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? Introduction

* PV performance models are used for prediction of

expected energy production for project proposals

 Evaluation of different designs (e.g., tracking vs. fixed, module
technology, inverter, BOS) and locations.

« Many performance models available
— Klise and Stein (2009) surveys available models

* Models are based on different conceptual
approaches and implementations are not
consistent.

* Results vary between models run for same
system and weather.
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}' Goals

* Develop a standard method for validating PV
performance models in order to:
— Increase confidence and understanding in model results

— Identify areas for model improvements, gaps in existing data,
and sources of modeling error

— Support consistent, well informed business decisions that will
ultimately allow solar technology solutions to prosper.
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?‘ PV Modeling Steps

* Read inputs:

— Array design (module, string, inverter, mounting, tracking, ground
cover, etc.)

— Weather (irradiance, temperature, wind speed, etc.)
* Translate irradiance to plane-of-array (POA)
— Sun position calculation, irradiance model
- Evaluate ‘effective’ irradiance
— Angle on incidence effects
— Spectral effects (air mass correlations or physics models)
* Determine cell temperature
- Calculatel,, V,,,, and P,
» Estimate and apply derates (soiling, DC loses, mismatch, array

utilization, etc)
* Model inverter performance (P,.)
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'
? Model Validation Process

* Develop data sets including system description, weather
data and performance data for multiple technologies,
applications, and climates.

— Understand and document data uncertainty

* Provide the system description and weather data to
modelers, who will model the system and provide results.

— Fully document model parameters and assumptions

* Apply a unified mathematical/statistical approach for
comparing measured and modeled quantities and
document comparisons in a standardized reporting format.

— Propagate uncertainties, if possible
* ldentify opportunities for model improvement
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# Mathematical/Statistical Approach

* Identify quantities for validation
— DC + AC power, POA irradiance, module temperature, etc.

» Calculate model residuals (Residual = modeled values —
measured value)

— Calculate summary statistics (R?, RMSE, MBE, annual bias,
etc.)

— Plot residuals vs. time
— Plot distribution of residuals
— Test correlation between residuals and other variables

* Residuals from a valid model will be as small as possible
and randomly distributed
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B
# xample Application of Validation Approach

* 1 kW DC, m-SI, fixed latitude tilt, photovoltaic system in
Albuquerque, NM

— 1 year of hourly-averaged weather and performance data
collected at site.

« GHI, DNI, DHI, air temperature, wind speed (multiple
instruments)

« DC (and AC) current and voltage, module temperature

* Run two performance models in Solar Advisor Model (SAM)
— Sandia PV Array Performance Model (SAPM)
— CEC 5-Parameter Model (Univ. of Wisconsin)

» Set derate factors to zero
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Sandia’s Outdoor Test Facility
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} Inverter and DAS Configuration
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Comparison of DC Power

* Measured vs. Modeled looks nearly identical

* Slight difference in bias error
— Annual bias is same magnitude as typical derate factor

 Is there a fundamental difference between the

models???
Measured vs. Modeled DC Power Measured vs. Modeled DC Power

1200 1200

1000 | ool Outliers
I ooop T o0t
g g
T T SAPM CEC 5 Par
o B0 o eoof
= o lAnnual Bias 5.6% 3.3%
3 2 RMSE (bias
2 a0t 2 40t removed) 26 W 23 W

MBE 27 W 16 W
201 . oo o, %, 4
e SAPM L3 CEC 5-Par Model Sandia
o 200 200 500 300 1000 1200 o 200 200 B0 300 1000 1200 Il“aal;ﬂourg?clm oS

Measured DT Fower [W] Measured DT Fower [W]



Model Residual (W)

60

Residual vs. Time

* Period is from April 2007 to March 2008
* Outlier (-150<R<150 W) and night time data are removed
— QOutliers due to snow on sensor and array
» Sustained jumps in residuals may indicate soiling/cleaning

cycles

 Differences between the model begin to appear.

Residual Run Plot: SAPM
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Residual Distributions

Histogram of Residuals: SAPM
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Both models have residuals
that appear quite normal

Slight left skewness due to
concentration of near zero
residuals and a positive
mean residual (no derate)
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'
? Residual Correlations

* Residuals are differences (model — measured)

* Residuals from a ‘Perfect’ model will be randomly
distributed and uncorrelated with input variables.

* Residual analysis identifies any correlations if
they exist.
— These represent potential ‘flaws’ in the model and/or
parameters.
» Stepwise regression allows variables which affect
residuals to be indentified and ranked.

Y = dependent variables

P
Y o b + b , X , X = P vectors of independent variables
0 j=1 7 J b = linear regression coefficients
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Stepwise Results

. . SAPM
» Stepwise regression was run for each Order [ Varable | R | IncrementalR?
model oo % T
 Variables examined include incident 3 | Azimuth 0.37 0.02
. . . . 4 | Zenith 0.39 0.02
beam, diffuse, and total radiation, air
temperature, wind speed, sun zenith and |5°*
azimuth angles, angle of incidence, and | {==e | & | hoemen ®
air mass 2 [ Temp 0.22 0.10
. . 3| WS 0.27 0.05
 Incremental R? value is the fraction of the T AGmuth 028 001
residual variance explained by the
correlation with the variable identified (in
" o n
order of influence) 39% of SAPM variance
explained
SAPM residuals most correlated with air .
temperature (18% of variance) 28% of CEC 5-Par
CEC 5-Par residuals most correlated with variance explained

incident beam radiation (12% of variance) @ Natorsl
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Maodel Residual (W)

Primary Variable Correlations

« SAPM residual correlation with air temperature suggests:

— Module temperature coefficients need to be adjusted or cell
temperature model needs to be improved.

« CEC 5-Par residual correlation with incident beam radiation
— Still investigating this correlation

SAPM Residuals vs. Air Temperature CEC 5-Par Residuals vs. Incident Beam Radiation
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}J Module Temperature Model

 Module temperature model appears to work well
for this rack-mounted system.

* Module temperature coefficients likely need to be

adjusted.
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}I Ongoing Work

» Collection of performance and weather data from more
systems is needed.

» Selection of different technologies
* Diverse locations
« Multiple configurations

- Side-by-side comparisons are important because weather
data is similar and measurement accuracy is consistent
across systems.

« Sandia National Laboratories will publish reference data
sets for validation.

« Sponsor workshop this fall/winter on PV performance
modeling

 Participants simulate a reference system
« Comparison of results from various models @ Sandia
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}I Summary

A standardized model validation approach has
been developed with input from industry
partners.

— Based on residual analysis
— Provides valuable information for model developers
* Provided an example application of the approach

* Next steps include:

— collection of data from a representative range of
technologies, climates, and designs

— Model validation report (template?)
* PV modeling workshop being planned for end of

2010.
)
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