably wilder than had been expected given the fact that the input SDM was smoothed. 
 

LABORATORY SIMULATION 
 
The goal of this study was to develop a set of Multi-Degree-of-Freedom (MDOF) test specifications that 
could be run on the 6DOF shaker and that was accomplished.  Figure 7 compares the desired and measured 
magnitudes for the diagonal Auto spectral Densities (ASDs) and off-diagonal Cross Spectral Densities 
(CSDs) for the component input SDMs (denoted “DES” and “MEAS” respectively).  In general the 
agreement was excellent, but there are still frequency bands where the measured response was considerably 
higher than the desired spectra.  These points appear to correspond to frequencies where the desired spectra 
are deeply notched so it is assumed that the control system may simply have reached its maximum dynamic 
range. 
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Figure 6: Raw Component Input SDM 

 
SCALING OF TEST LEVELS 

 
For the purposes of this study, the raw computed component inputs were applied “as is” in the 6DOF 
shaker test.  However, it is often desirable to scale the inputs in order to provide margin and to utilize 
straight-line segment test specifications in order to simplify the amount of information that must be 
transmitted to define the test.  The scaling must not violate the need for the SDM to be positive definite.  
This requirement was met for the enveloping of the system inputs, but the process was based on 
engineering judgment rather than on a rigorous procedure. 
 
In order to solve this problem in a systematic manner, let CII and CJJ be two original diagonal terms and 
CIIN and CJJN be the corresponding scaled diagonal terms.  Our working hypothesis is that if the off 
diagonal terms in the SDM were scaled according to the formula shown in equation (7) the phase and 
coherence would be preserved, which in turn would keep the SDM positive definite.  Appendix A provides 
proof that this assumption was indeed valid. 
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Figure 8 shows a set of straight line autospectra based on the underlying raw component inputs.  Figure 9 
shows the resulting SDM. 
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Figure 7: Comparison of Desired and Achieved Component Input SDM 
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Figure 8: Derivation of Straight-Line Segment Component Input Autospectra 
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Figure 9: Straight-Line Segment Component Input SDM 

 
LESSONS LEARNED 

 
The main lesson, as discussed earlier in this paper was the need to limit the DOF of the component inputs 
to less than or equal to the number of DOF associated with the system input. 
 
The order in which the component and system axes were specified was different.  As a result of this the 
axial inputs were originally assigned to the first row in the component SDM while the shaker had initially 
been configured to expect the axial inputs to be in the third row of the SDM.  While the correction involves 
a simple flipping of the first and third rows of the matrix, this could have resulted in a crossing of the test 
inputs.  The lesson here is that the chances for this type of mistake are much greater with multi-axis testing 
than for traditional single-axis testing. 
 
The original FEA results were presented using 4 Hz spacing while the nearest spacing that was compatible 
with the shaker control system was 5 Hz.  A simple interpolation routine was used to adjust the spacing but 
the resulting SDM was no longer positive definite.  The short term fix was to have the FEA results exported 
using 1 Hz resolution and then decimate the TRFs.  However, a methodology for interpolating the SDM 
while keeping the SDM positive definite would seem to be a tractable problem for future investigation. 
 
  



CONCLUSIONS 
 
Within the constraints associated with the raw system input data, we were successful in our efforts to 
develop a workable MDOF component input specification. 
 
It is assumed that by adjusting the scaling on the data from the second flight it should be possible to 
combine it with the data from the first flight to increase the number of DOF from 3 to 5 for the system 
inputs by defining a distinct out-of-plane (X-axis) DOF for each pedestal.  Since the in-plane motions at 
each pedestal are more likely to be slaved together than the out-of-plane motions, this should come very 
close to capturing the salient features of the true input. 
 
A logical next topic for study will be the development of a systematic way in which to smooth the phase 
and coherence while still keeping the SDM positive definite. 
 
Future efforts will be directed towards an evaluation of the conservatism of a traditional single-axis shaker 
test based on the assumption that the 6DOF test is the best measure of the true field environment. 
 

APPENDIX A: VERIFICATION OF PROCESSS FOR SCALING POSITIVE DEFINITE 
MATRICES 

 
The rules by which an SDM can be scaled and still be positive definite can be expressed using a simple 
exercise in matrix algebra.  Let {X} and {Y} be two vectors of random variables. The corresponding 
spectral densities (which are by definitio po f e g e uation (8). n sitive de inite) ar iven by q

ܵ௑௑ ൌ Eሾܺܺᇱሿ ܽ݊݀ ܵ௒௒ ൌ Eሾܻܻᇱሿ                                                 (8) 
 

 
Assume that X and Y are related by a system of lin t unctions as shown in equation (9). ear ransfer f
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Then the spectral density of Y with t  X y equation (10).  respect to the spec ral density of  is given b
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Because SYY is positive is positive definite,  must also be positive definite.  Now let H be defined 
as a diagonal matrix A as shown in equation (11). 

'S HH XX
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ଵܣ 0 0
0 ଶܣ 0
0 0 ଷܣ

൩                                                                (11) 

 

 
Substituting the value of H shown in equation (11) into equation (10) yields the expression shown in 
Equation (12). 
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቏                                  (12) 
ଷଵ ଶܣଷܣ ଶ

If one defines ܣଵ ൌ ඥܥଵଵே ⁄ଵଵܥ
 

ଶܣ , ൌ ඥܥଶଶே ⁄ଶଶܥ , and ܣଷ ൌ ඥܥଷଷே ⁄ଷଷܥ  , then the reader can see that the 
scale factor defined in equation (7) will produce a positive definite matrix. 
 




