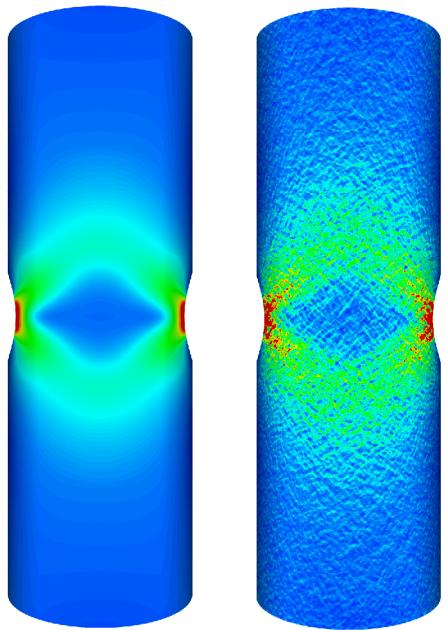


Part 1: A finite-element formulation for general polyhedra in nonlinear solid mechanics

Part 2: Understanding material variability and the accuracy of homogenization in polycrystalline materials through direct numerical simulations



Joe Bishop

Computational Structural Mechanics

Sandia National Laboratories

Albuquerque, NM

Seminar at The Institute for Computational Eng. and Sciences (ICES)
University of Texas
Austin, TX
December 5, 2013

Sandia
National
Laboratories

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

1. Polyhedral finite elements

- motivation
- harmonic shape functions
- patch test
- verification
- future work

2. Multiscale modeling and material variability

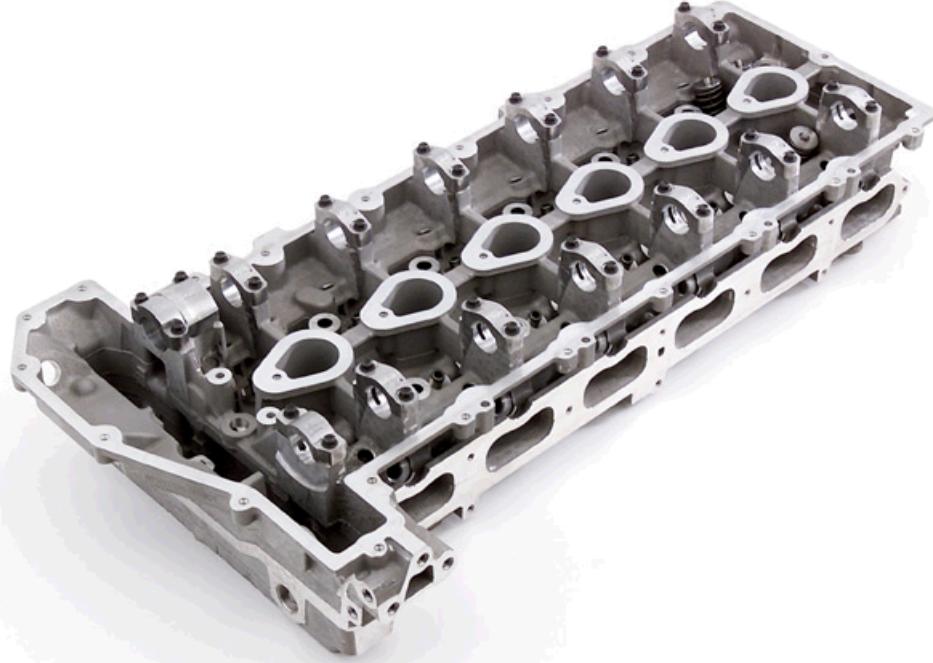
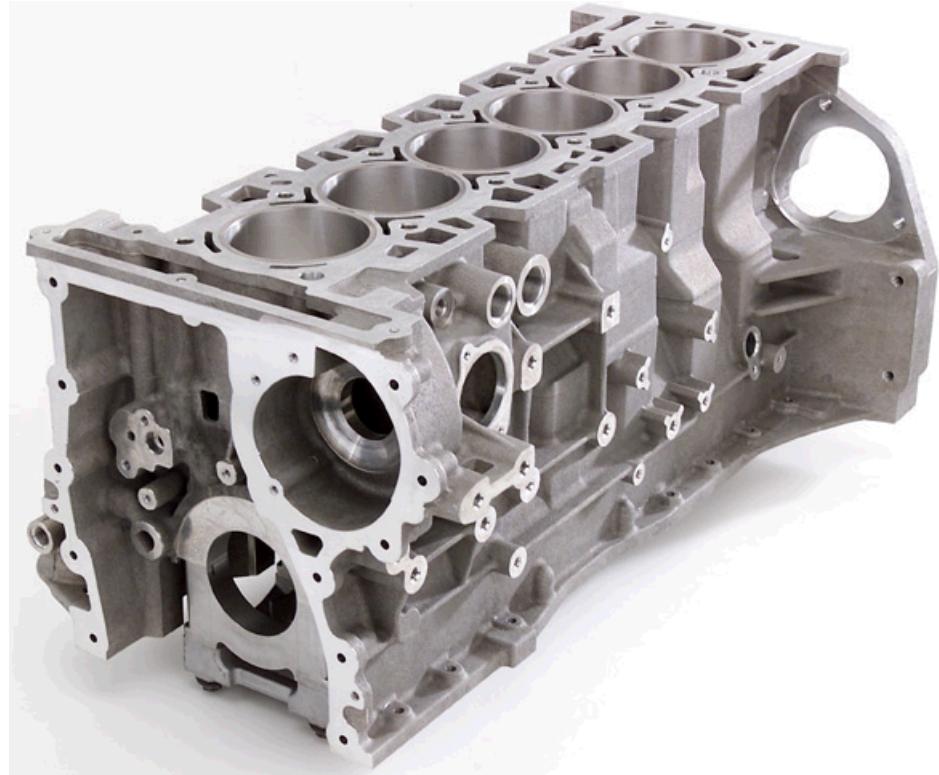
- review of homogenization theory
 - a. weak convergence
 - b. effective vs. apparent material properties
 - c. type 1 and type 2 material variability
- direct numerical simulations

3. Summary

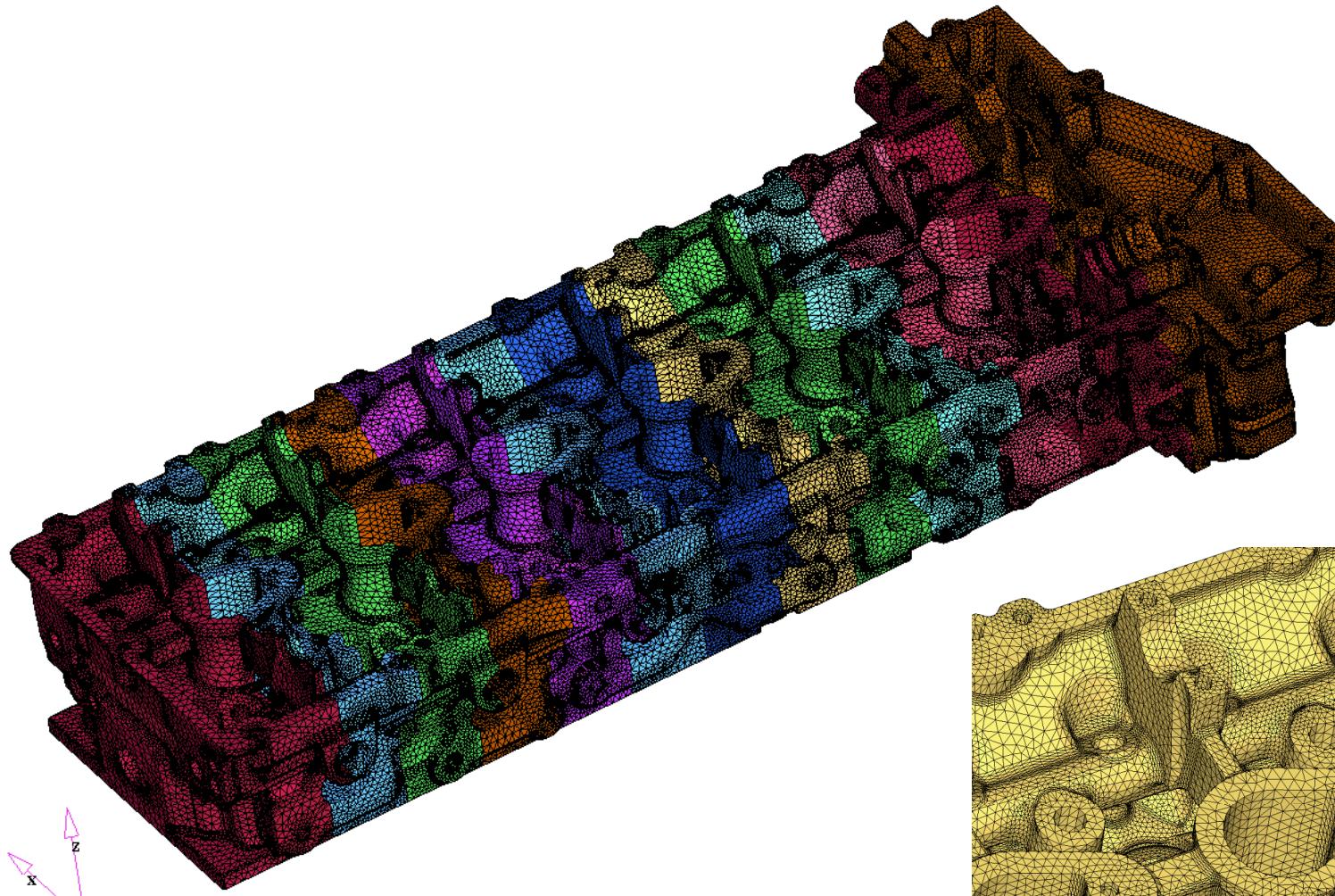
Why Polyhedral Elements?

1. Facilitate mesh creation in complex geometries

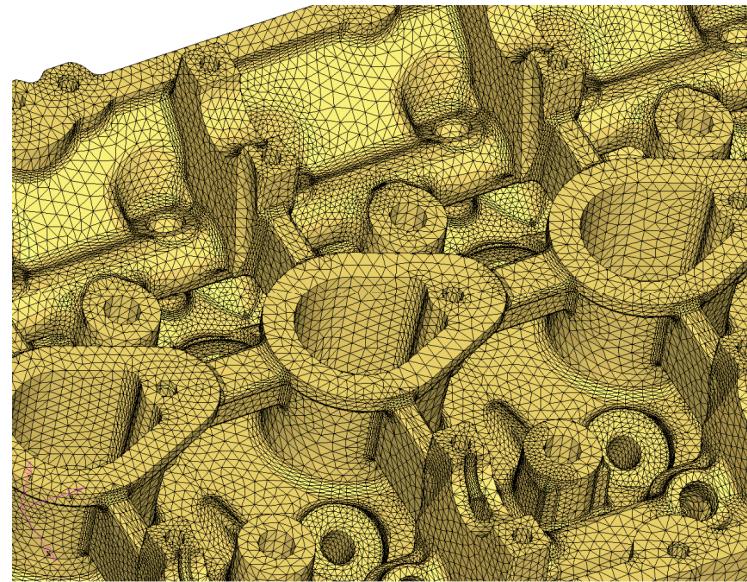
Bishop, J., 2003, *Computational Mechanics*, 30, 46-478



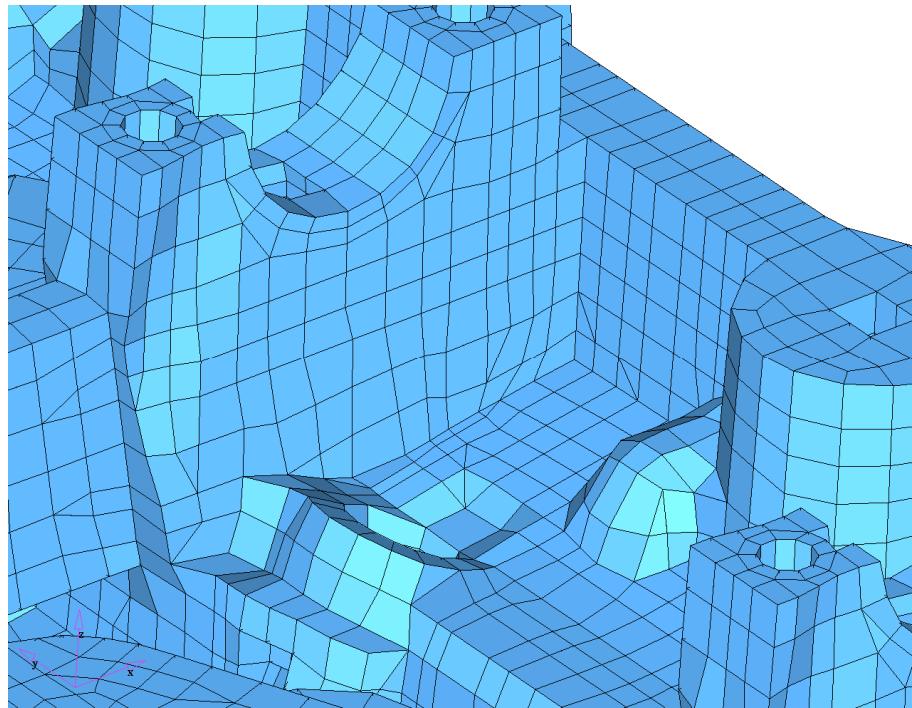
Conventional Meshing



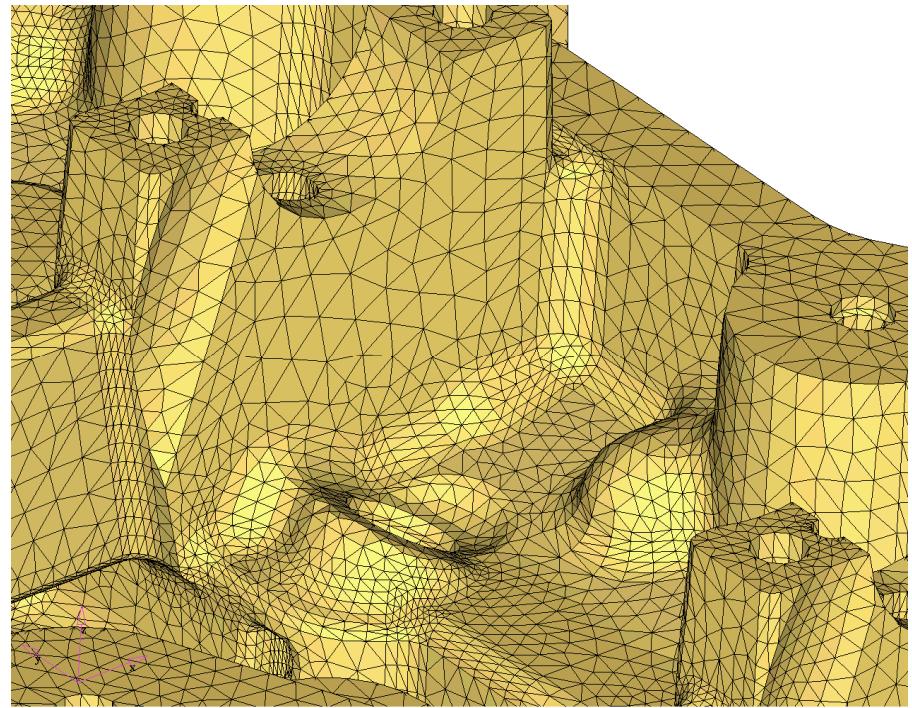
equiv. of 3 man-months of labor



Global-scale hexahedral mesh



Stress-capable tetrahedral mesh



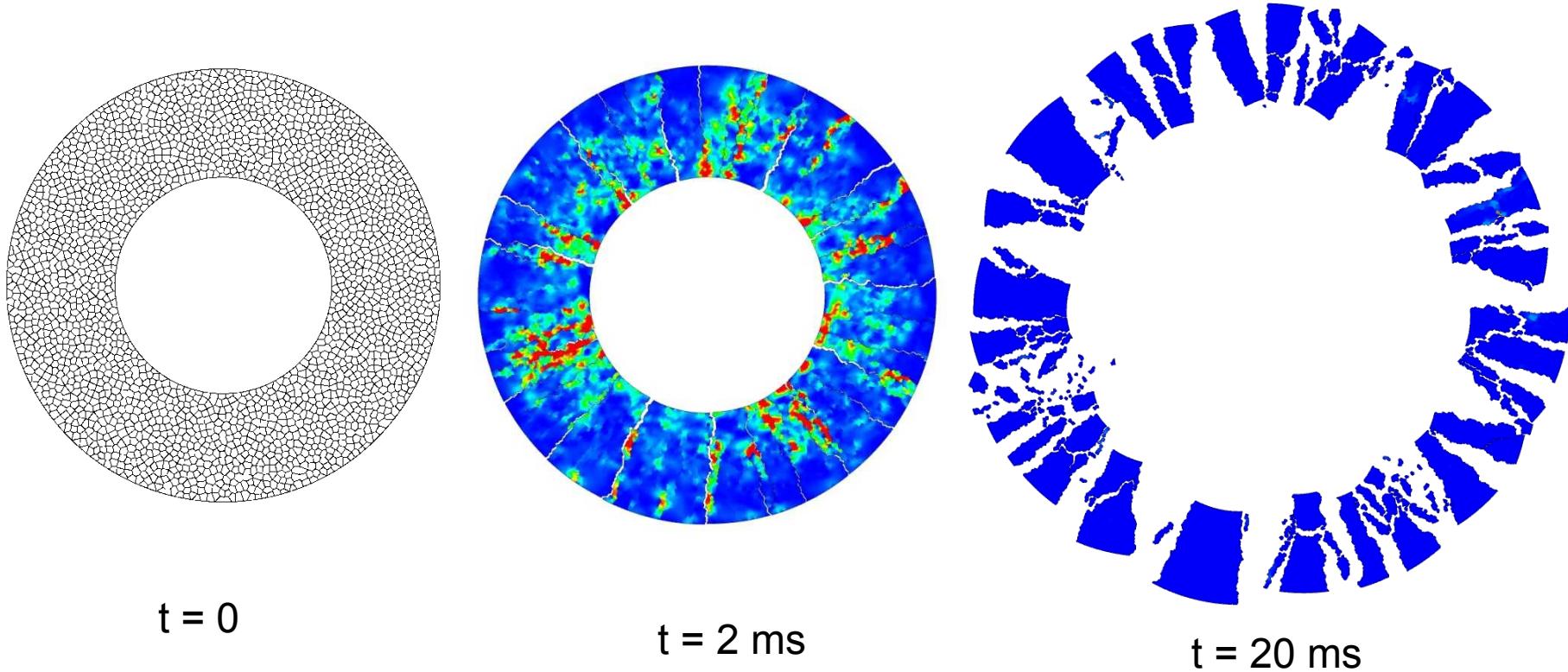
- time intensive
- no adaptivity (heuristics only)

Why Polyhedral Elements?

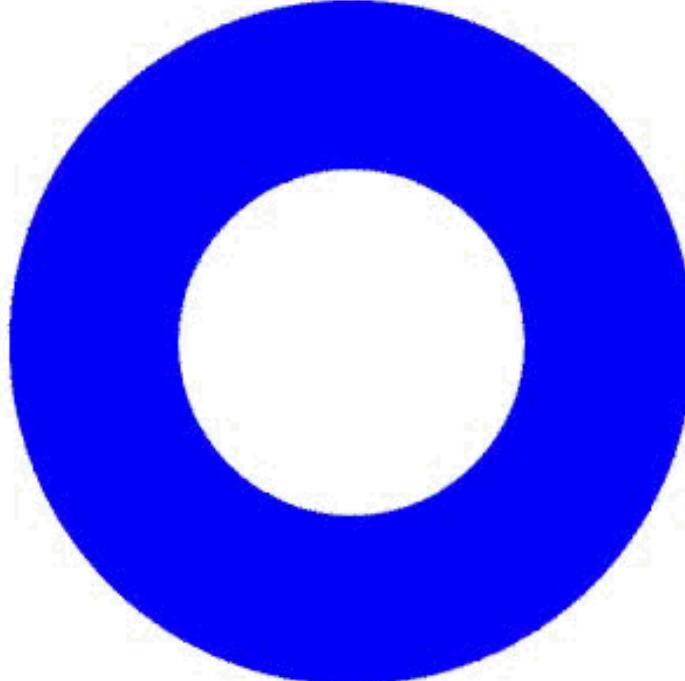
2. Pervasive fracture modeling on random meshes

Bishop, J., 2009, *Computational Mechanics*, 44, 455-471.

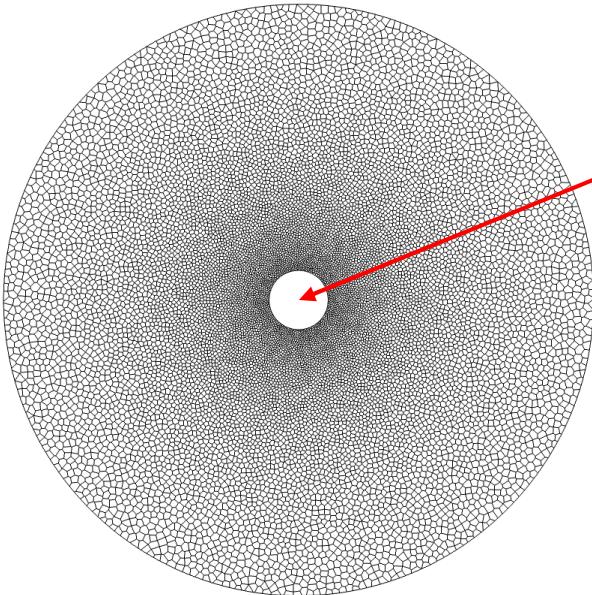
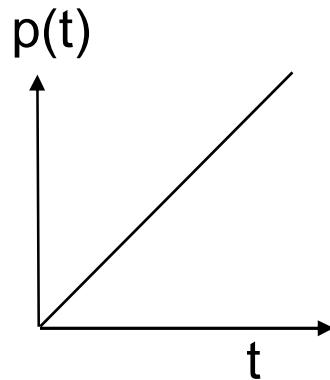
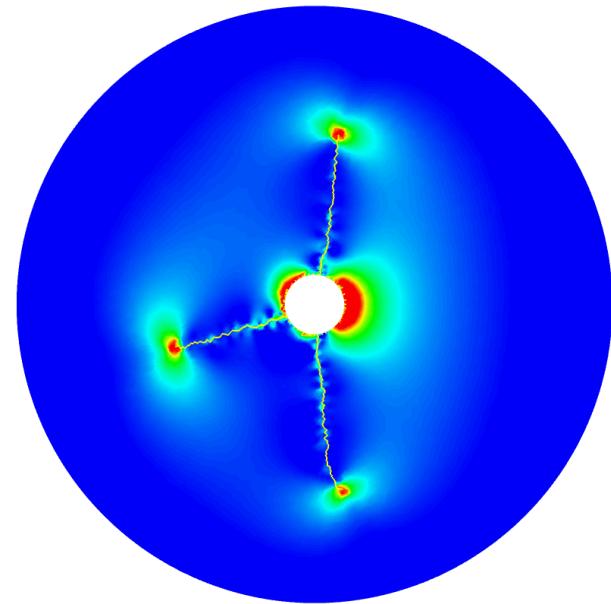
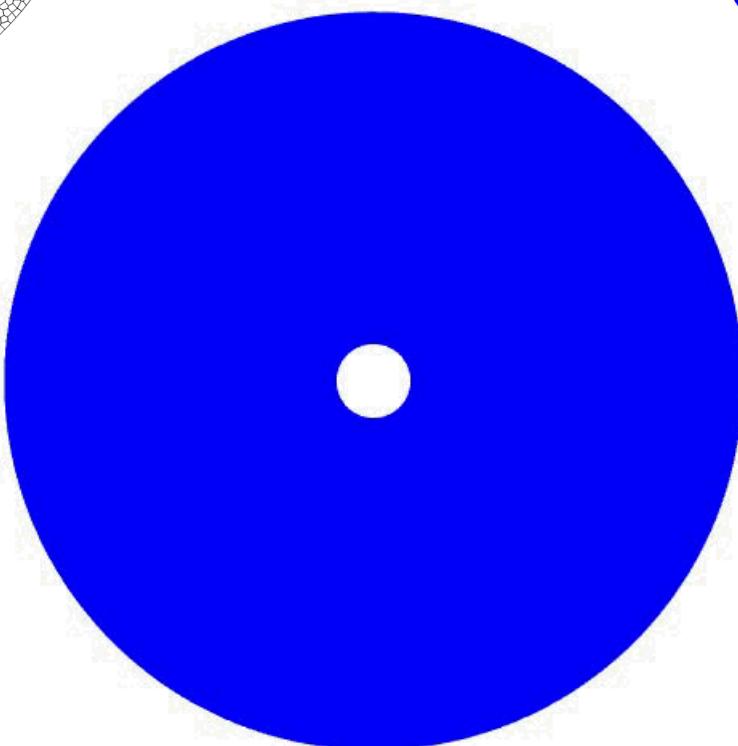
Bishop, J. and Strack, O., 2011, *IJNME*, 38, 279- 306



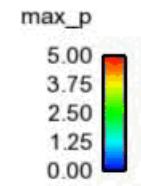
Explosively loaded cylinder



Hydraulic Fracture Simulation



Coupled fluid flow in
fracture networks



Lots of Recent Literature on Polygonal or Polyhedral Finite Elements

- Rashid, M.M. and P.M. Gullett, “On a finite element method with variable element topology.” *Computer Methods in Applied Mechanics and Engineering*, 2000. 190(11-12): p. 1509-1527.
- Sukumar, N. and A. Tabarraei, “Conforming polygonal finite elements.” *International Journal for Numerical Methods in Engineering*, 2004. 61(12): p. 2045-2066.
- Rashid, M.M. and M. Selimotic, “A three-dimensional finite element method with arbitrary polyhedral elements.” *International Journal for Numerical Methods in Engineering*, 2006. 67(2): p. 226-252.
- Wicke, M., M. Botsch, and M. Gross, “A Finite Element Method on Convex Polyhedra.” *Computer Graphics Forum*, 2007. 26(3): p. 355-364.
- Martin, S., et al., “Polyhedral Finite Elements Using Harmonic Basis Functions.” *Computer Graphics Forum*, 2008. 27(5): p. 1521-1529.
- Bishop, J., “Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations.” *Computational Mechanics*, 2009. 44(4): p. 455-471.
- Mousavi, S.E., H. Xiao, and N. Sukumar, “Generalized Gaussian quadrature rules on arbitrary polygons.” *International Journal for Numerical Methods in Engineering*, 2010. 82(1): p. 99-113.
- Joshi, P., et al., “Harmonic coordinates for character articulation.” *ACM Trans. Graph.*, 2007. 26(3): p. 71.

Going to adopt integration rule from here.

Going to adopt use of harmonic shape functions from here.

and here

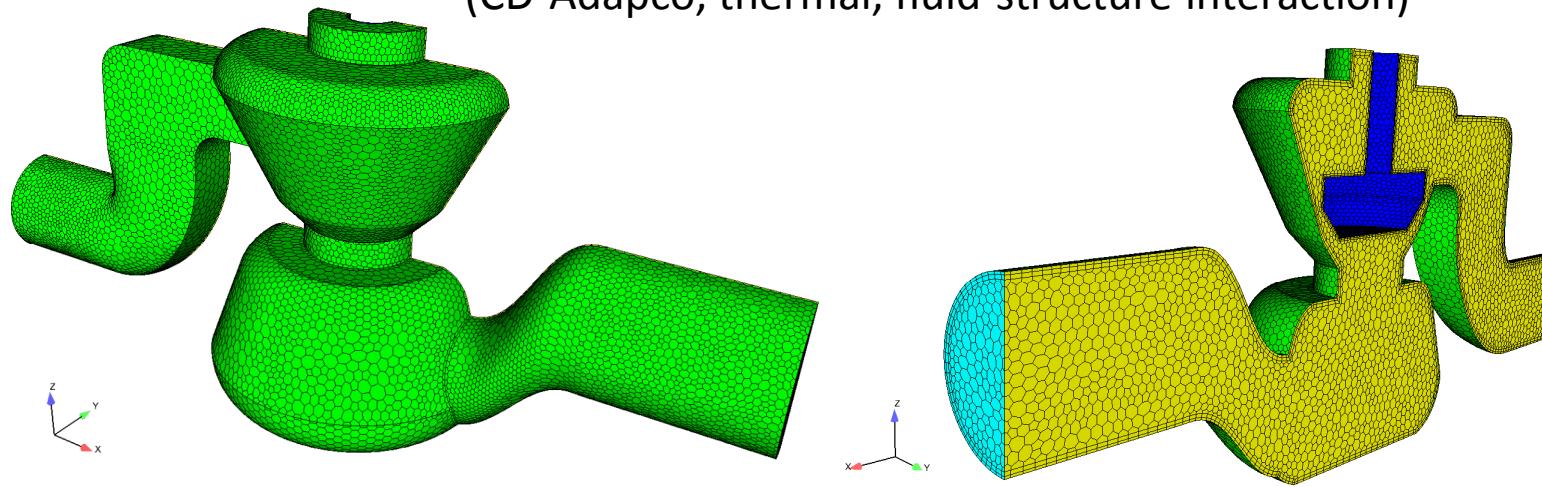
Polyhedral Grids in Other Fields

Mimetic Finite Difference

- Brezzi, F., K. Lipnikov, and V. Simoncini, “A family of mimetic finite difference methods on polygonal and polyhedral meshes.” *Math. Models Methods Appl. Sci.*, 2005. 15: p. 1533-1553.
- Brezzi, F., et al., “A new discretization methodology for diffusion problems on generalized polyhedral meshes.” *Computer Methods in Applied Mechanics and Engineering*, 2007. 196(37-40): p. 3682-3692.
- Lipnikov, K., M. Shashkov, and I. Yotov, “Local flux mimetic finite difference methods.” *Numerische Mathematik*, 2009. 112(1): p. 115-152.

Finite Volume

(CD-Adapco, thermal, fluid-structure interaction)



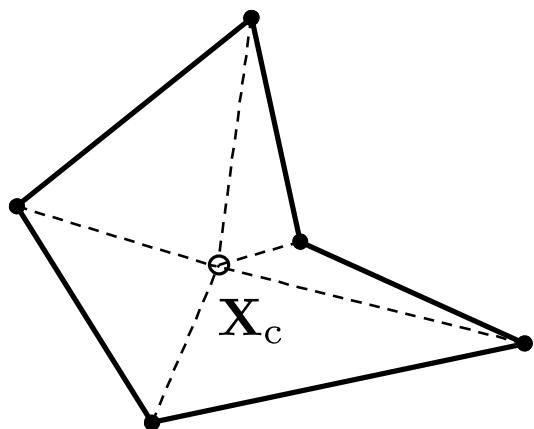
Polyhedral Finite-Element Formulation

Bishop, J., 2014, "A displacement-based finite element formulation for general polyhedra using harmonic shape functions," *IJNME*, (DOI: 10.1002/nme.4562)

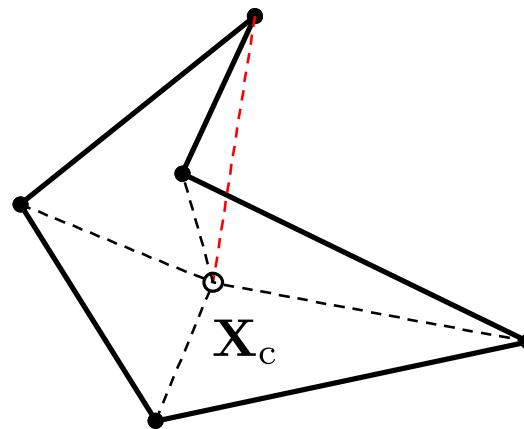
- Developed for nonlinear solid mechanics (minimize number of integration points while avoiding artificial stabilization).
- General polyhedra: non-convex with non-planar faces
- Uses harmonic shape functions defined in the original configuration
- Uses total-Lagrangian formulation
- Mean-dilation formulation for nearly-incompressible materials
- Compatible with standard trilinear hexahedron

Star Convexity

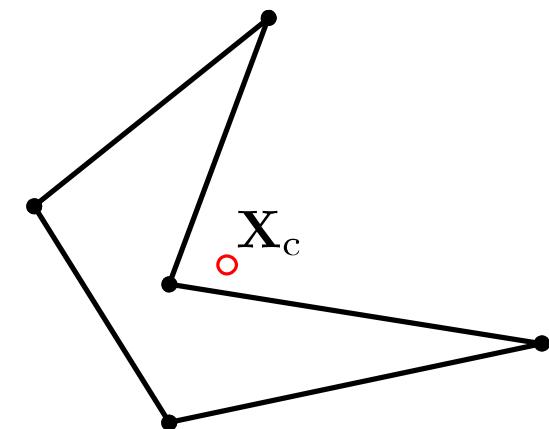
For ease of construction, present formulation assumes star-convexity with respect to vertex-averaged centroid.



star convex



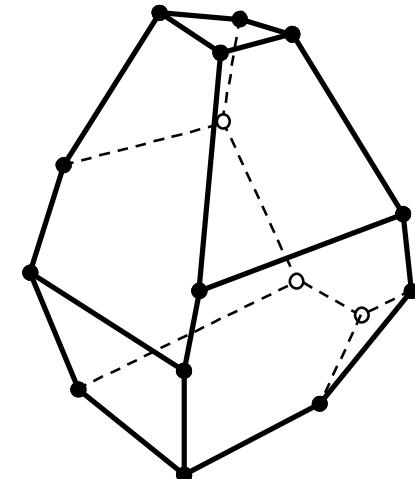
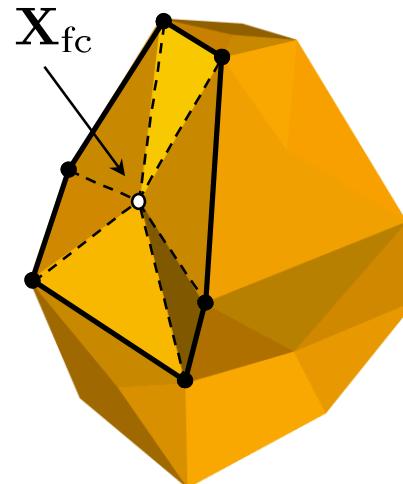
not star convex



not star convex

How to Fully Specify Face Geometry?

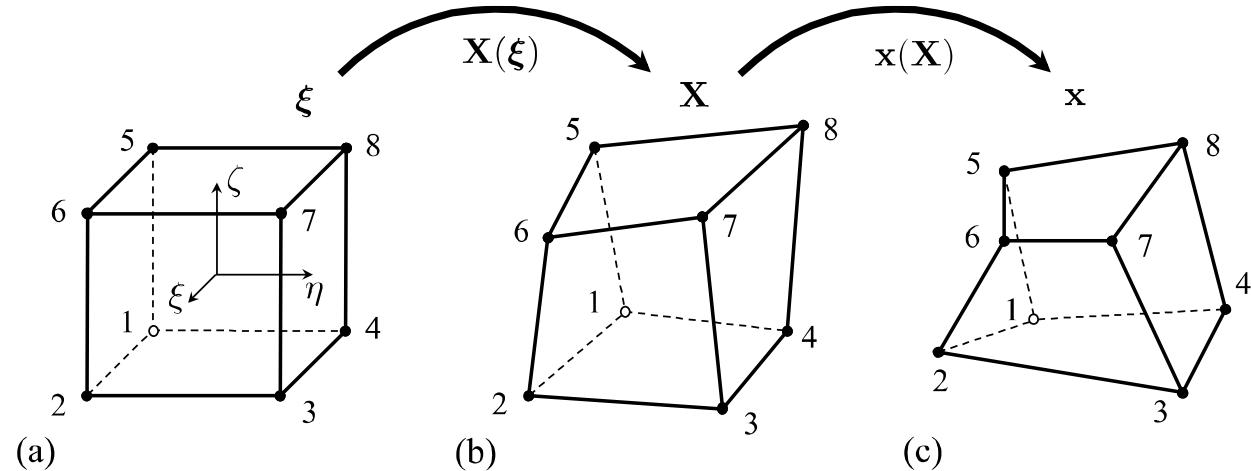
- Use vertex-averaged face centroid.
- Could also use a bilinear mapping for quadrilateral faces.
- Could also use any barycentric mapping.



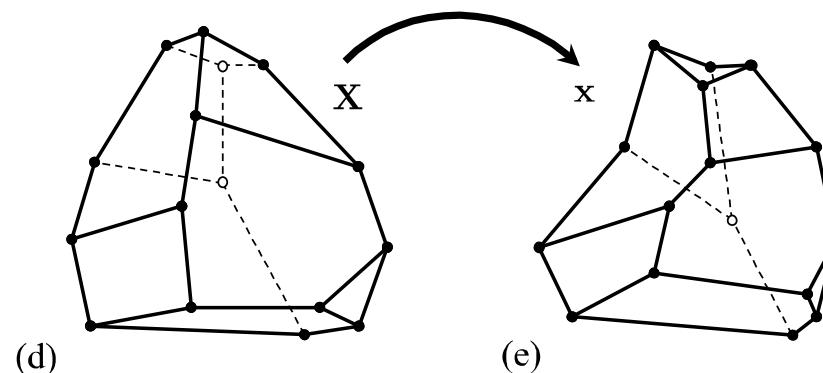
1

Define Shape Functions Directly on Initial Configuration

Standard trilinear hexahedral mapping using a parent c.s.



Present formulation defines shape functions directly on initial configuration.

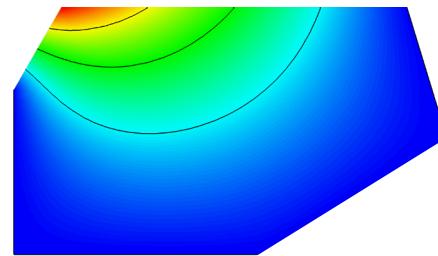


Harmonic Shape Functions

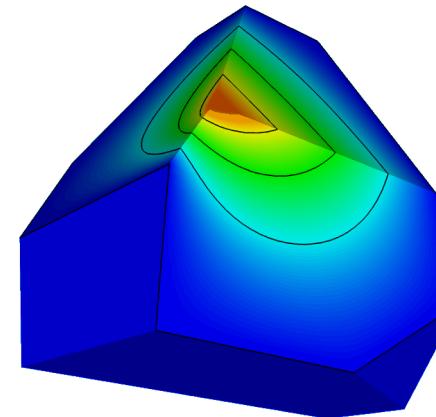
A harmonic function is a solution of Laplace's equation
(with appropriate boundary conditions).

$$\nabla^2 \psi = 0$$

Can solve efficiently using BEM,
or can just use FEM.



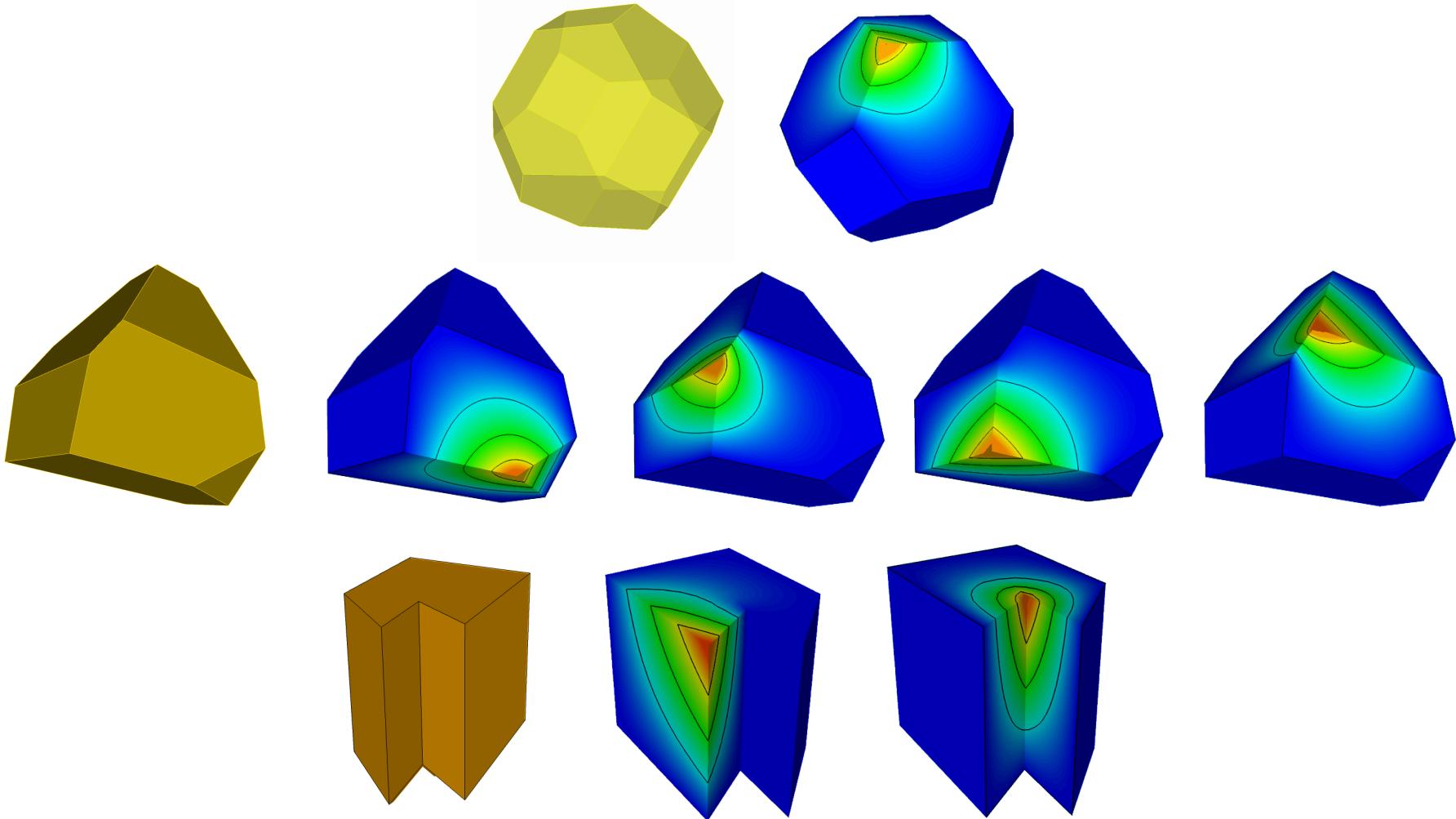
example in 2D



example in 3D

Note: Only need to store shape function values and derivatives at the quadrature points.

Harmonic Shape Function Examples



Harmonic Shape Function Properties

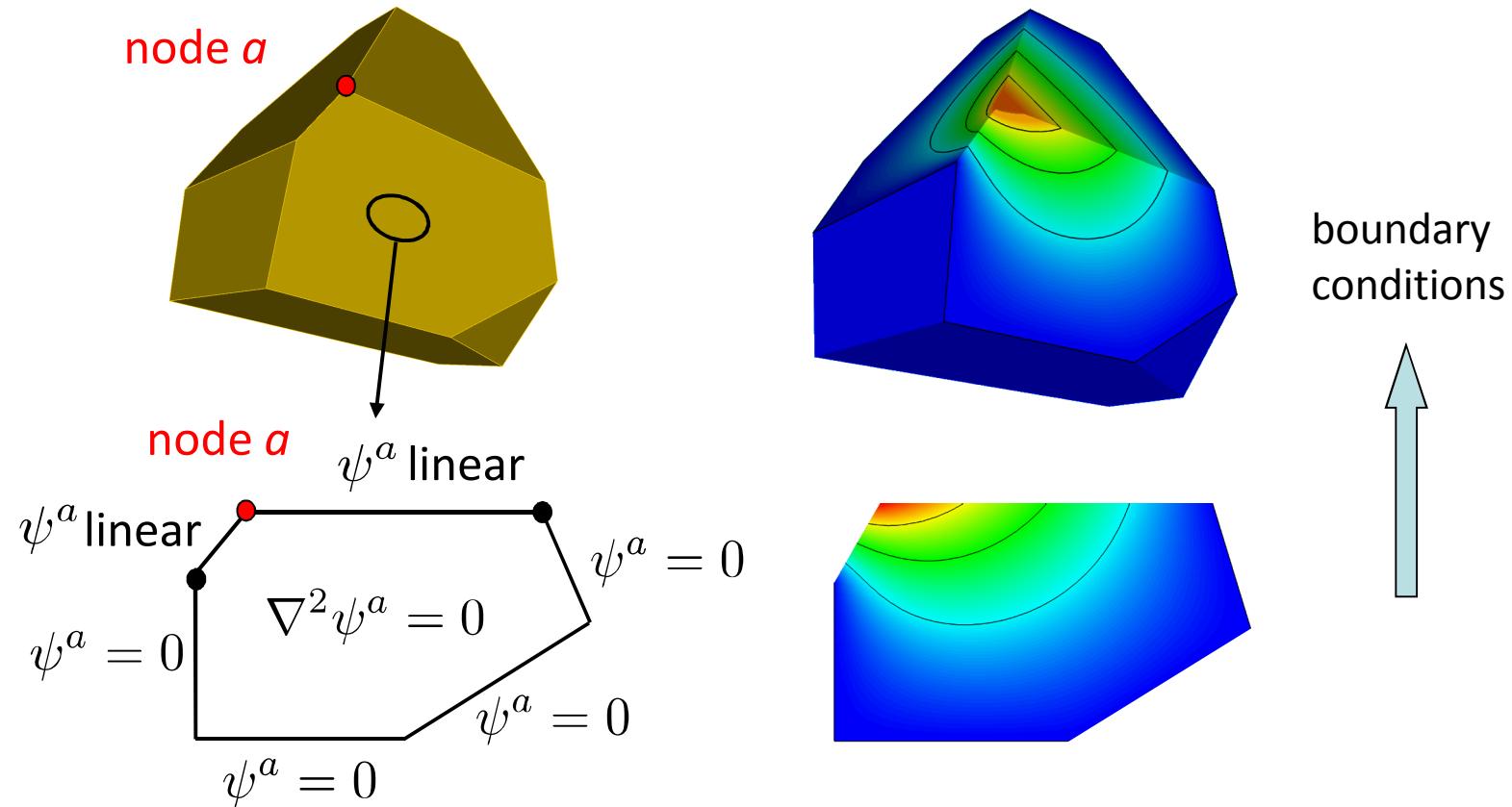
$$\sum_{a=1}^{N_v} \psi^a(\mathbf{X}) = 1, \quad \mathbf{X} \in \Omega_e \quad \text{partition of unity}$$

$$\sum_{a=1}^{N_v} \psi^a(\mathbf{X}) \mathbf{X}^a = \mathbf{X}, \quad \mathbf{X} \in \Omega_e \quad \text{reproduce linear fields}$$

$$\psi^a(\mathbf{X}^b) = \delta_{ab} \quad \text{Kronecker-delta property at nodes}$$

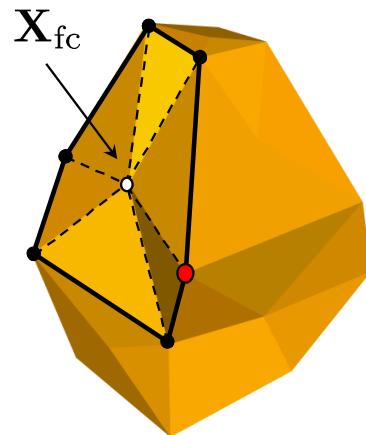
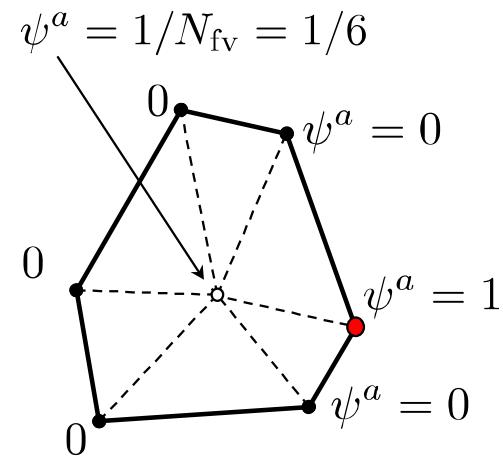
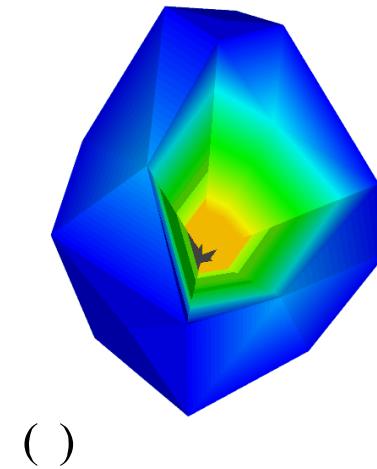
Hierarchical Construction of Harmonic Shape Functions

(Joshi, 2007)



Harmonic Shape Functions for Non-planar Faces

al
ories

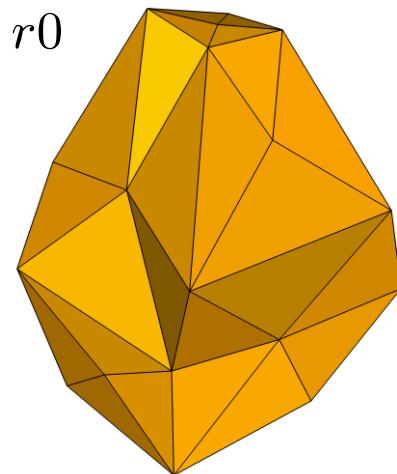
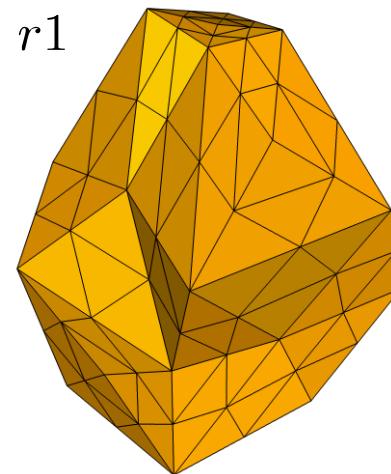
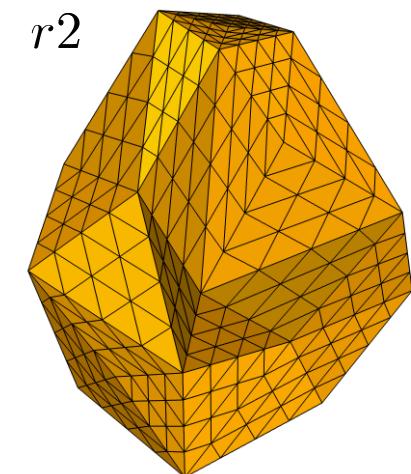


()

Can also use other barycentric face mappings.

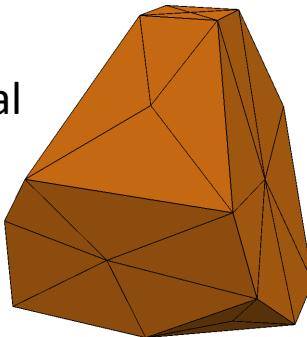
How to Solve for Harmonic Shape Functions using FEA

Use a temporary tetrahedral submesh.



Accuracy of Harmonic Shape Functions?

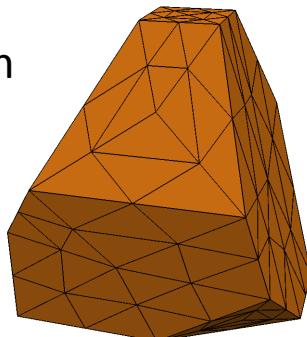
Base tetrahedral subdivision



R0

Note: Only one unknown to solve for.

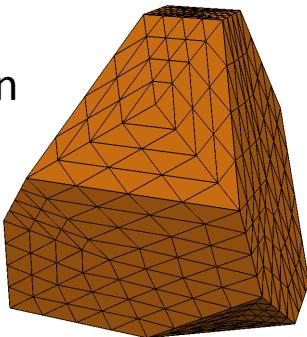
1 : 8 subdivision



R1

Number of unknowns to solve for = $N_v + N_f + 1$

1 : 8 subdivision



R2

Numerical Precision in Reproducing Properties

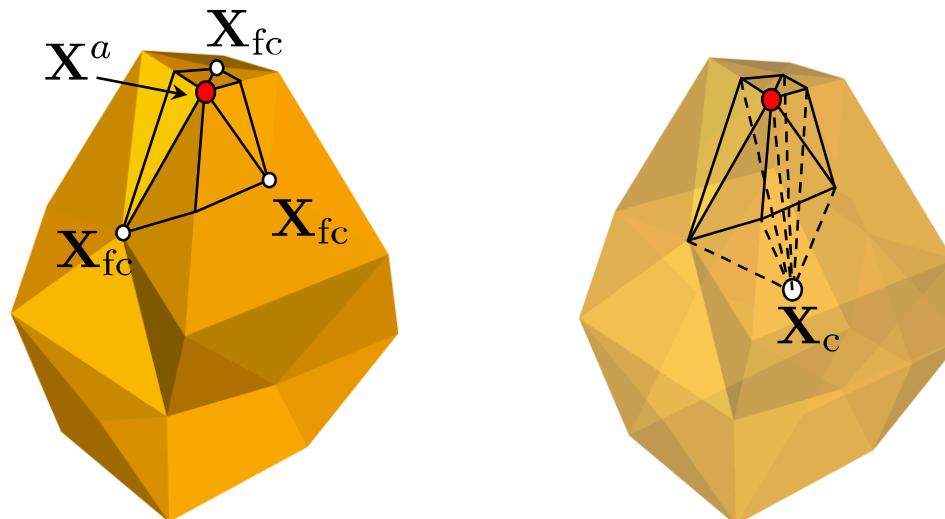
Partition of Unity

Reproduction of Linear Fields

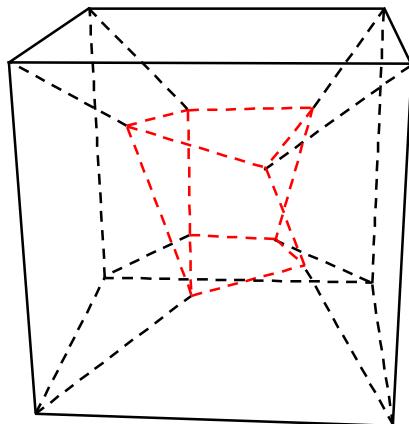
subdivision	$\max_{k \in \{1, \dots, N_{i.p.}\}} \left[\sum_{a=1}^{N_v} \psi^a(\mathbf{X}^k) - 1 \right]$	$\max_{\substack{k \in \{1, \dots, N_{i.p.}\} \\ j \in \{1, 2, 3\}}} \left[\sum_{a=1}^{N_v} \psi^a(\mathbf{X}^k) X_j^a - X_j^k \right]$
$r0$	3.33×10^{-16}	5.55×10^{-16}
$r1$	6.66×10^{-16}	5.55×10^{-16}
$r2$	1.55×10^{-15}	5.55×10^{-16}

Element Integration

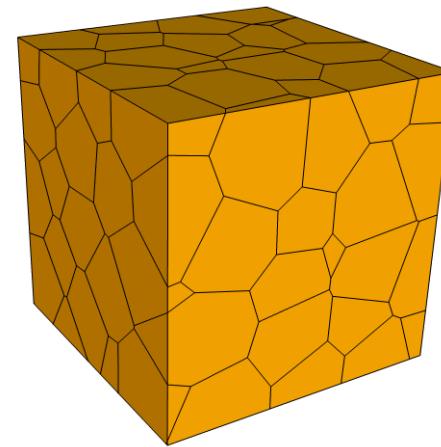
- Due to computational expense of plasticity models, want to minimize the number of quadrature points.
- Follow approach of Rashid and Selimotec, 2006.
- Each node is associated with a “tributary” volume.
- **Number of quadrature points is equal to the number of vertices.**
- Quadrature weight = volume of tributary volume.
- First-order accurate, but quadrature weights are positive (avoids Runge’s phenomenon)



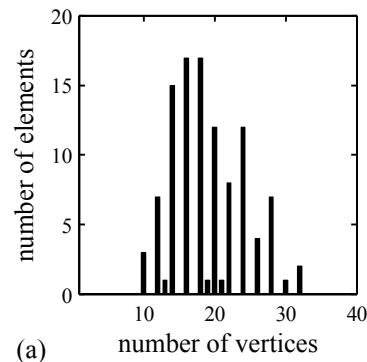
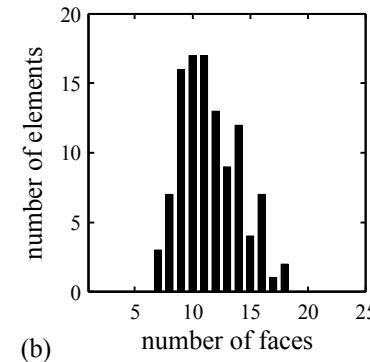
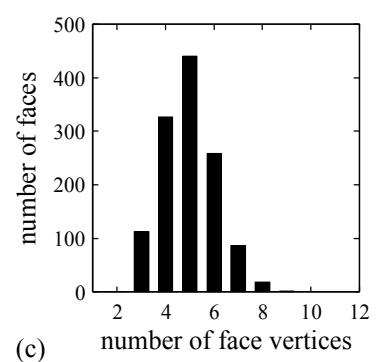
Patch Test



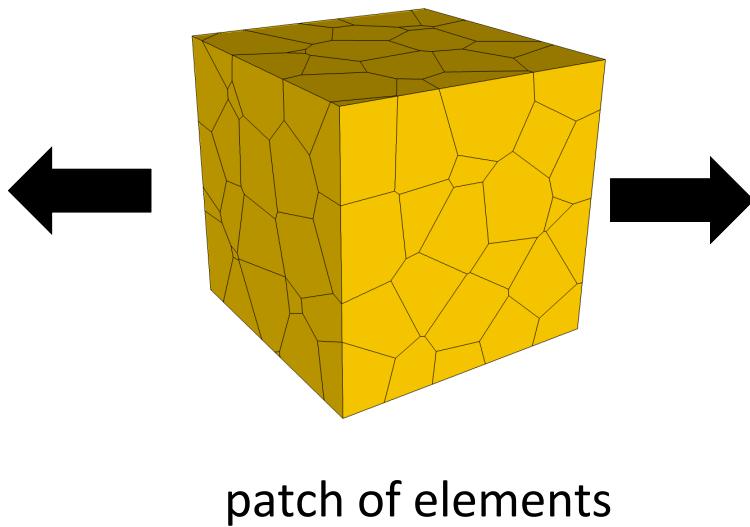
distorted hex patch



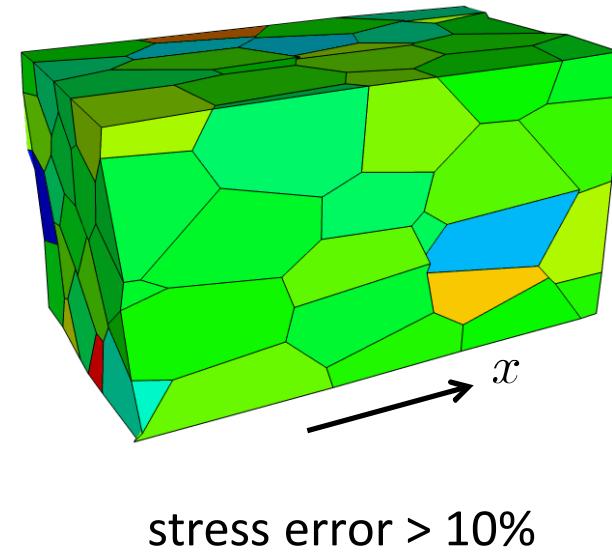
random close-packed Voronoi patch



Patch Test



Failed patch test!



Patch Test and Integration Consistency

(Krongauz & Belytschko, 1997; Chen, 2001)

Divergence theorem

$$\int_{\Omega_e} \psi_{,i}^a d\Omega = \int_{\Gamma_e} \psi^a n_i d\Gamma, \quad a = 1, \dots, N_v, \quad i = 1, 2, 3$$

Discrete divergence theorem

$$\sum_{k=1}^{N_{i,p.}} w_k \psi_{,i}^{ak} = \sum_{l=1}^{N_{i,p.}^\Gamma} w_l^\Gamma \psi^{al} n_i^l, \quad a = 1, \dots, N_v \quad i = 1, 2, 3$$

Maximum error in integration constraint

subdivision	before derivative correction	after derivative correction
$r0$	0.0609	2.77×10^{-17}
$r1$	0.0138	2.77×10^{-17}
$r2$	0.0106	2.77×10^{-17}

(error over all shape functions and coordinate directions)

Derivative Correction to Pass the Patch Test

- “Tweak” the shape function derivatives to satisfy the integration consistency condition.
- Maintain the reproducing properties of the derivatives.
- Minimize the difference between the new derivatives and the old.
- Local solve at the element level; performed once.
- Performed for each direction and shape function independently.

$$\min_{\xi^k \in \Re} \sum_{k=1}^{N_{i.p.}} w_k \left(\xi^k - \psi_{,i}^{ak} \right)^2 \text{ subject to the constraints } \sum_{k=1}^{N_{i.p.}} w_k \xi^k - \sum_{l=1}^{N_{i.p.}^\Gamma} w_l^\Gamma \psi^{al} n_i^l = 0$$

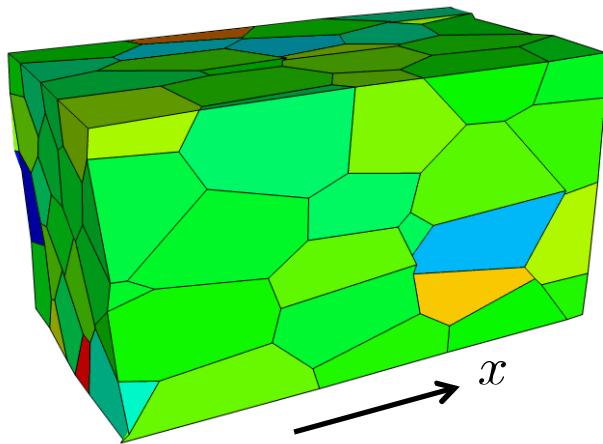
Derivative Correction to Pass the Patch Test

Maximum error in integration constraint

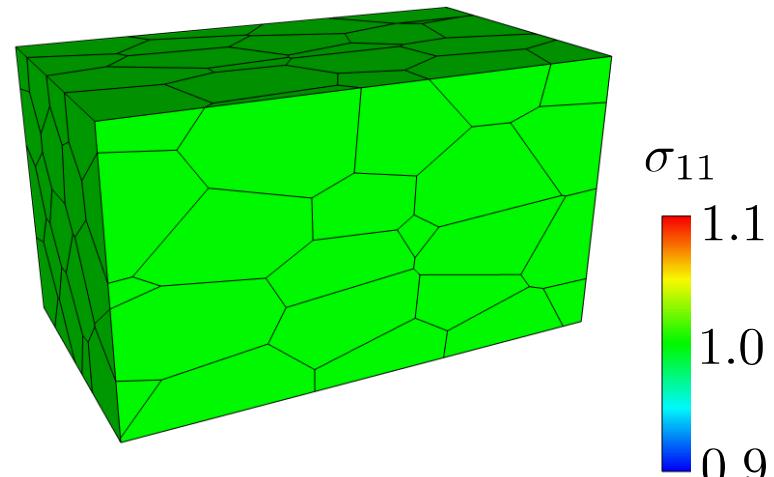
subdivision	before derivative correction	after derivative correction
r_0	0.0609	2.77×10^{-17}
r_1	0.0138	2.77×10^{-17}
r_2	0.0106	2.77×10^{-17}

(error over all shape functions and coordinate directions)

Patch Test: Before and After



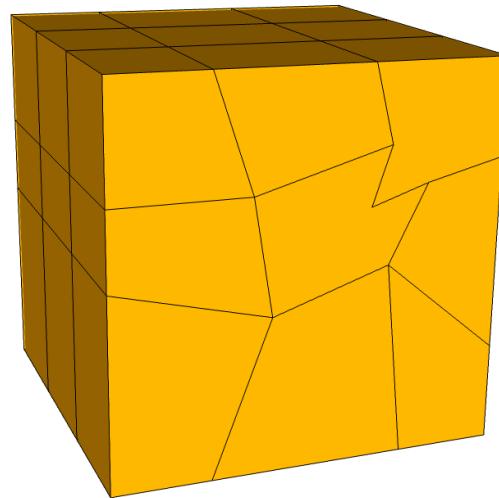
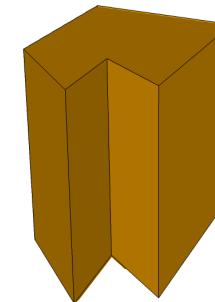
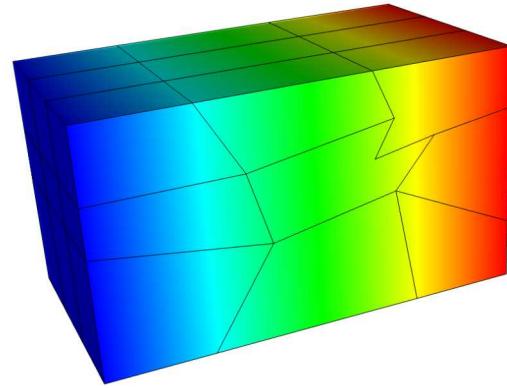
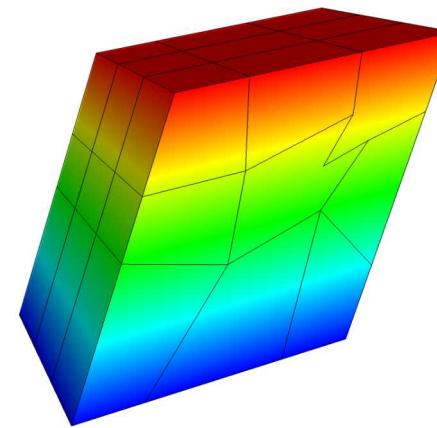
failed patch test



successful patch test

case	without derivative correction	with derivative correction
hex patch, trilinear formulation	1.11×10^{-15}	—
hex patch, poly formulation	0.0863	5.55×10^{-16}
hex patch, trilinear and poly	0.0152	8.88×10^{-16}
random Voronoi patch	0.1844	1.41×10^{-12}

Patch Test with Non-Convex Elements

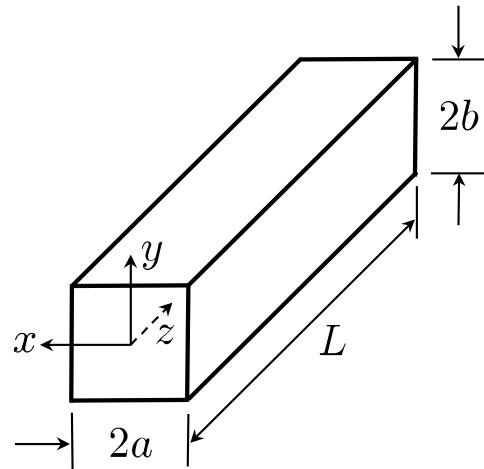
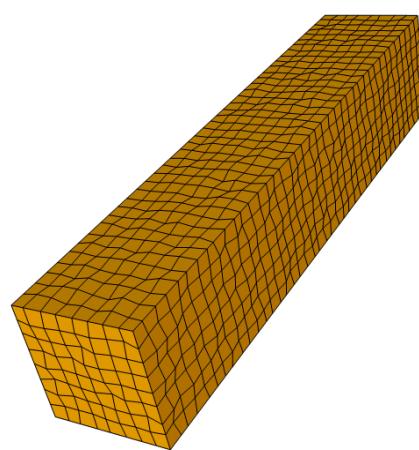
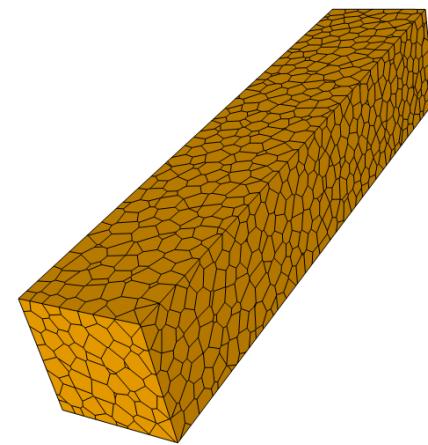


Verification Tests

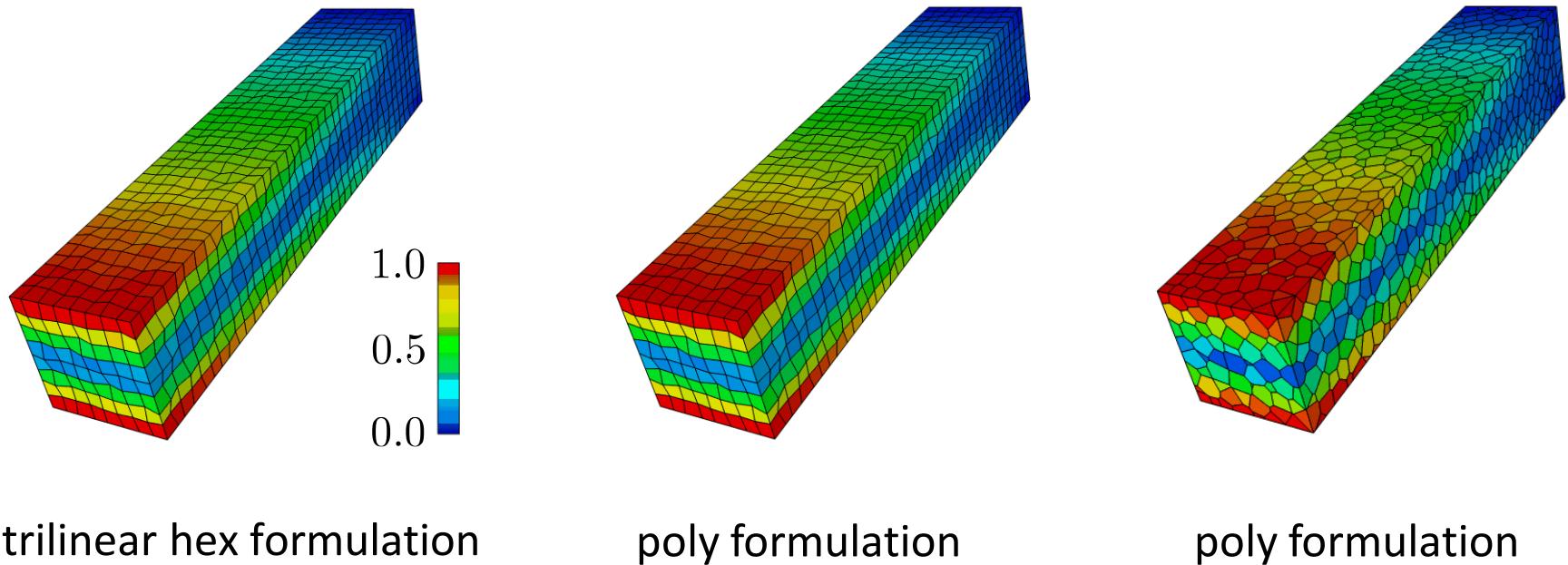
loading: 3D beam bending with end shear load (have exact solution)

meshes and element formulations:

1. perfect hex mesh, trilinear vs. poly formulation
2. distorted hex mesh, trilinear vs. poly formulation
3. Voronoi mesh, poly formulation

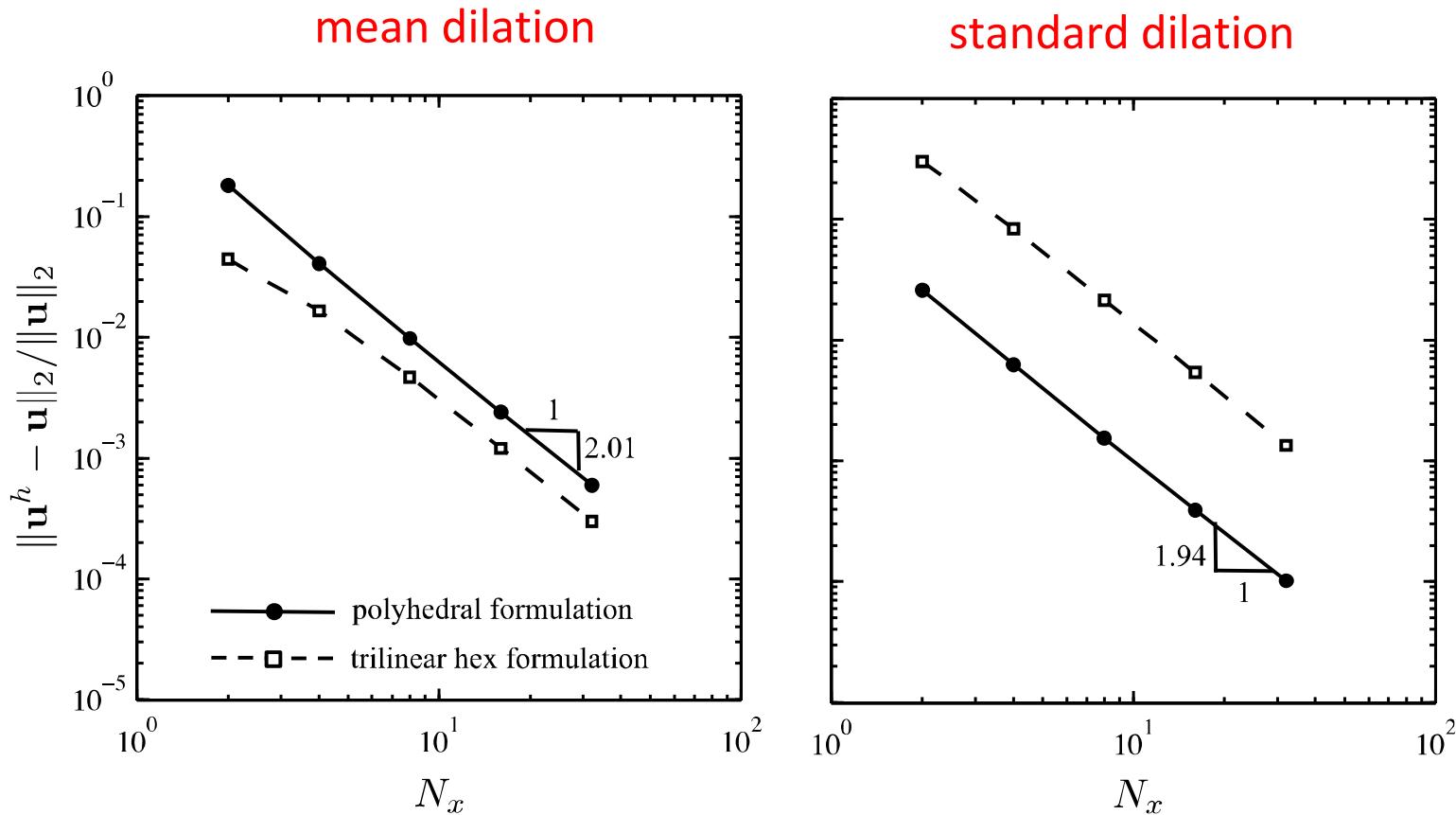


Verification Test: Beam Bending with Shear Load



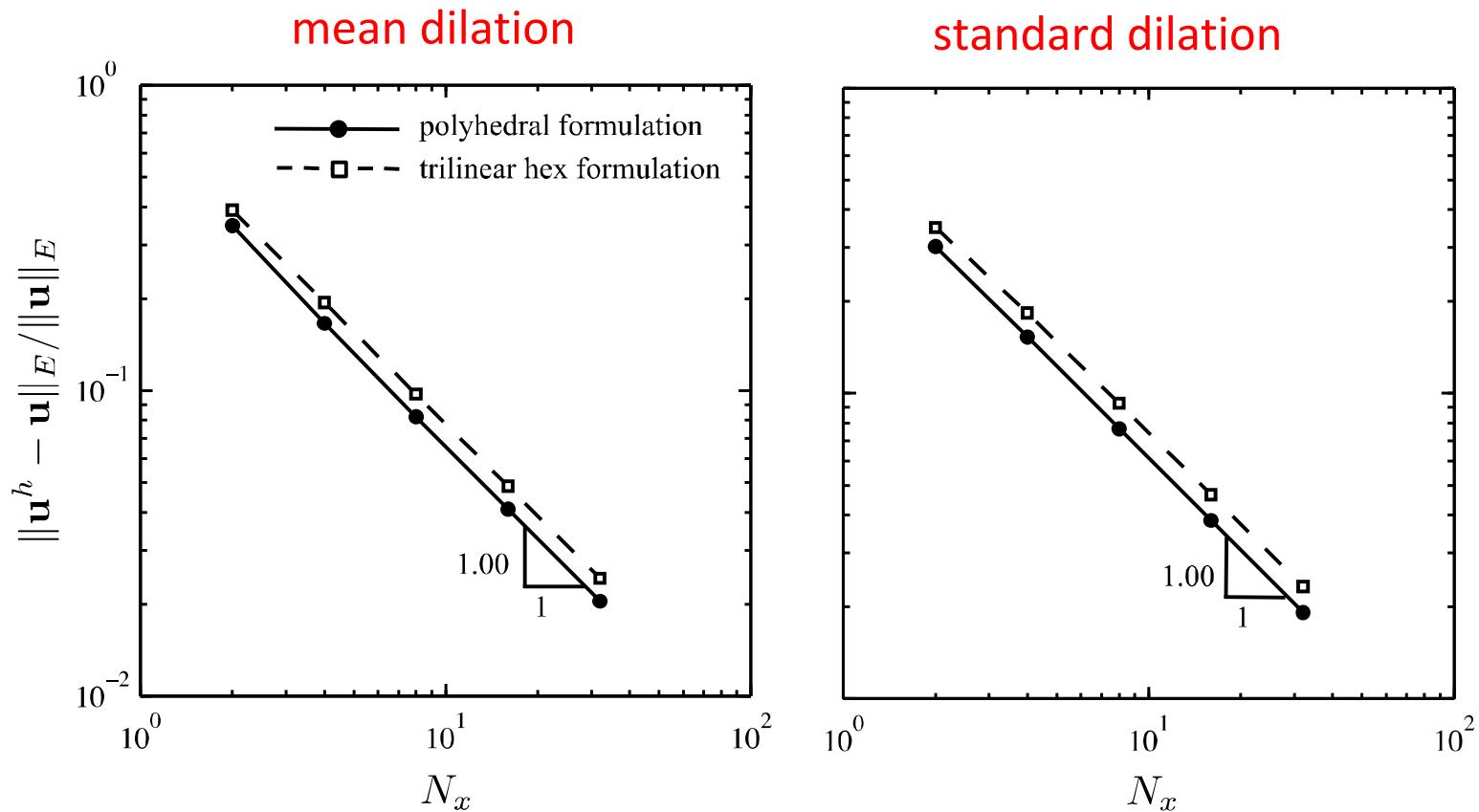
Beam Bending with Shear Load

(perfect hex mesh)



Energy Norm

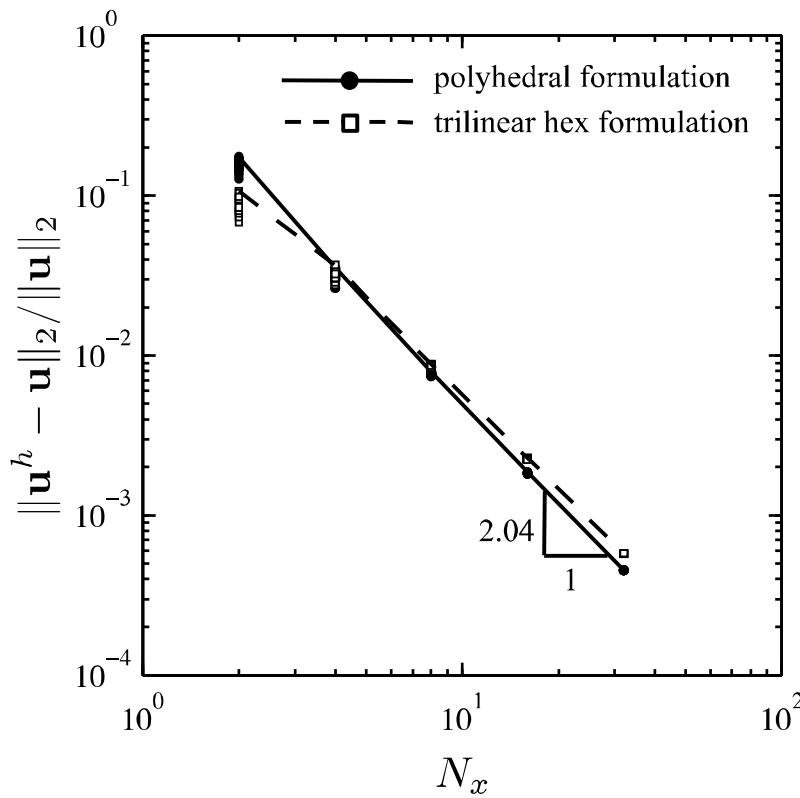
(perfect hex mesh)



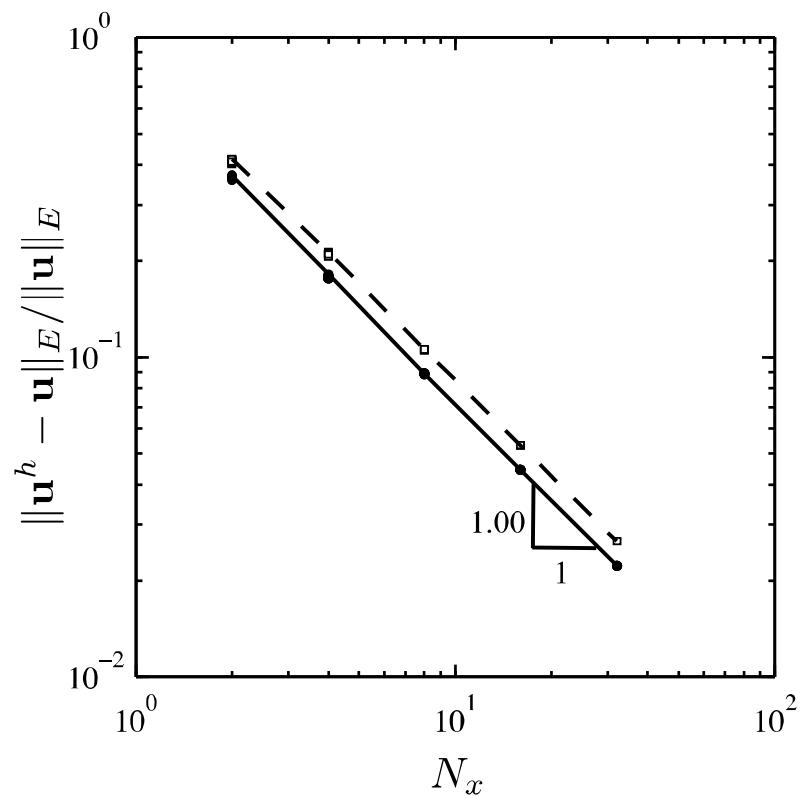
Random Hex Mesh (20 realizations)

(mean dilation)

L2 norm

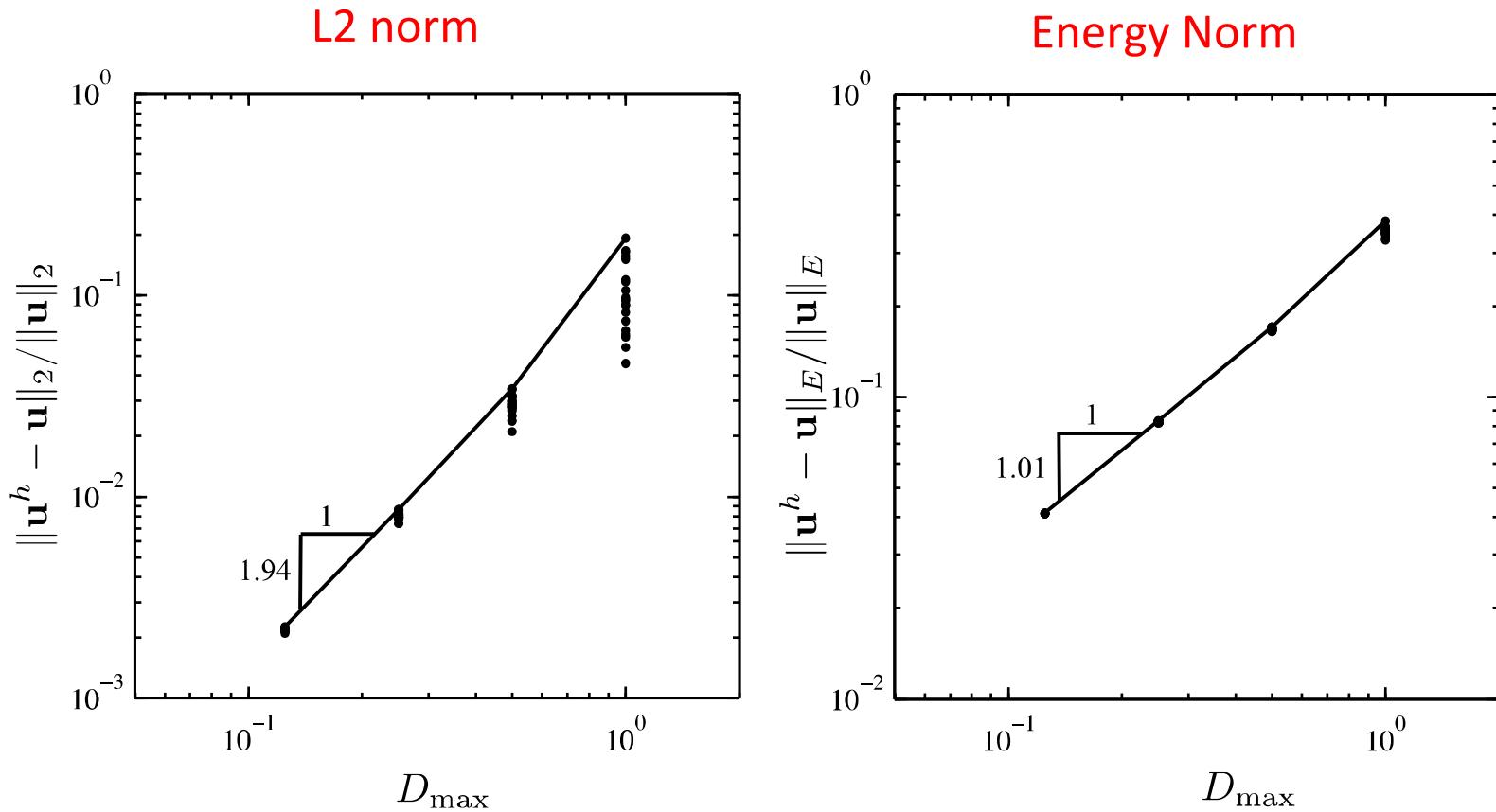


Energy Norm



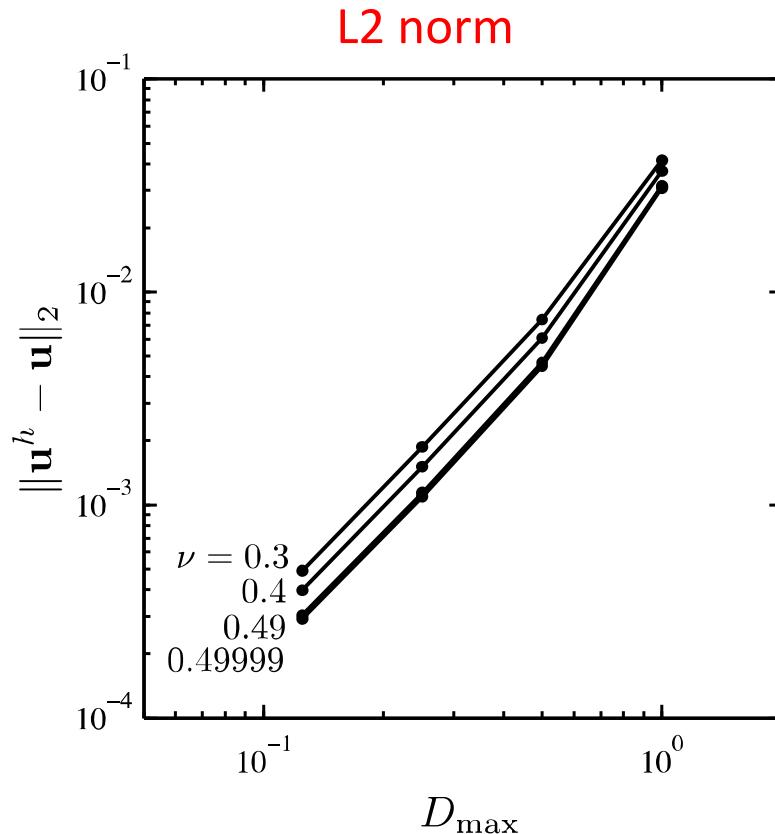
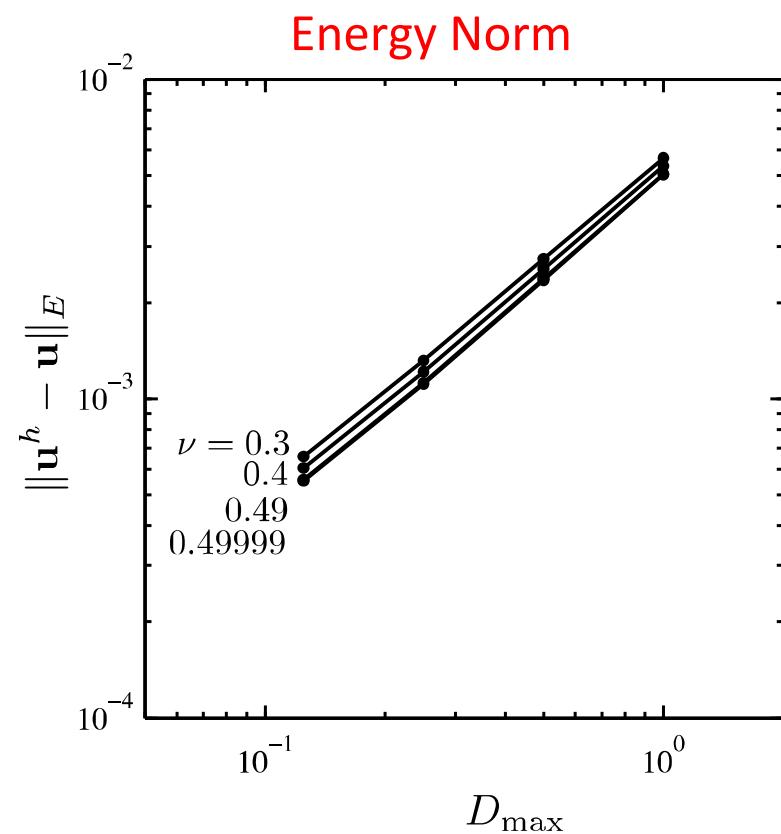
Random Voronoi Mesh (20 realizations)

(mean dilation)



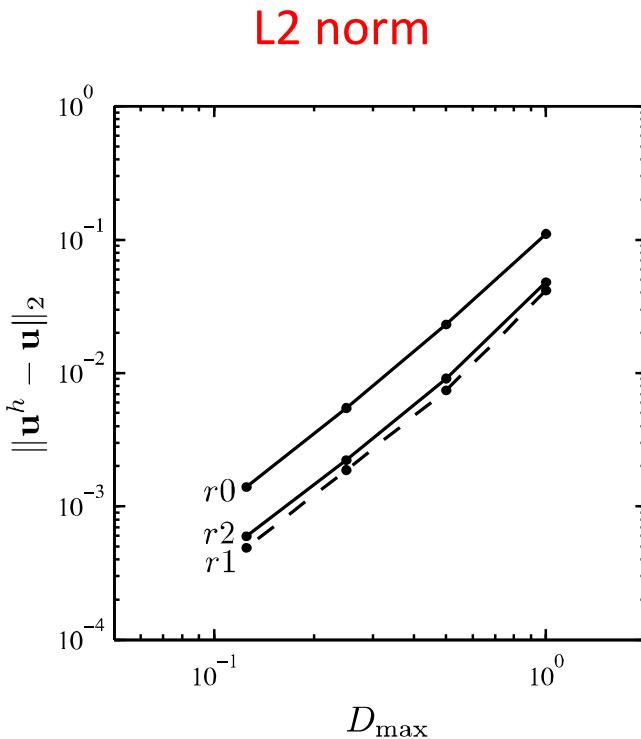
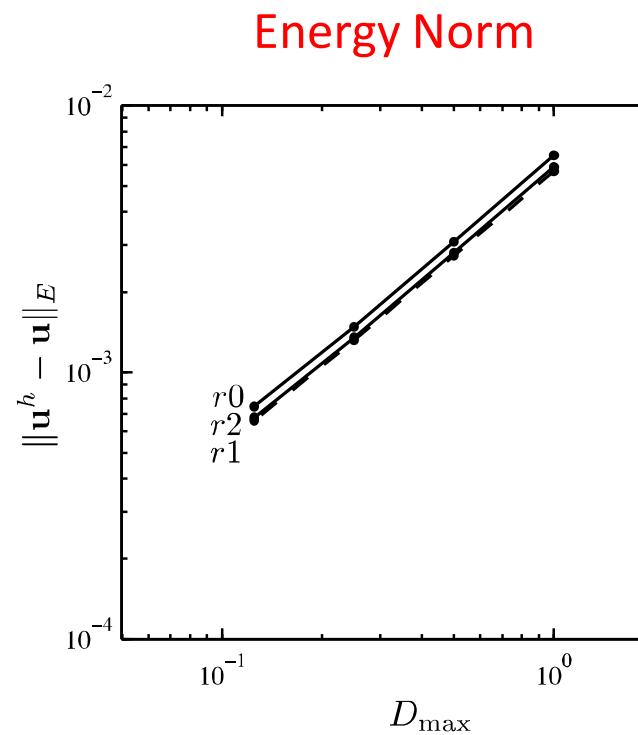
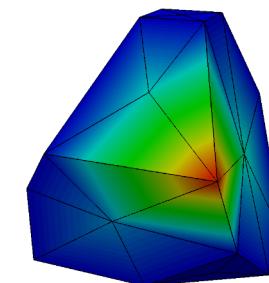
Near Incompressibility

(mean dilation, worst case Voronoi mesh at each refinement)

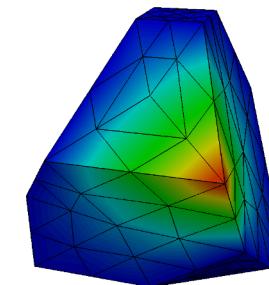


Effect of Shape Function Accuracy

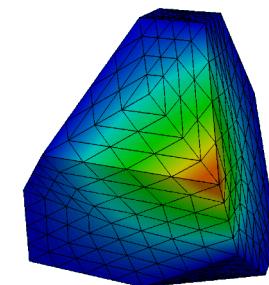
(worst case Voronoi mesh at each refinement)



R0



R1



R2

Summary

1. Presented a polyhedral finite-element formulation based on harmonic shape functions.
2. Applicable to non-convex elements with non-planar faces.
3. Adopted quadrature scheme of Rashid (number of quadrature points = number of vertices, total-Lagrangian formulation)
4. In order to pass the patch test, needed to use “pseudo-derivatives”.

Future Work

1. Nonlinear examples (plasticity, large deformation)
2. Try this element formulation using other barycentric coordinates (e.g. maxEnt)
3. Remove restriction of star-convexity (used for convenience)

Outline

1. Polyhedral finite elements

- motivation
- harmonic shape functions
- patch test
- verification
- future work

2. Multiscale modeling and material variability

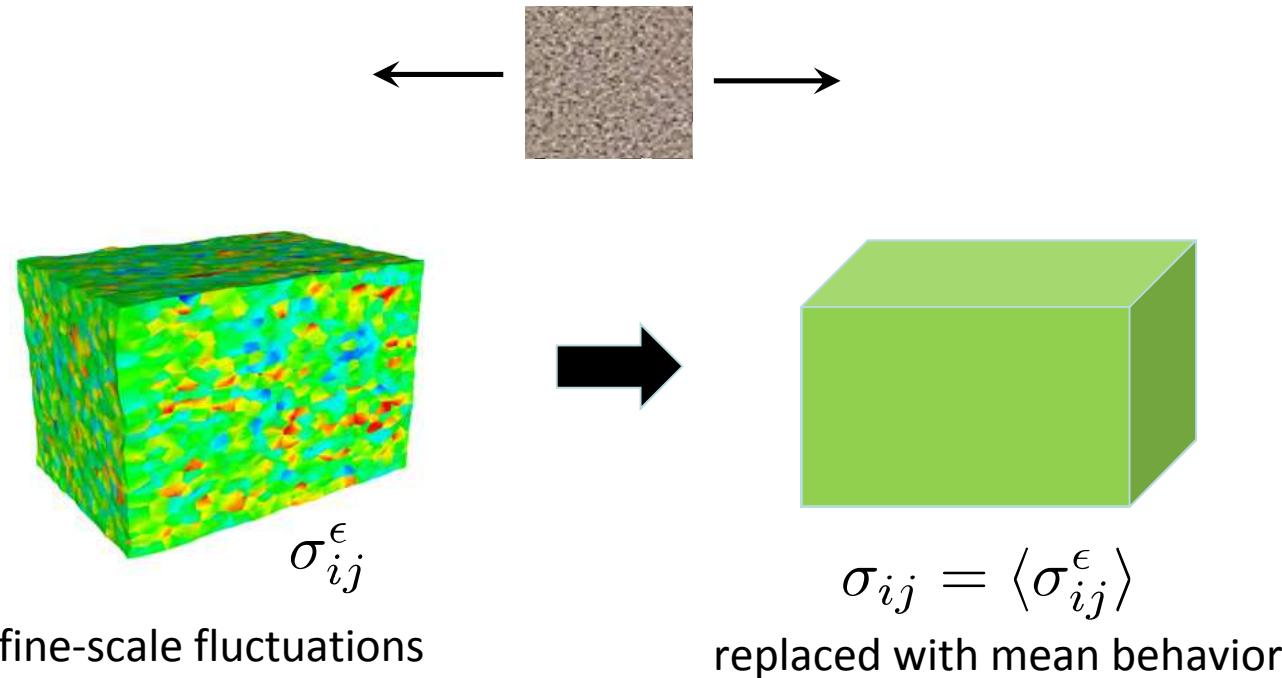
- review of homogenization theory
 - a. weak convergence
 - b. effective vs. apparent material properties
 - c. type 1 and type 2 material variability
- direct numerical simulations

3. Summary

Goals / Questions

- What is material variability?
- How do we “consistently” include material variability in our macroscale simulations?
- When is material variability significant?
- How does material variability impact engineering quantities of interest?

Homogenization



This equivalence is defined in an energy sense: $\sigma_{ij}\epsilon_{ij} = \langle \sigma_{ij}^{\epsilon} \rangle \langle \epsilon_{ij}^{\epsilon} \rangle$

Constitutive models map average strain to average stress:

$$\epsilon_{ij} = \langle \epsilon_{ij}^{\epsilon} \rangle \longrightarrow \sigma_{ij} = \langle \sigma_{ij}^{\epsilon} \rangle$$

Apparent vs. Effective Material Properties

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies." *Journal of the Mechanics and Physics of Solids*, 38(6): 813-841.

C = stiffness tensor

finite RVE, **apparent**

$$C_{\sigma}^{\text{app}}(\omega) \leq C \leq C_{\varepsilon}^{\text{app}}(\omega)$$

SUBC

stochastic

infinite RVE, **effective**

KUBC

stochastic

deterministic

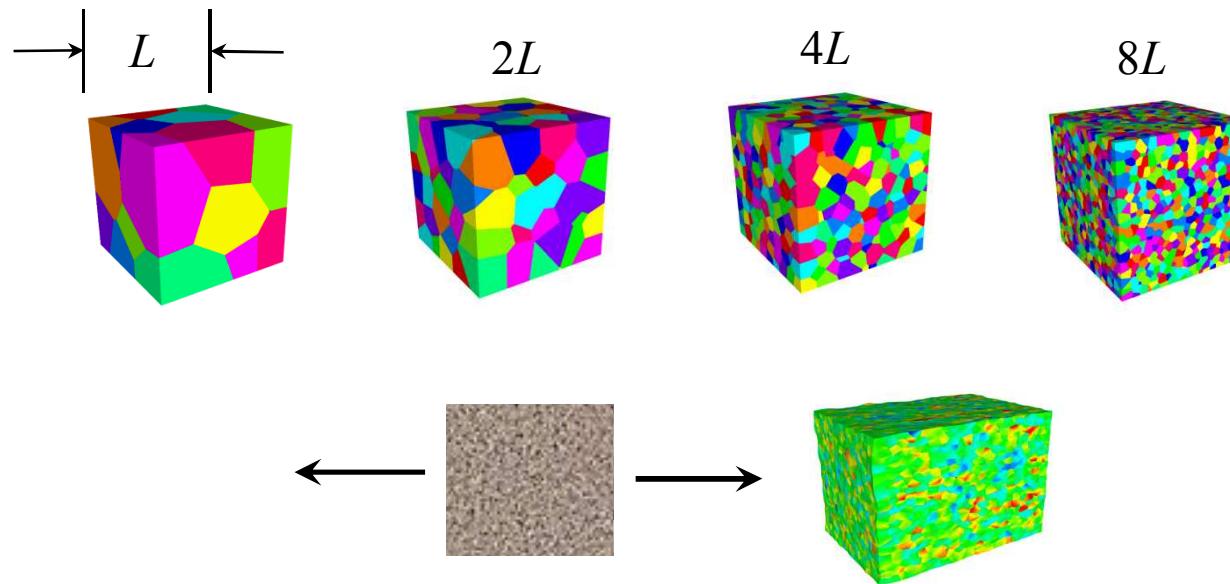
partial ordering defined in an energetic sense:

$$B < A \quad \text{iff} \quad \varepsilon : (A - B) : \varepsilon > 0 \quad \text{for all } \varepsilon \neq 0$$

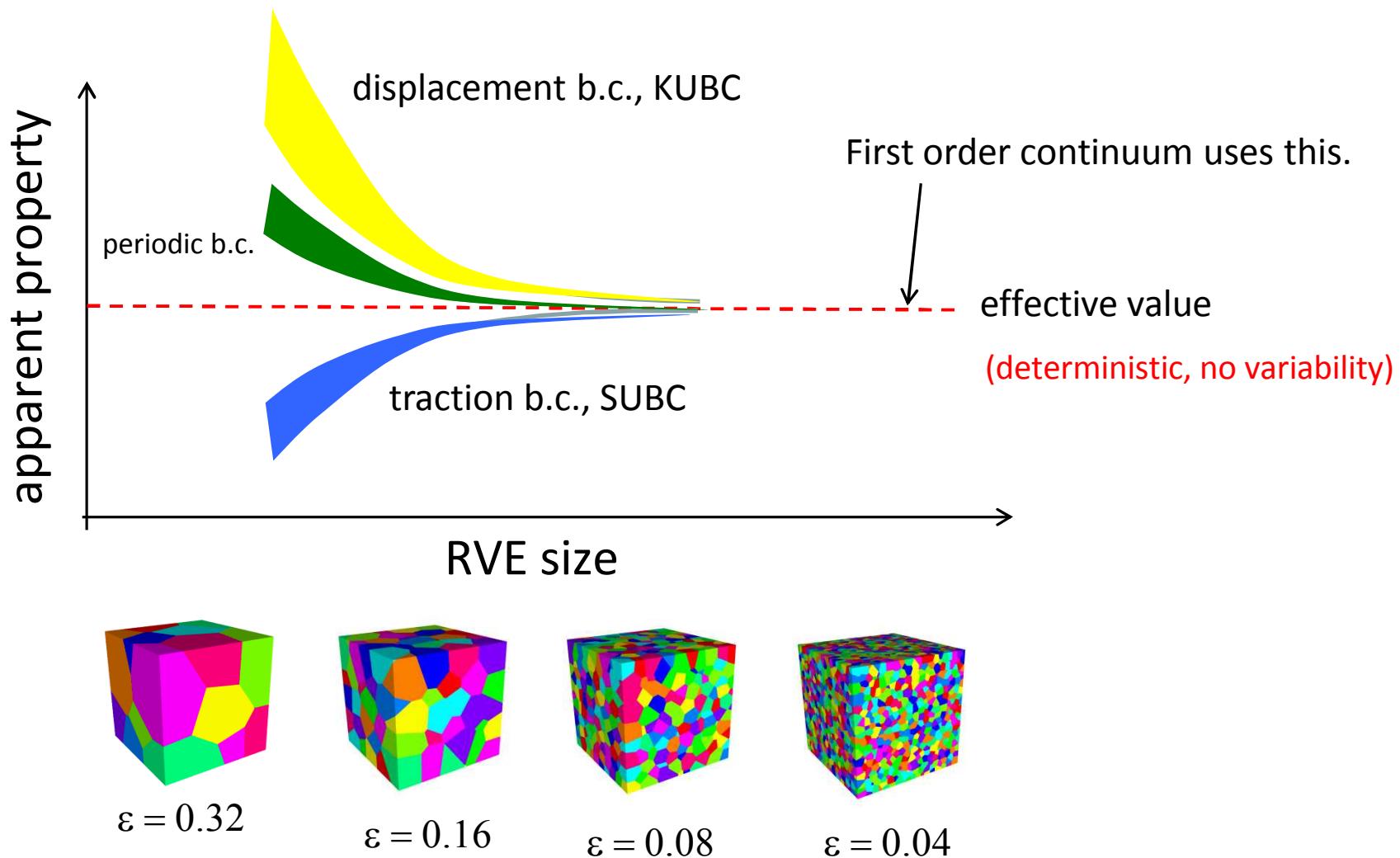
Apparent vs. Effective Material Properties

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies." *Journal of the Mechanics and Physics of Solids*, 38(6): 813-841.

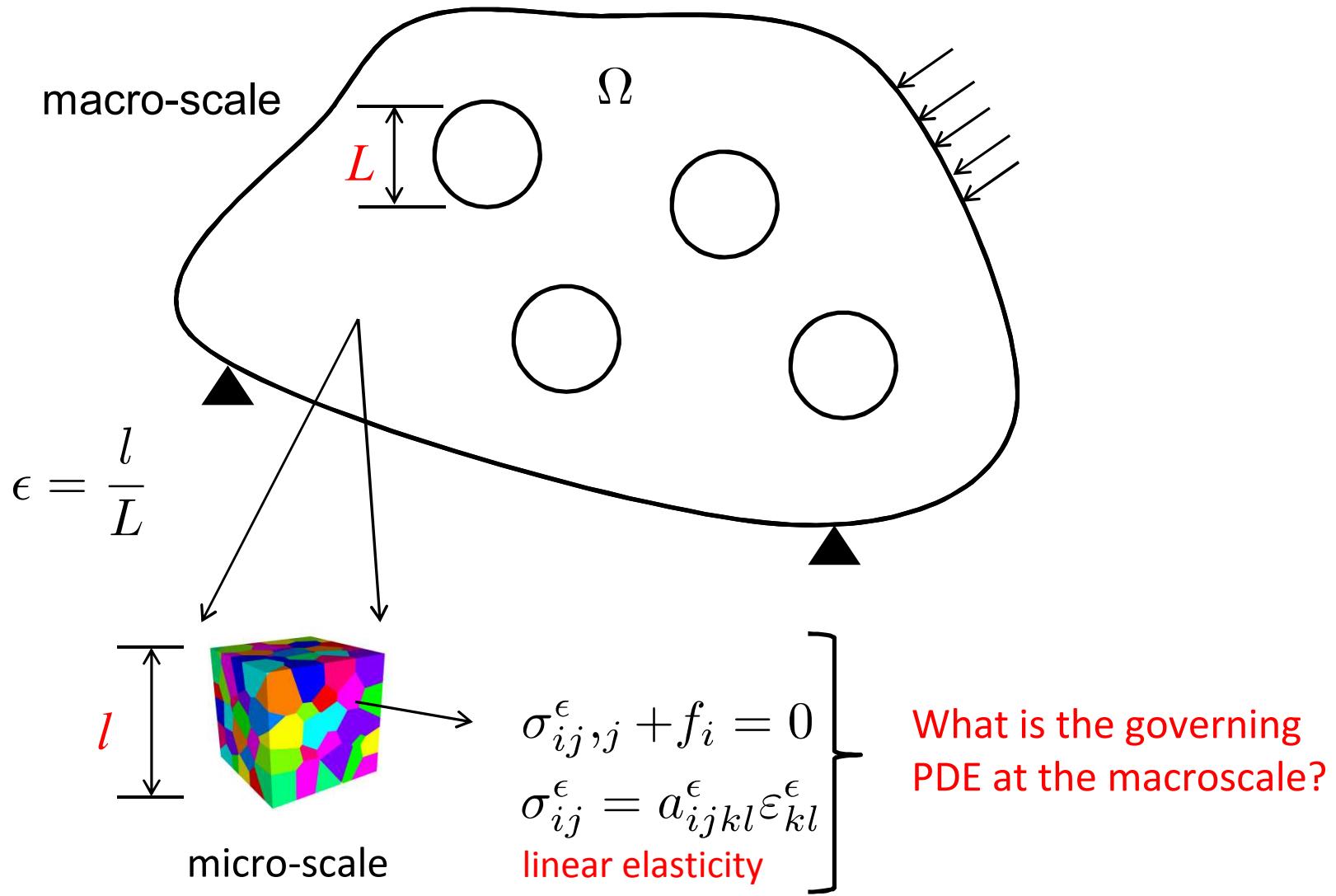
$$C_{\sigma,L}^{\text{app}} \leq C_{\sigma,2L}^{\text{app}} \leq C_{\sigma,4L}^{\text{app}} \leq \dots \leq C_{\sigma,\infty}^{\text{app}} = C$$



Apparent vs. Effective Material Properties



What about the Governing PDE?



Strong and Weak Convergence

A sequence of functions (u_n) , $u_n \in L^2$ is **strongly** convergent to $u \in L^2$ if

$$\lim_{n \rightarrow \infty} \|u_n - u\|_{L^2} = 0$$

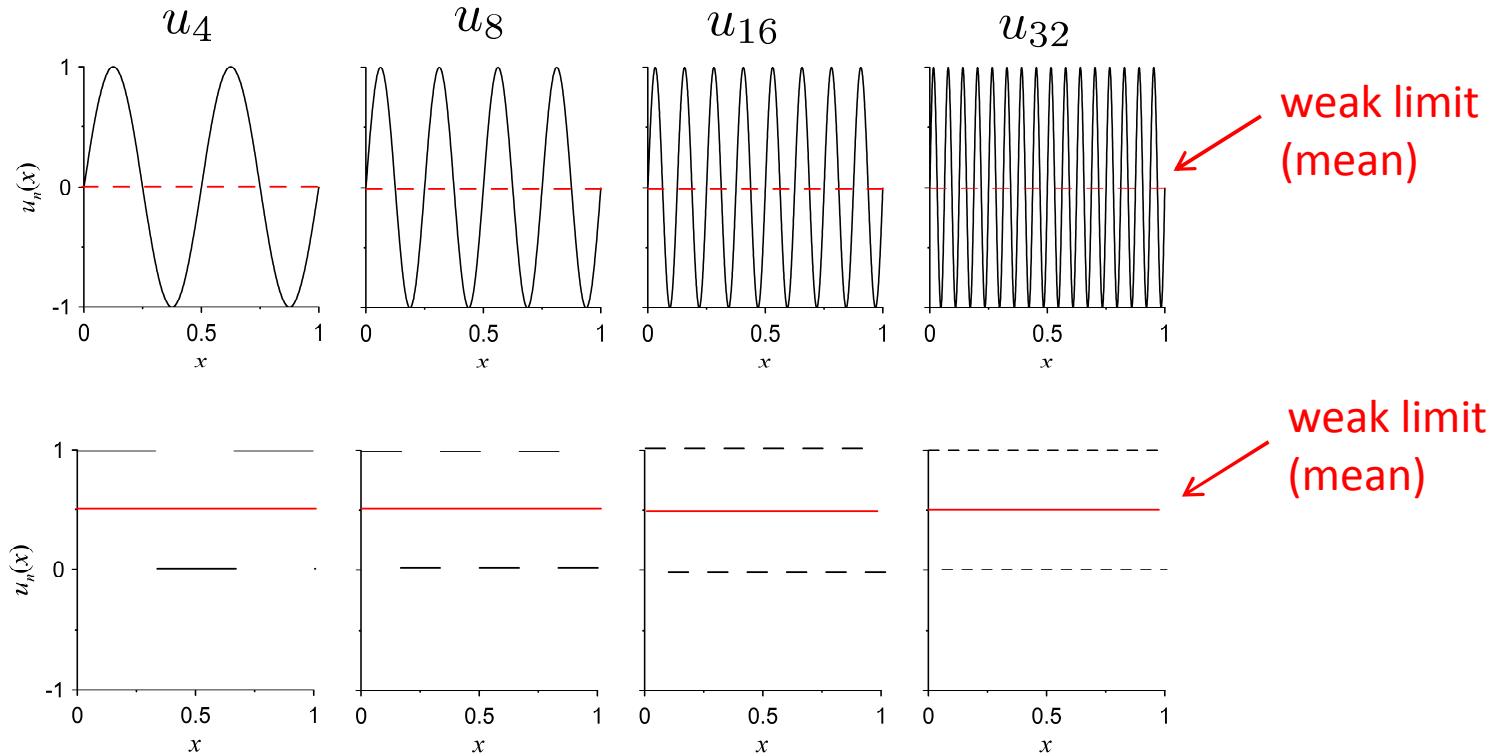
A sequence of functions (u_n) , $u_n \in L^2$ is **weakly** convergent to $u \in L^2$ if

$$\lim_{n \rightarrow \infty} \langle u_n, v \rangle = \langle u, v \rangle \quad \text{for all } v \in L^2$$

These are the modes of convergence in which homogenization is defined.

Weak Convergence

Example: The sequence of functions $u_n = \sin(n\pi x)$ in $L^2[0, 1]$ converges weakly to $u = 0$.



Theorem: Any sequence of periodic functions converges weakly to the mean as the period approaches zero.

Definitions of Statistical Convergence

almost sure convergence

$$\Pr \left(\lim_{h \rightarrow 0} x_h = x \right) = 1$$

convergence in r -mean

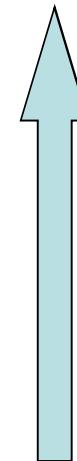
$$\lim_{h \rightarrow 0} E \left(|x_h - x|^r \right) = 0$$

convergence in probability

$$\lim_{h \rightarrow 0} \Pr \left(|x_h - x| > \varepsilon \right) = 0$$

convergence in distribution

$$\lim_{h \rightarrow 0} F_h(x) = F(x)$$



increasing
strength

Asymptotic Expansion

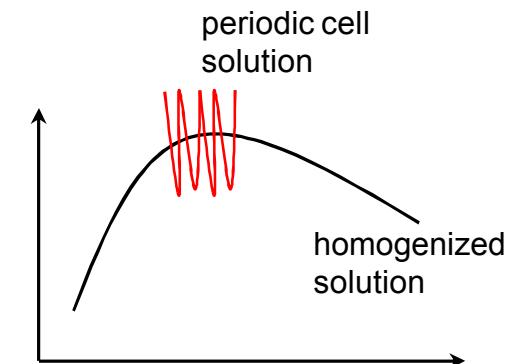
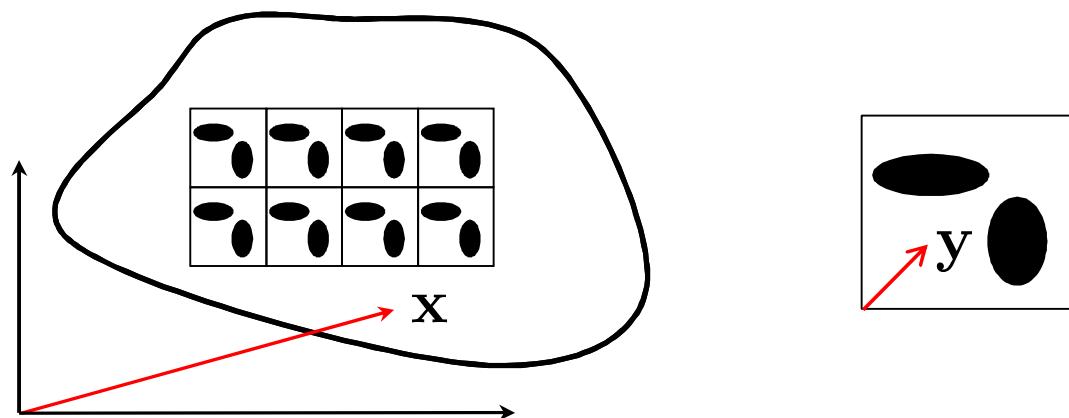
(Cioranescu and Donato, 1999, *An Introduction to Homogenization.*)

$$\mathbf{u}^\epsilon(\mathbf{x}) = \mathbf{u}_0(\mathbf{x}, \mathbf{y}) + \epsilon \mathbf{u}_1(\mathbf{x}, \mathbf{y}) + \epsilon^2 \mathbf{u}_2(\mathbf{x}, \mathbf{y}) + \dots$$

$\mathbf{u}_j(\mathbf{x}, \mathbf{y})$ are periodic in \mathbf{y}

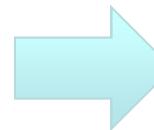
$\mathbf{y} = \mathbf{x}/\epsilon$ is the 'fast' variable

\mathbf{x} is the 'slow' variable



Linear Homogenization Results

$$\mathbf{u}^\epsilon(\mathbf{x}) = \mathbf{u}_0(\mathbf{x}, \mathbf{y}) + \epsilon \mathbf{u}_1(\mathbf{x}, \mathbf{y}) + \epsilon^2 \mathbf{u}_2(\mathbf{x}, \mathbf{y}) + \dots$$

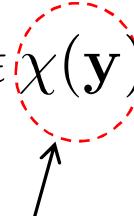
substitute 

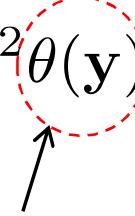
$$\sigma_{ij,j}^\epsilon + f_i = 0$$

$$\sigma_{ij}^\epsilon = a_{ijkl}^\epsilon \varepsilon_{kl}^\epsilon$$

RESULT: $\mathbf{u}^\epsilon(\mathbf{x}) = \mathbf{u}_0(\mathbf{x}) - \epsilon \chi(\mathbf{y}) \cdot \nabla \mathbf{u}_0 + \epsilon^2 \theta(\mathbf{y}) : \nabla \nabla \mathbf{u}_0 + \dots$

homogenized solution
 does not depend upon ϵ !


 first-order corrector


 second-order corrector

Observations:

- In the limit as $\epsilon \rightarrow 0$, get a first-order continuum (homogenized).
- For $\epsilon \neq 0$ need gradient terms (higher-order continuum)

Linear Homogenization Results

(Cioranescu and Donato, 1999, *An Introduction to Homogenization.*)

$$\begin{aligned}\mathbf{u}^\epsilon &\rightarrow \mathbf{u} \text{ strongly in } L^2 \\ \mathbf{u}^\epsilon &\rightarrow \mathbf{u} \text{ weakly in } H^1 \\ \sigma^\epsilon &\rightarrow \sigma \text{ weakly in } L^2 \\ W^\epsilon &\rightarrow W \text{ strongly in } \mathfrak{R}\end{aligned}$$

For random media: $\int_{\Omega} \langle ||\mathbf{u}^\epsilon - \mathbf{u}||^2 \rangle d\Omega \rightarrow 0 \quad \text{as } \epsilon \rightarrow 0$

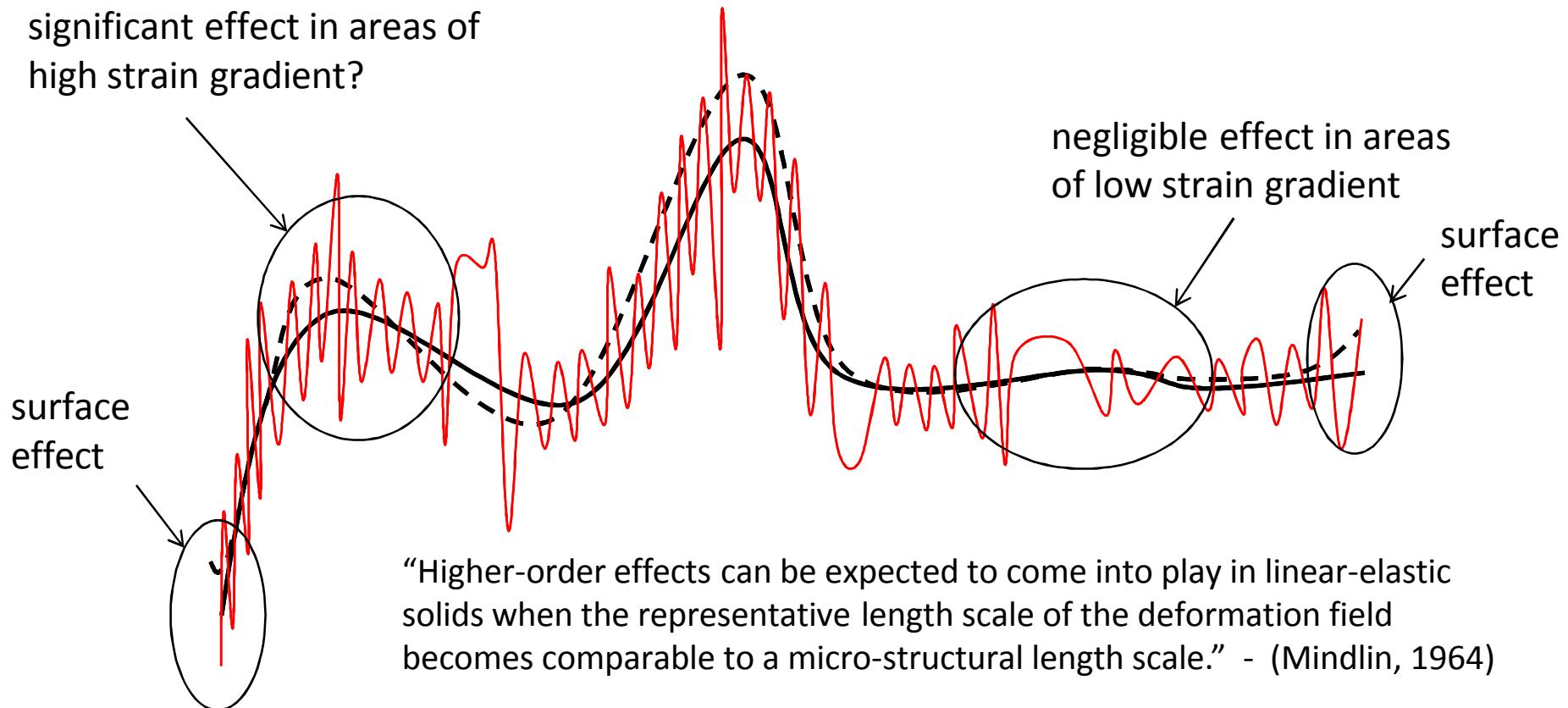
or

$$\mathbf{u}^\epsilon(\omega) \rightarrow \mathbf{u} \text{ in mean square}$$

Homogenization

significant effect in areas of high strain gradient?

- micro-scale stress field
- first-order homogenization
- - - second-order homogenization



Identify Two Types of Material Variability

(Type 1) 1. **Spatial variability of homogenized material constants**

- size of microstructure $\varepsilon = 0$
- first-order homogenization, first-order PDE
- spatial correlation at the macro-scale
- elastic isotropy assumption holds regardless of scale

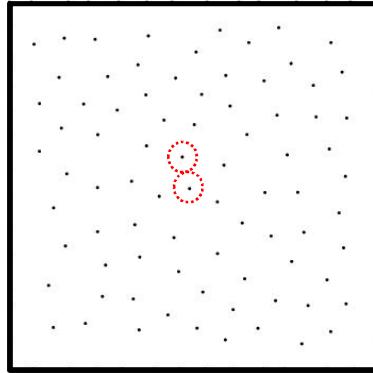
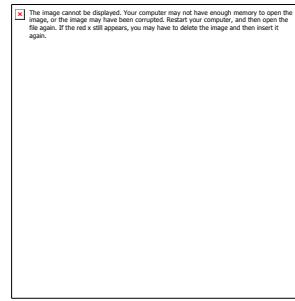
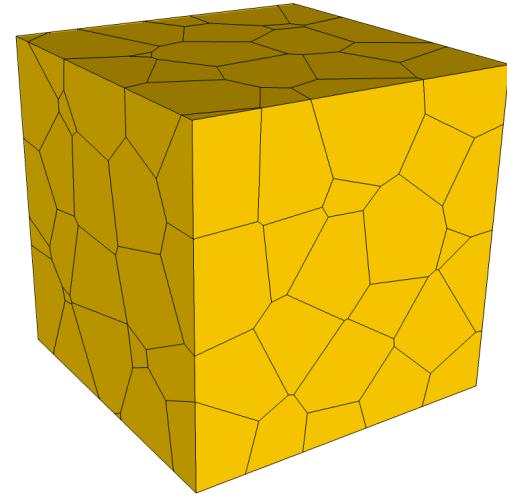
(Type 2) 2. **Higher-order terms in the PDE itself (Type 2)**

- micro-structure is finite $\varepsilon \neq 0$
- higher-order PDE
- spatial correlation at the micro-scale only
- anisotropic fluctuations

Direct Numerical Simulations

- Perform direct numerical simulations (DNS) of macroscopic boundary-value problems with microstructure and compare with the solution from the homogenized PDE.
- Identify any evidence of Type-2 material variability.
- Propose/investigate a higher-order continuum theory for Type-2 material variability.

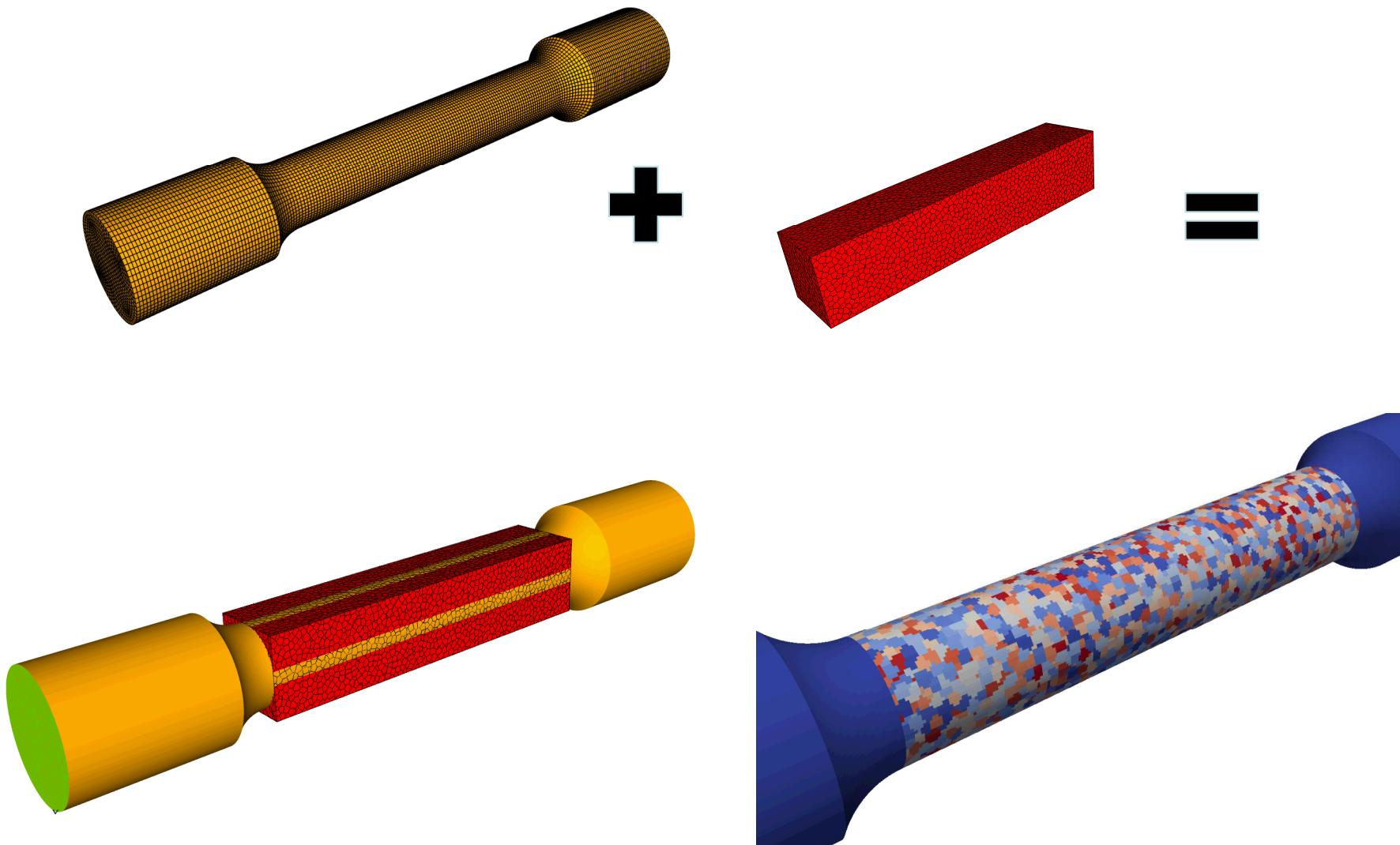
Voronoi Microstructure from MPS Seeding



Maximal Poisson Sampling

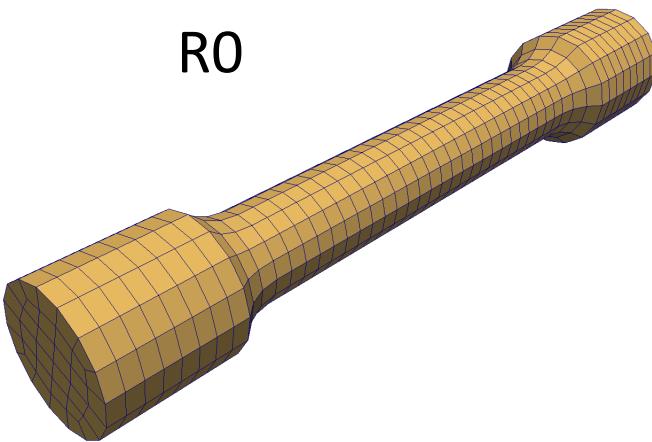
- constraint on min. dist.
- seed until 'max' packing
- Ebeida/Mitchell Algorithm (1400)

Voronoi Overlay of Hexahedral Mesh

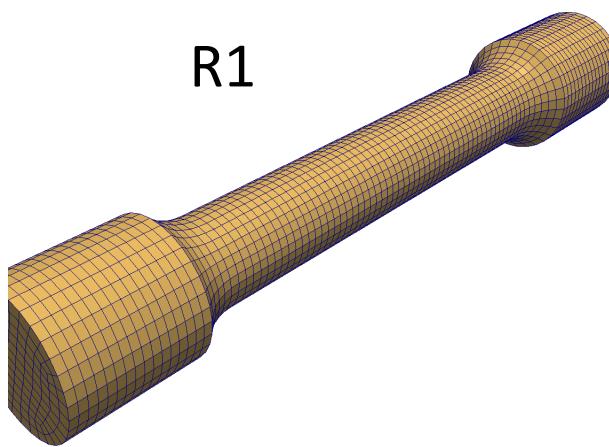


Hierarchy of Hexahedral Meshes

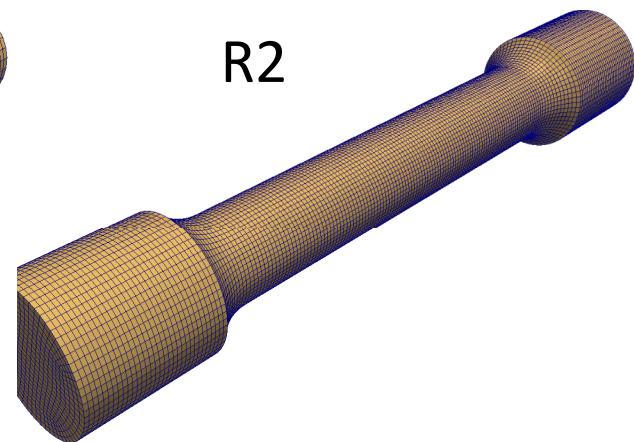
R0



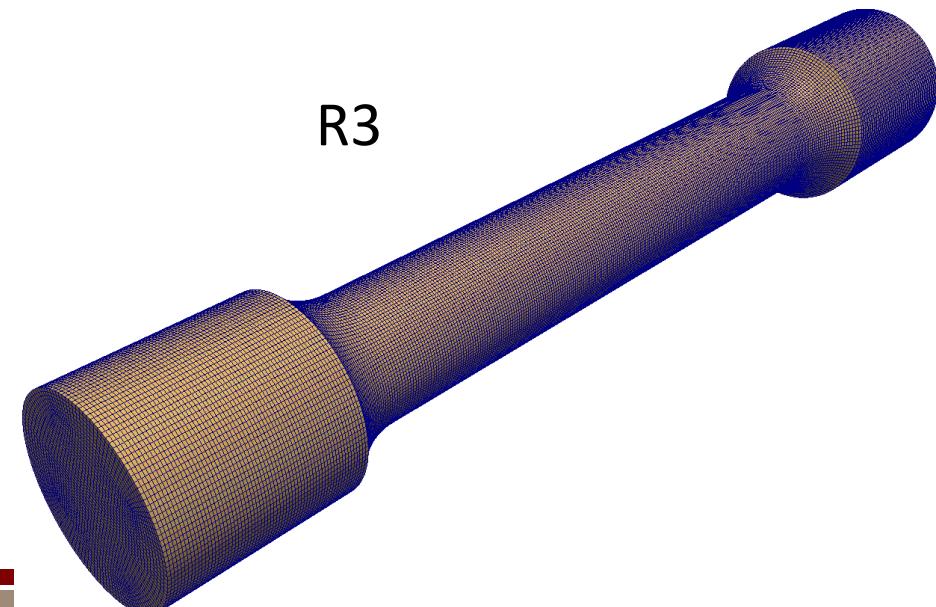
R1



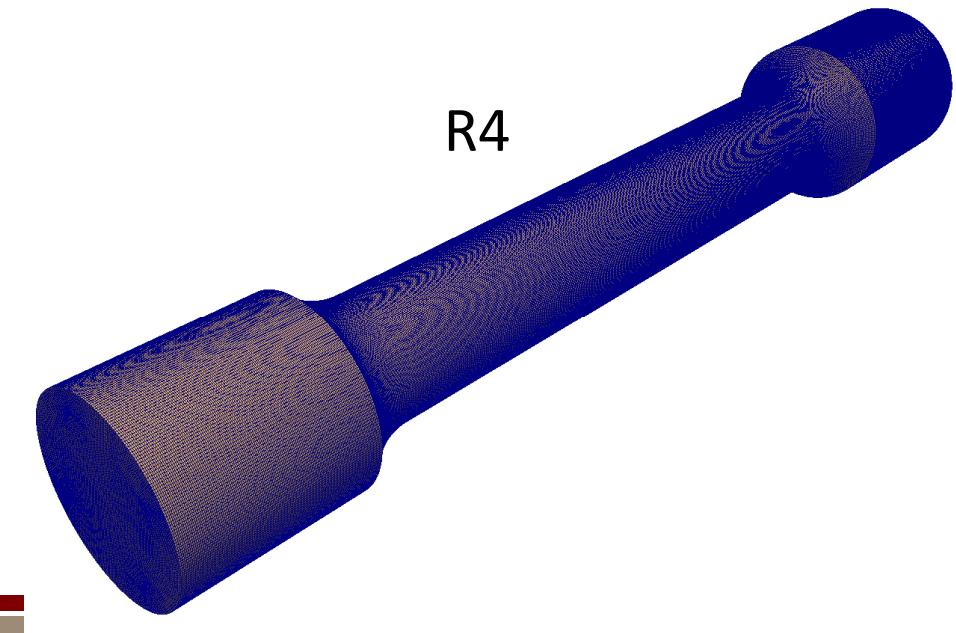
R2



R3



R4



Voronoi Overlay of Hierarchy of Hexahedral Meshes

- One grain realization with ~ 6 grains through the diameter (~ 940 grains)
- Hierarchy of hexahedral meshes
- Pixelation decreases with mesh refinement

R0

R1

R2

~ 1 hex per grain

~ 8 hexas per grain

~ 64 hexas per grain

R3

~ 512 hexas per grain

R4

~ 4096 hexas per grain

Voronoi Overlay of Hierarchy of Hexahedral Meshes

One grain realization with ~ 12 grains through the diameter (~ 6200 grains)

R1

R2

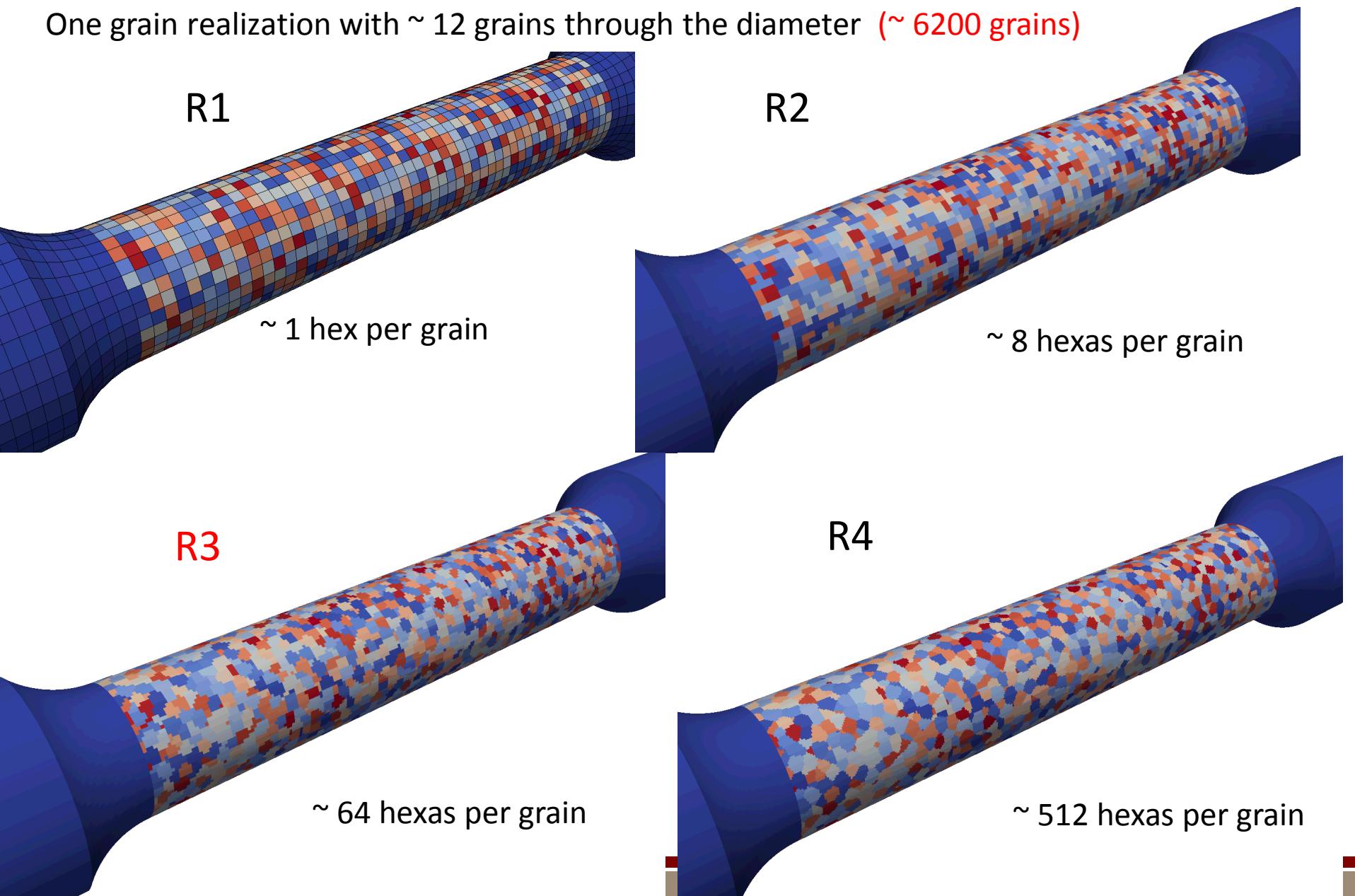
~ 1 hex per grain

R3

~ 64 hexas per grain

R4

~ 512 hexas per grain



304L Single Crystal Elasticity Constants

(Ledbetter, 1984)

single crystal elastic constants (**cubic symmetry**)

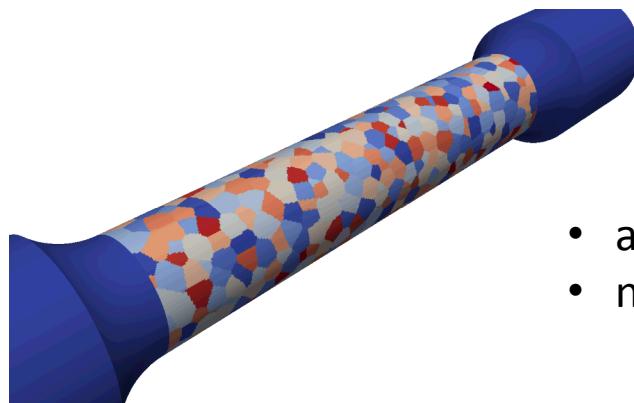
$$C_{11} = 204.6 \text{ GPa}$$

$$C_{12} = 137.7 \text{ GPa}$$

$$C_{44} = 126.2 \text{ GPa}$$

anisotropy ratio,

$$A = \frac{2C_{12}}{C_{11} - C_{44}} = 3.5$$



- assume random crystallographic orientations
- no correlation between grains (no texture)

RPI Crystal Plasticity Model

(Dave Littlewood, John Emery, Chris Weinberger)

plastic velocity gradient:

$$L^p = \sum_{\alpha=1}^N \dot{\gamma}^\alpha P^\alpha \quad (\text{sum over slip systems})$$

Schmid tensor:

$$P^\alpha = m^\alpha \otimes n^\alpha$$

slip system slip rates:

$$\dot{\gamma}^\alpha = \dot{\gamma}_o \frac{\tau^\alpha}{g^\alpha} \left| \frac{\tau^\alpha}{g^\alpha} \right|^{1/m-1}$$

slip system hardening:

$$g = g_o + (g_{so} - g_o) \left[1 - \exp \left(-\frac{G_o}{g_{so} - g_o} \gamma \right) \right]$$

$$\gamma = \sum_{s=1}^N |\gamma^s|$$

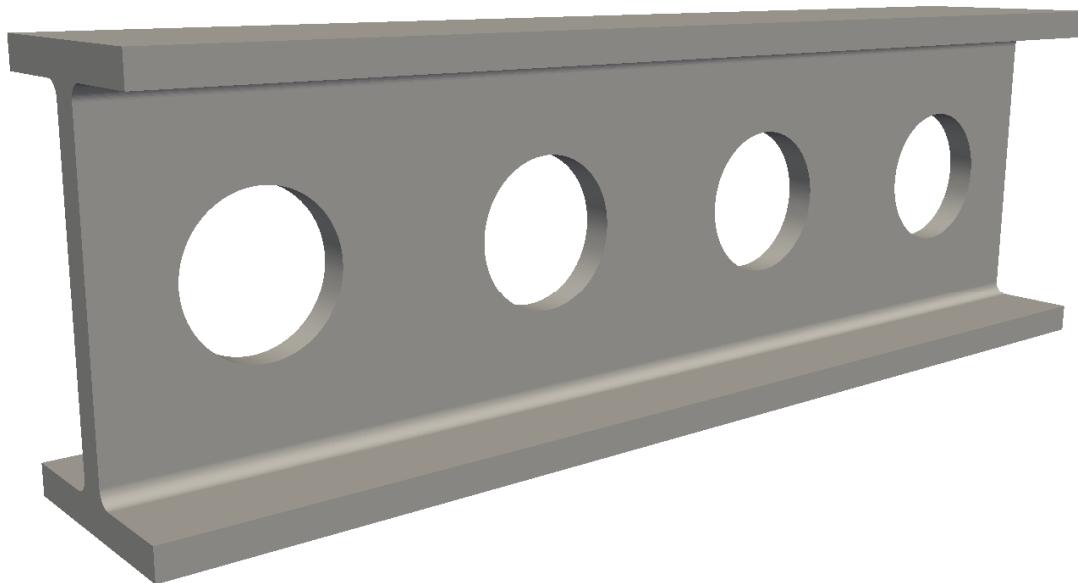
How to Get Homogenized Material Model?

- Ideally, would use computational homogenization (FE^2) for nonlinear homogenization
- Since this is not available, use a simple power-law hardening plasticity model.
- Use RVE techniques to get isotropic elasticity constants

number of grains	apparent Young's Modulus (GPa)	apparent Poisson's ratio
$\sim 8^3$ grains	177.2	0.317
$\sim 16^3$ grains	180.6	0.312
$\sim 32^3$ grains	182.4	0.310
∞	184.1	0.309

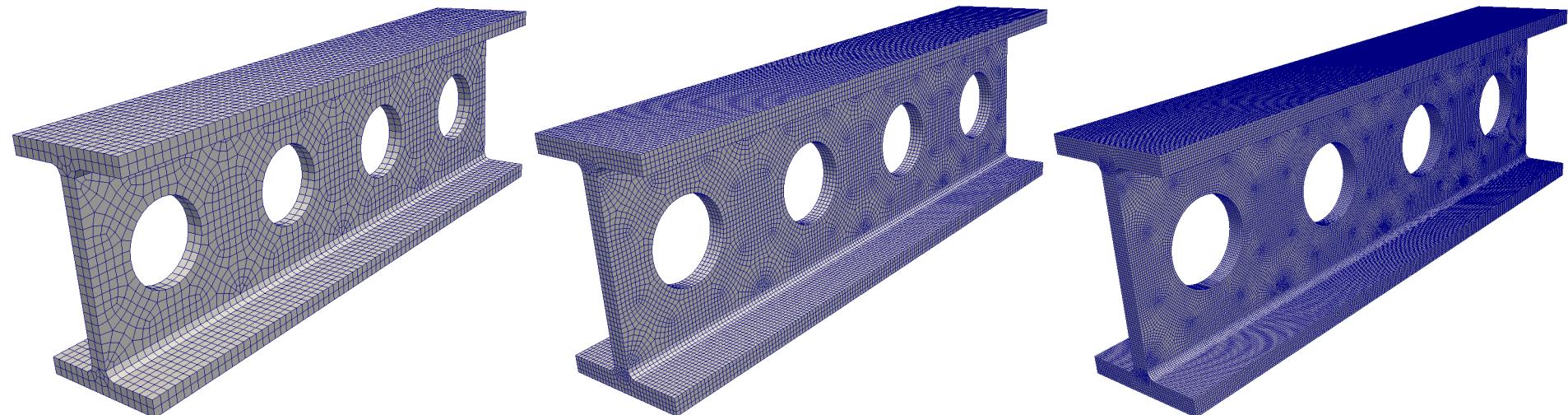


I-Beam Example



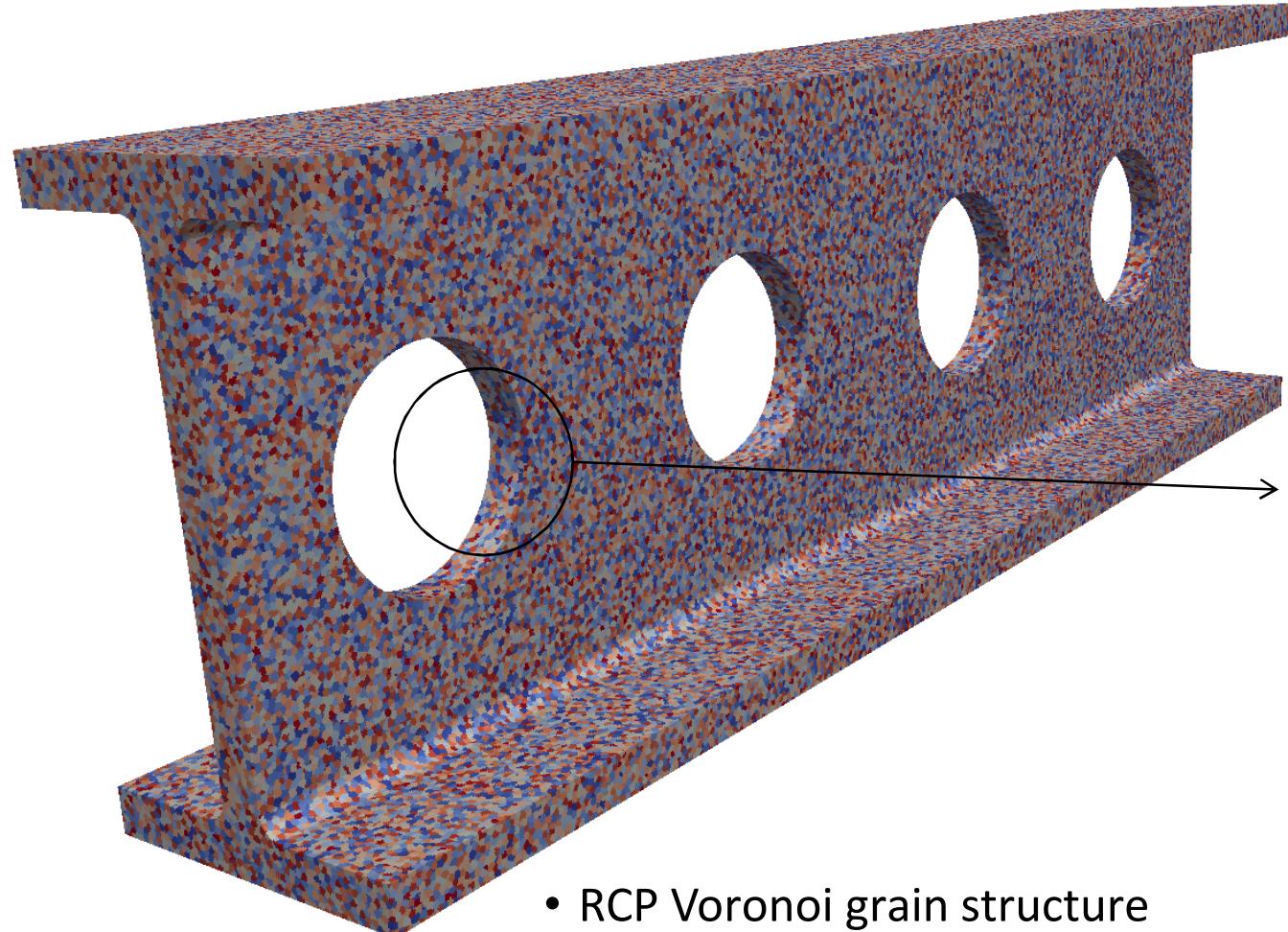
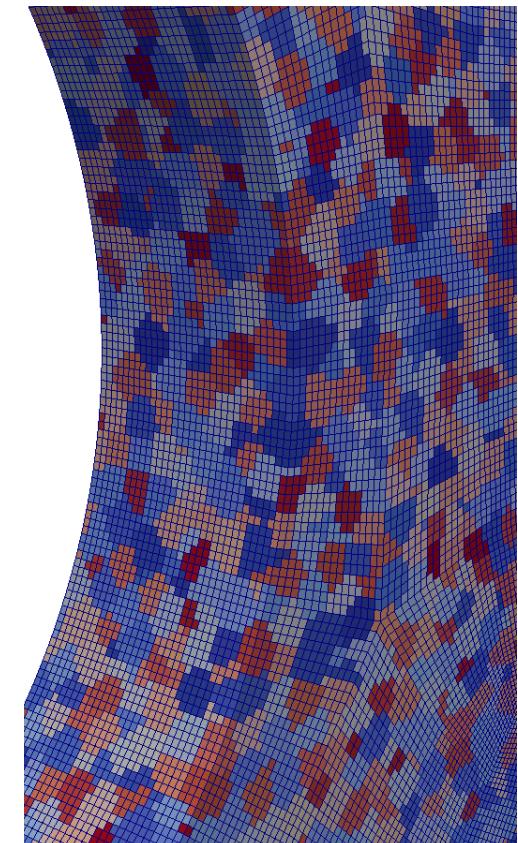
- tension
- bending
- **torsion**

Hierarchy of Hexahedral Meshes



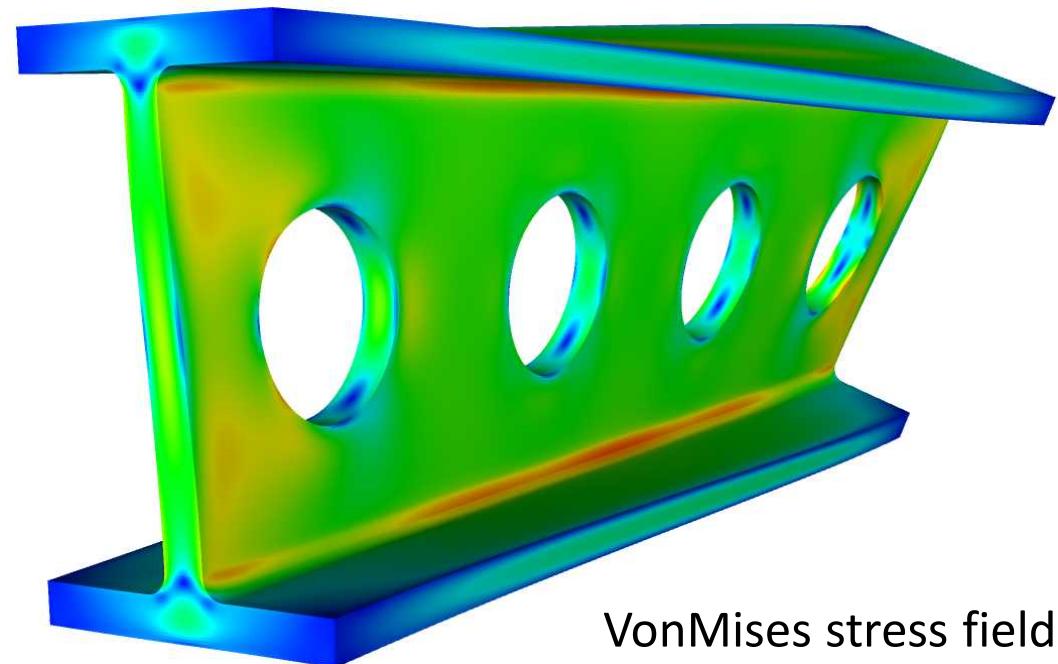
- R0
 - 8,576 hexas
- R1
 - 69K hexas
- R2
 - 549K hexas
- R3
 - 4.4M hexas
- R4
 - 35M hexas

Thickness/grain-ratio = 8



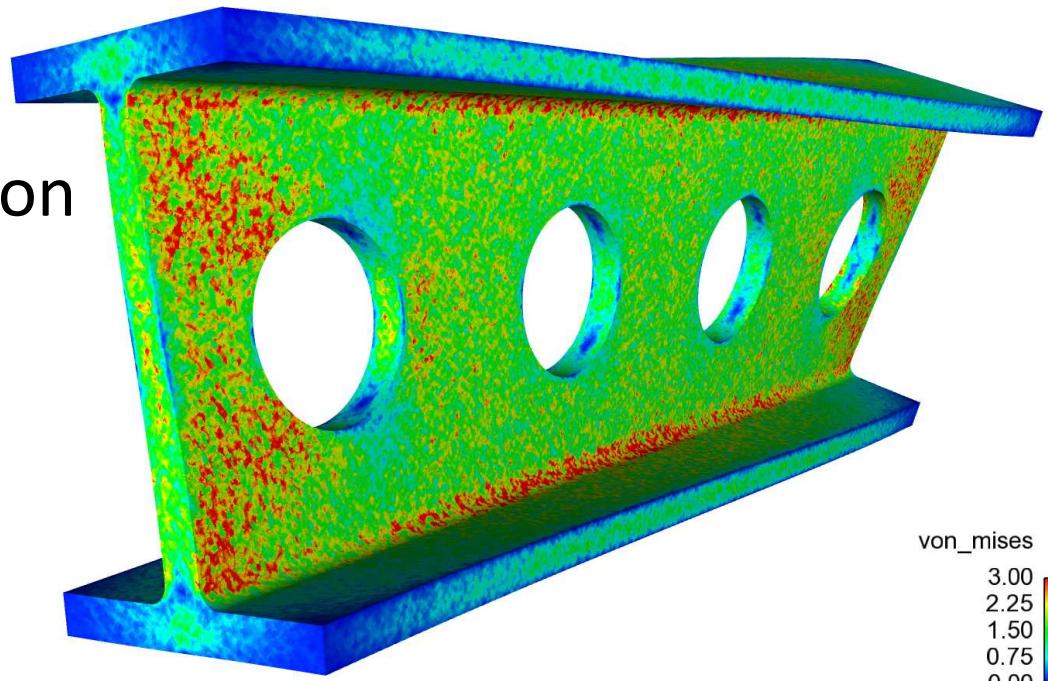
- RCP Voronoi grain structure
- 420K grains
- hex mesh overlay = R4 (35M elements)

Homogenized solution



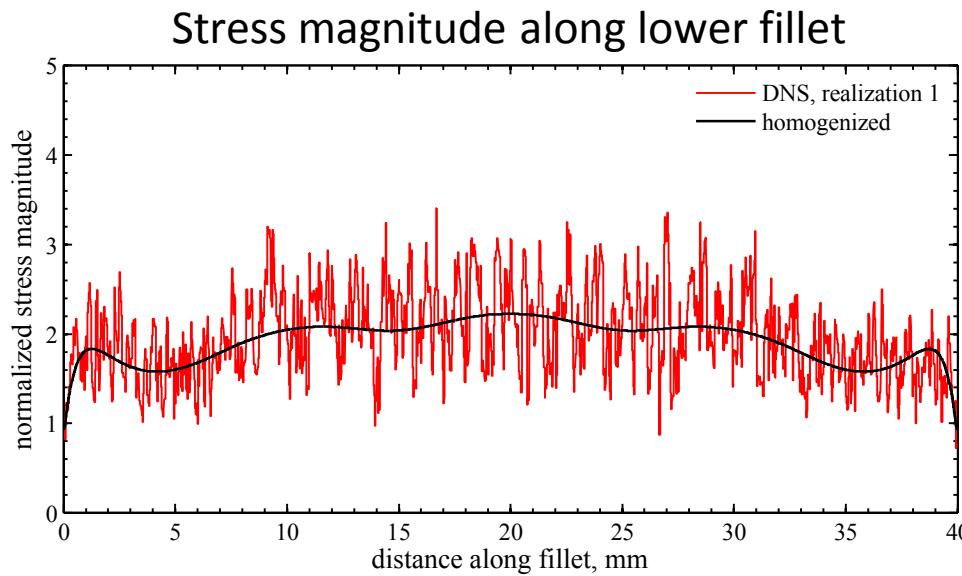
VonMises stress field

Direct numerical simulation

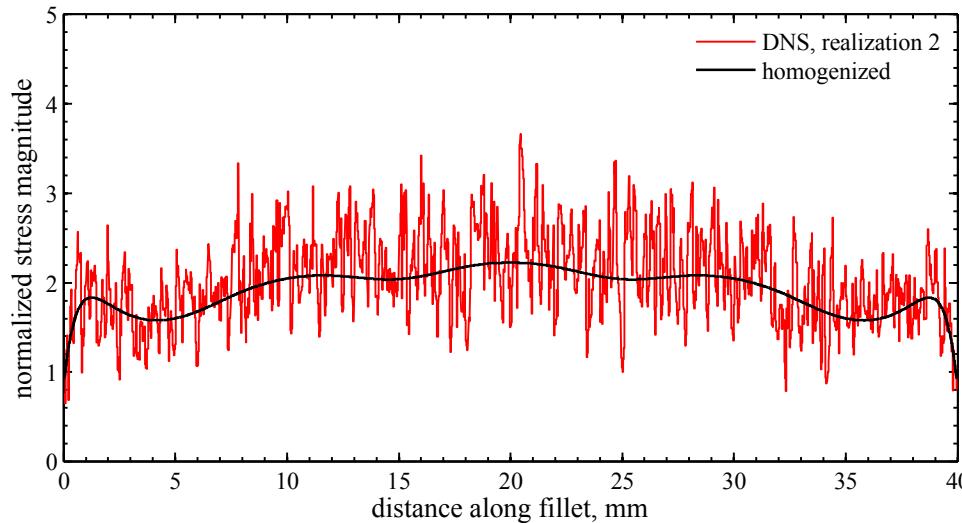


Homogenized Solution vs. Direct-Numerical Simulation

realization 1

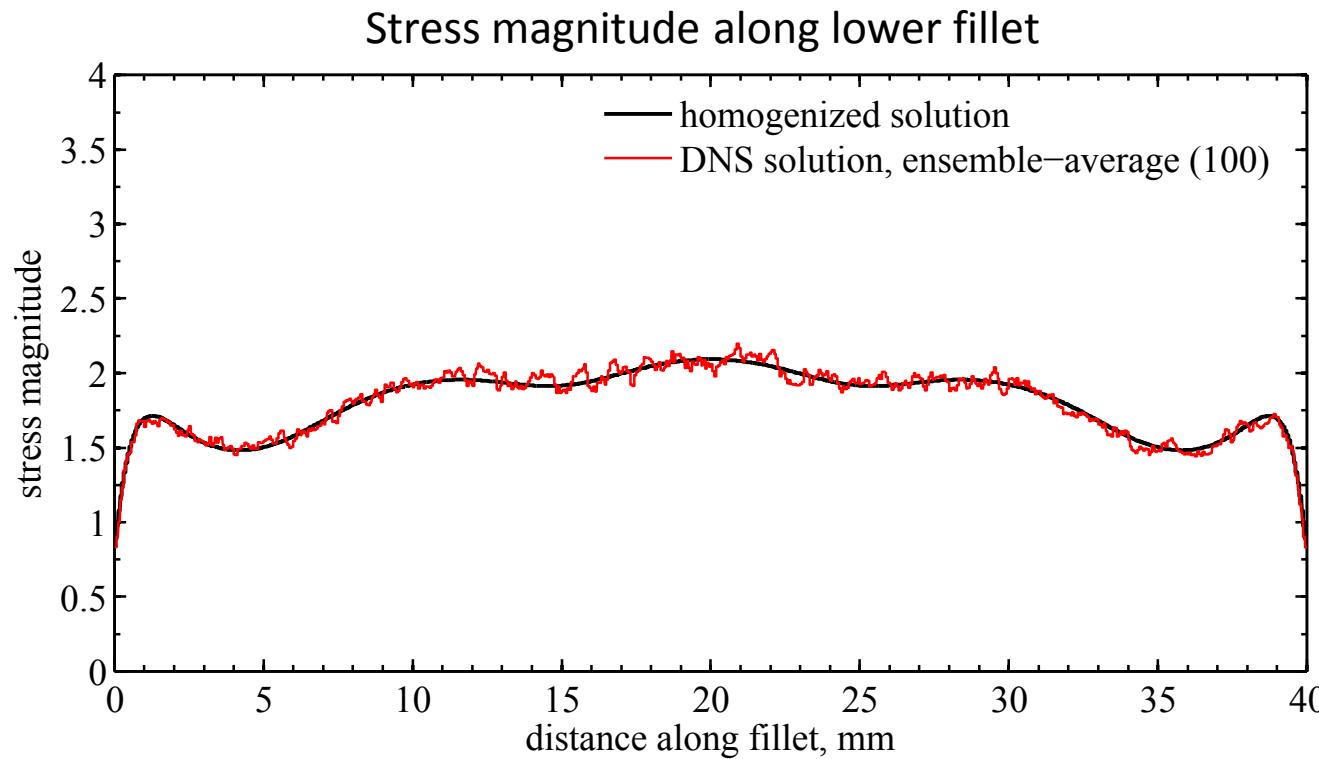


realization 2



Homogenized Solution vs. Ensemble Average

Beran and McCoy (1970) showed that the governing equation for the mean field is nonlocal.

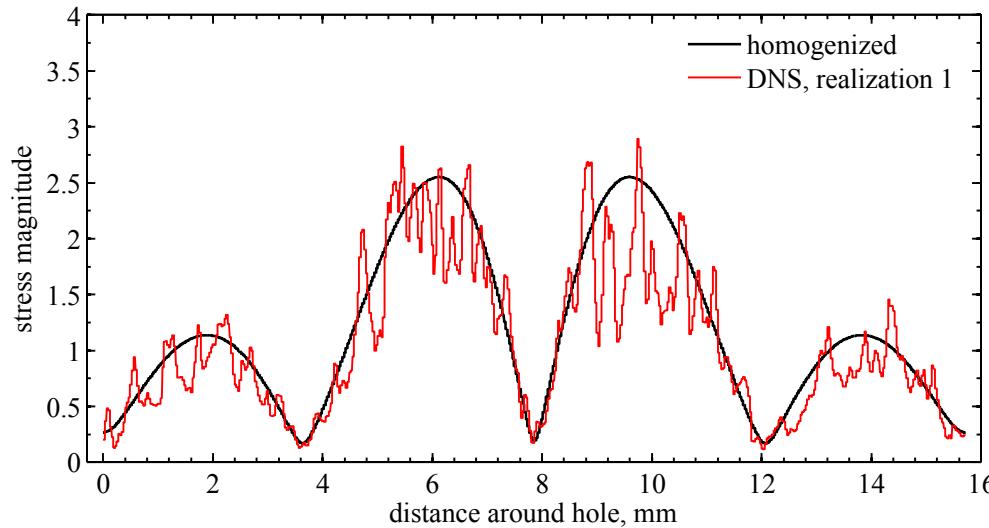


See no evidence for nonlocality here.

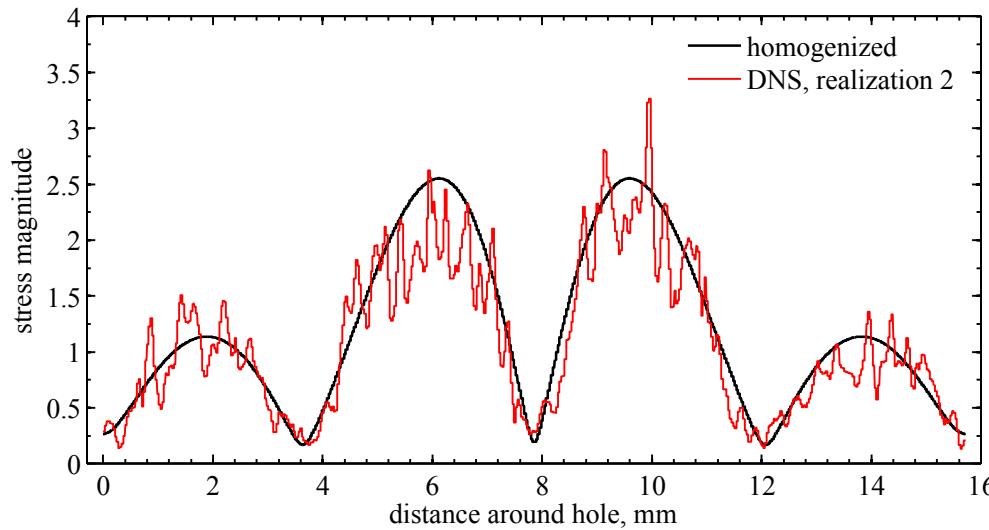
Homogenized Solution vs. Direct-Numerical Simulation

Stress magnitude around hole

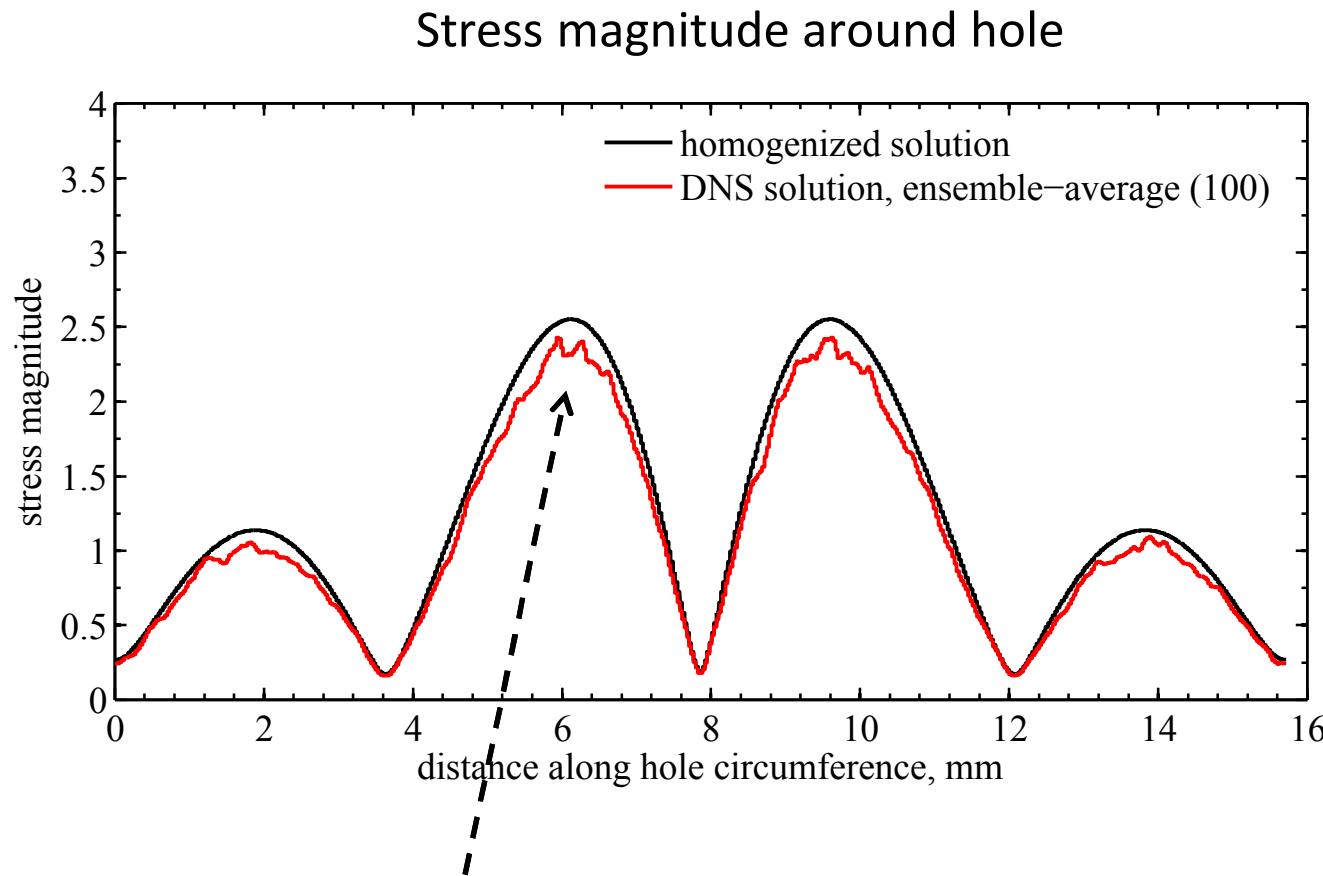
realization 1



realization 2



Homogenized Solution vs. Ensemble Average



See some evidence for nonlocality here.

3D Moving Average using Gaussian Filter

convolution

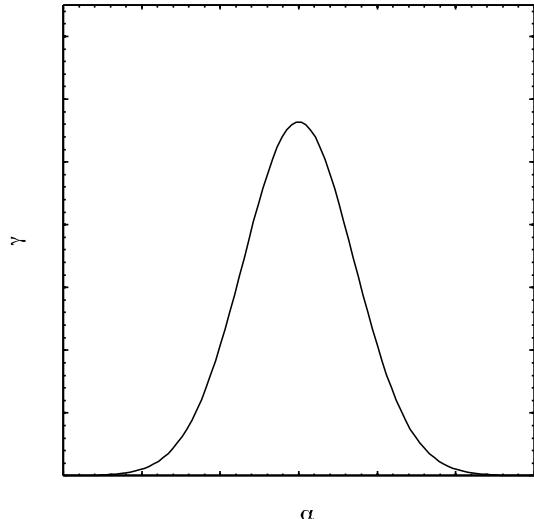
$$\hat{\sigma}_{ij}(\mathbf{x}) = \gamma_\alpha(\mathbf{x}) * \sigma_{ij}(\mathbf{x}) = \int_{\Omega_\infty} \gamma_\alpha(\mathbf{x} - \mathbf{y}) \sigma_{ij}(\mathbf{y}) d\mathbf{y}$$

$$\gamma_\alpha(\mathbf{x} - \mathbf{y}) = A e^{-\frac{||\mathbf{x} - \mathbf{y}||^2}{\alpha^2}}$$

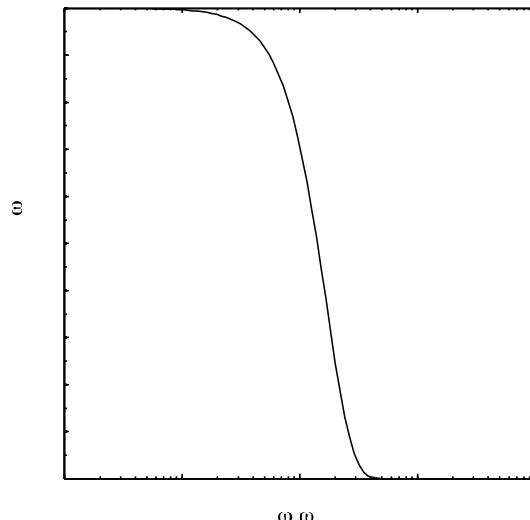
A = normalization constant to reproduce constant functions

cutoff frequency $\omega_c = \frac{\sqrt{2 \ln 2}}{\alpha} = \frac{1.1774}{\alpha}$

Gaussian Kernel

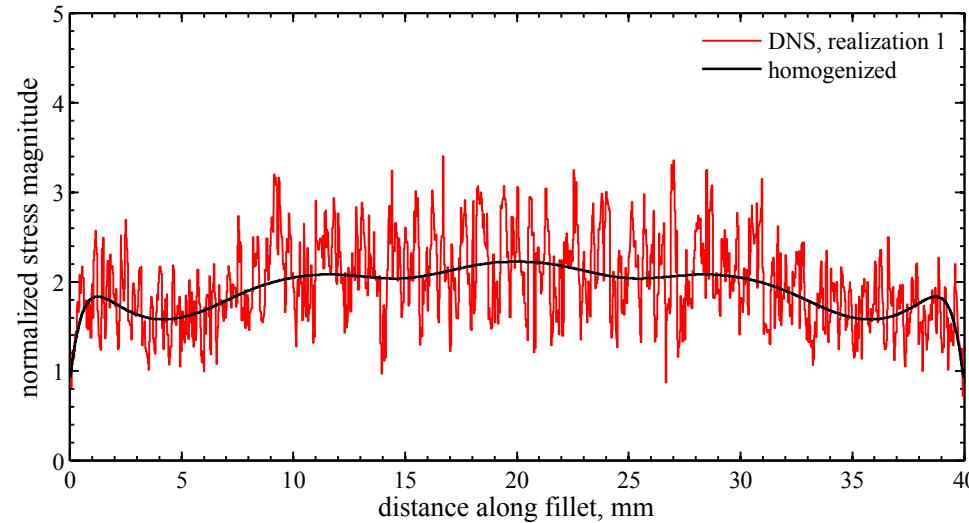


Gain vs. spatial frequency



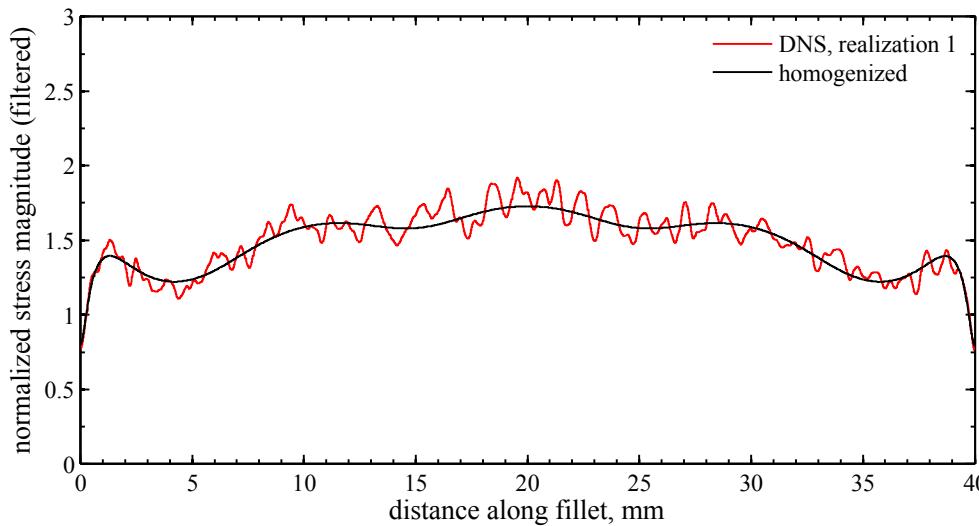
3D Moving Average using Gaussian Filter

unfiltered



filtered

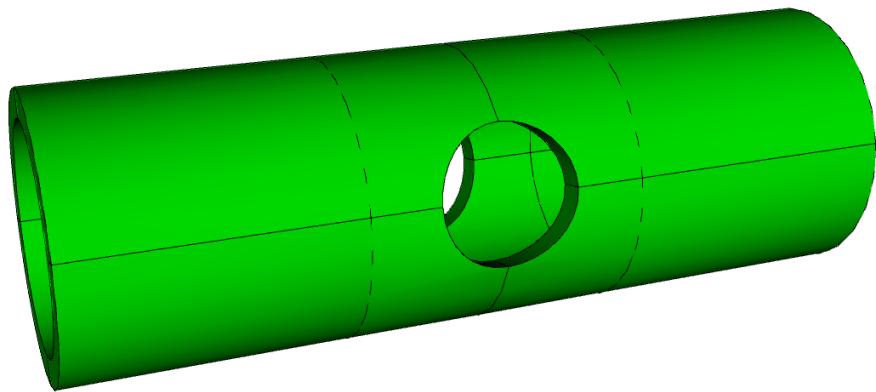
$\alpha = 1.0$ mm



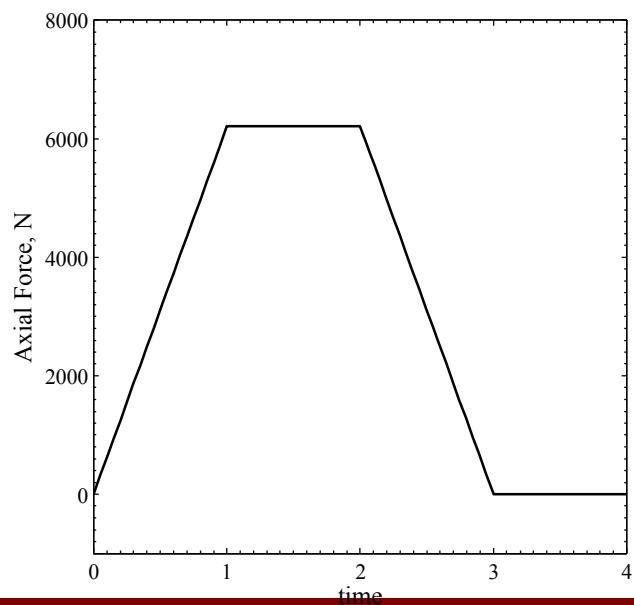
Homogenized solution is a surprisingly good approximation.

Stainless-steel Tube under Combined Tension-Torsion

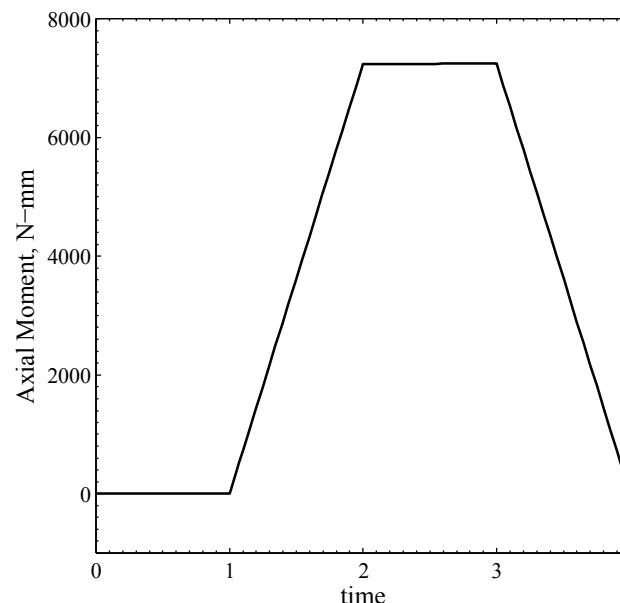
1
ories



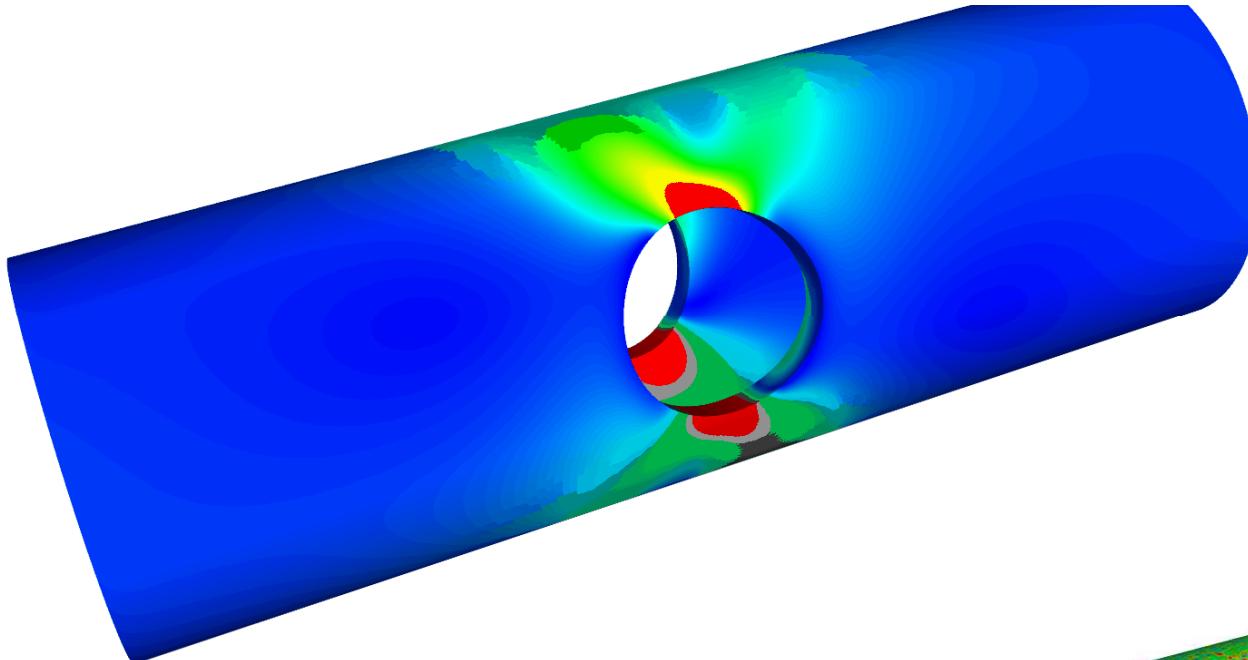
Axial Load



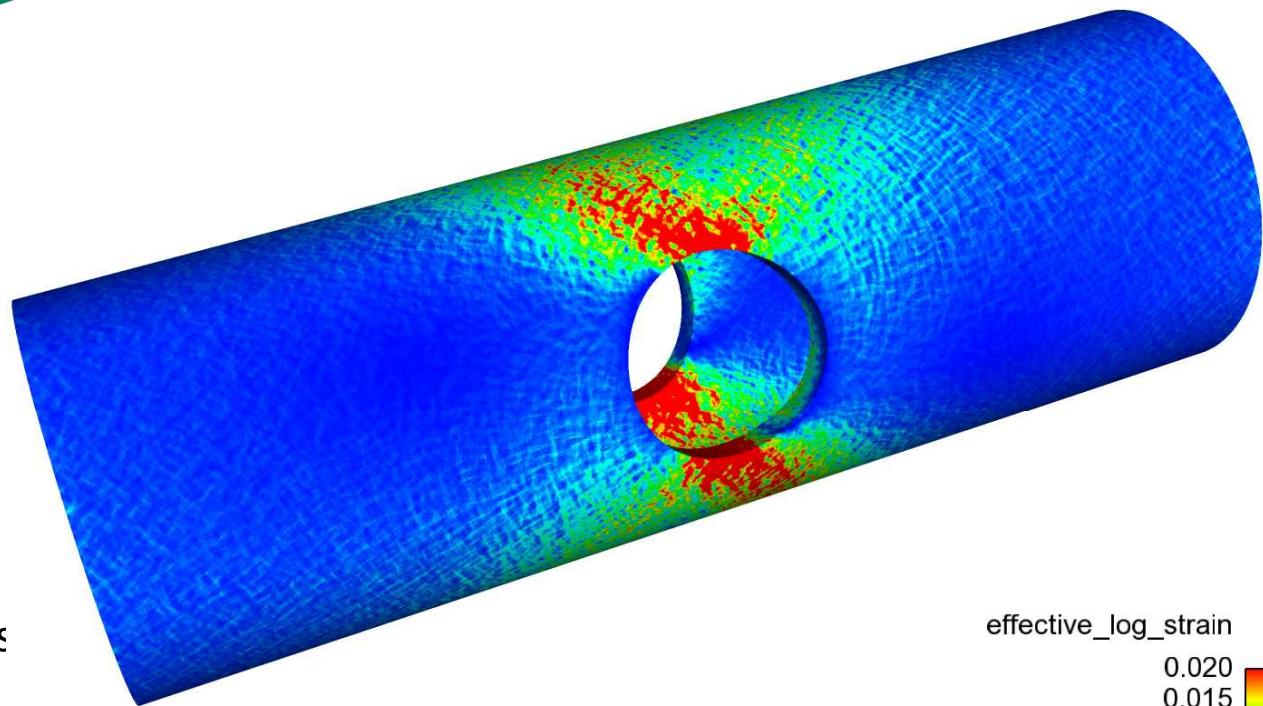
Torque



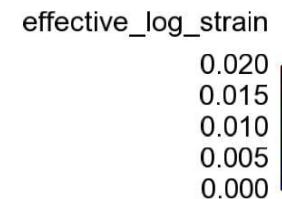
Strain under Combined Tension-Torsion



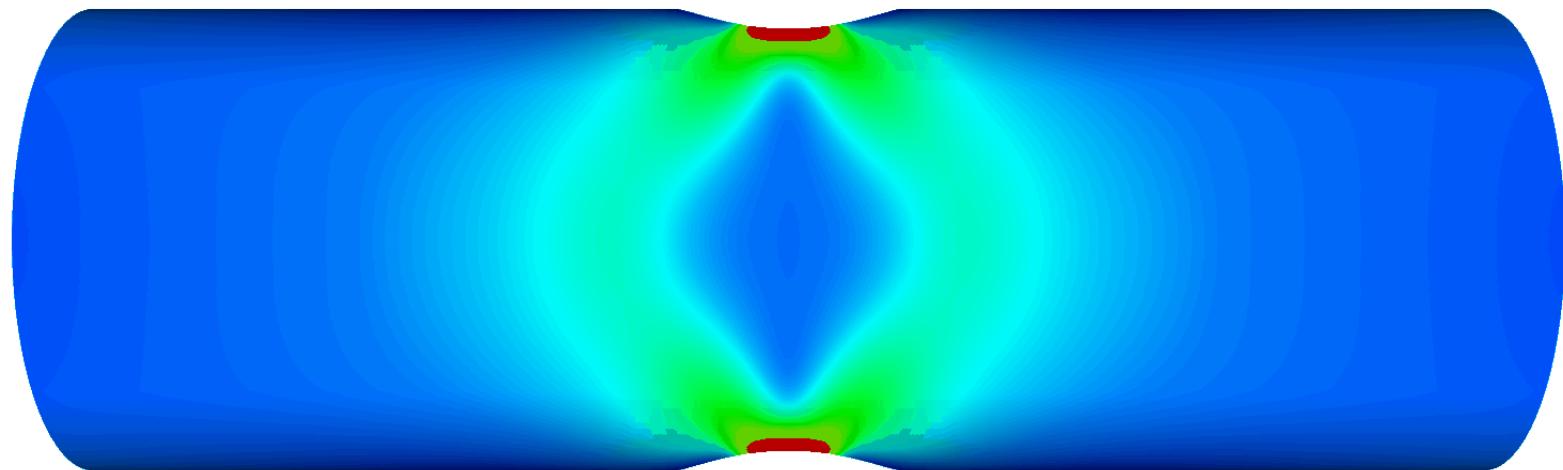
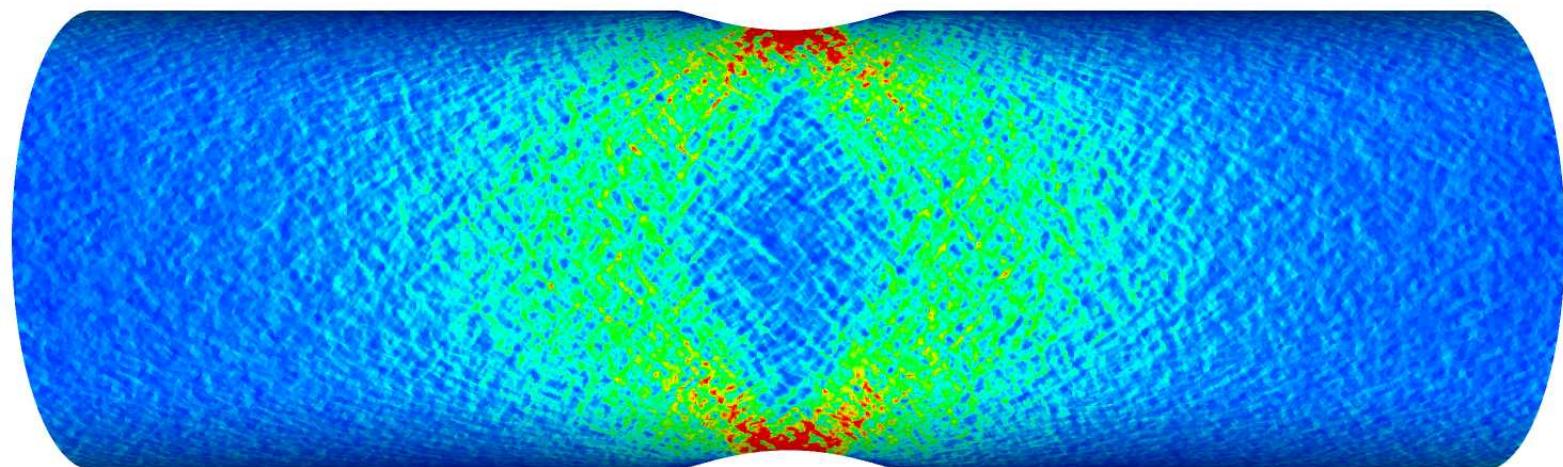
- homogenized isotropic power-law hardening plasticity model



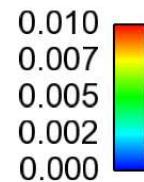
- direct numerical simulation
- crystal plasticity model
- 352,000 grains
- 8 grains through the thickness



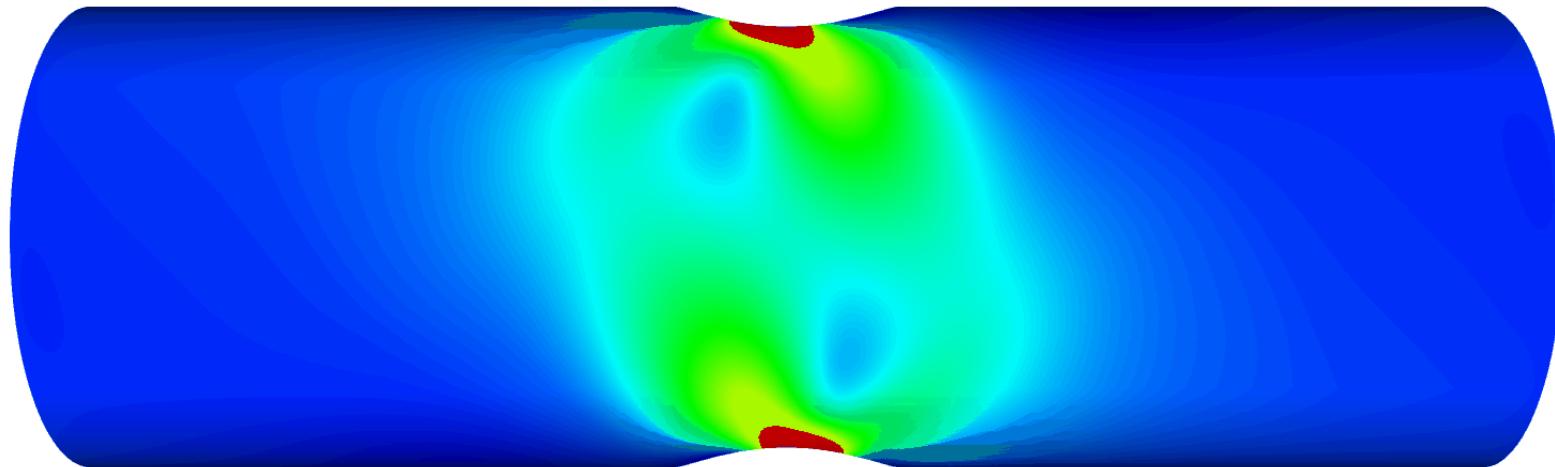
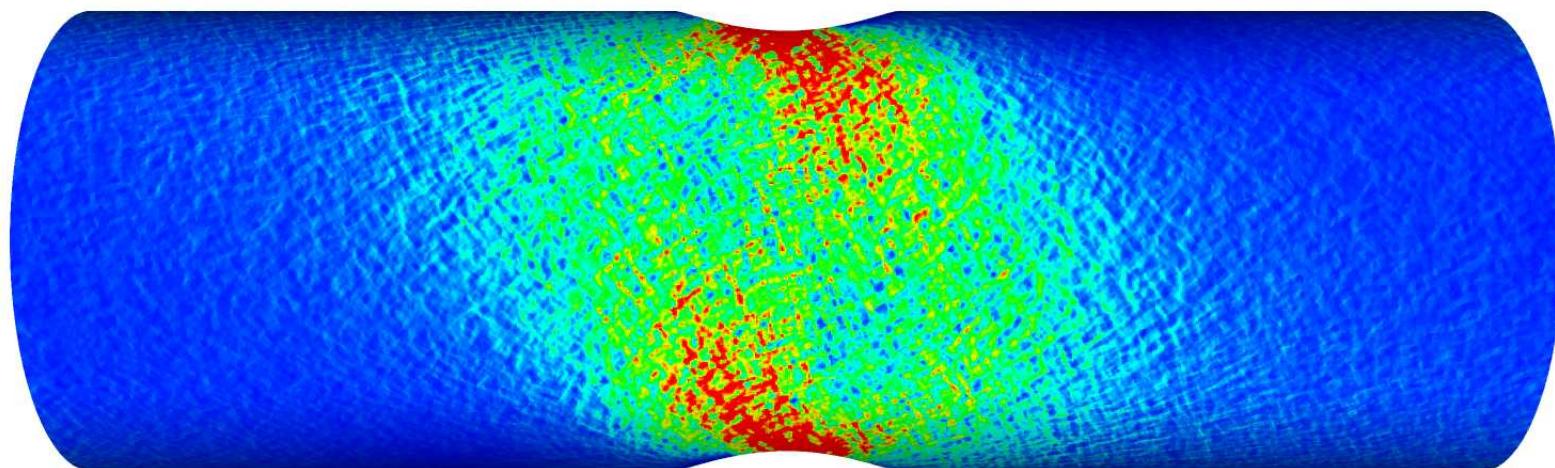
Axial Load Only



effective_log_strain



Axial Load + Torsion



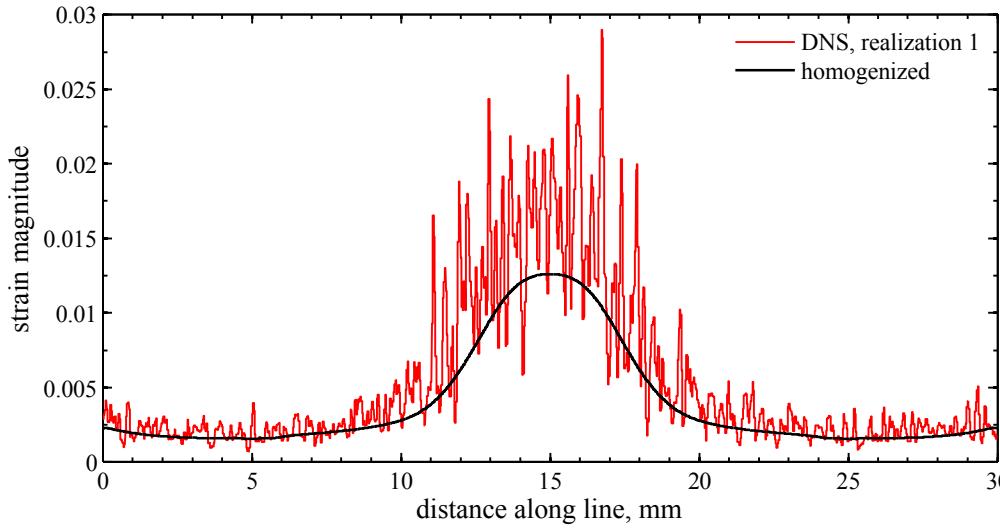
effective_log_strain

0.020
0.015
0.010
0.005
0.000

Strain magnitude along length of tube

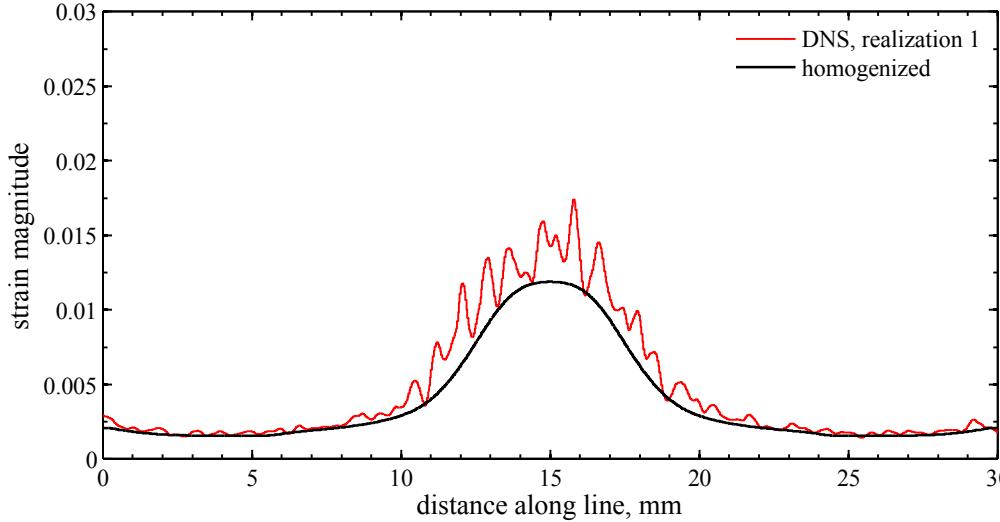
(midsection between holes, combined tension-torsion)

unfiltered



filtered

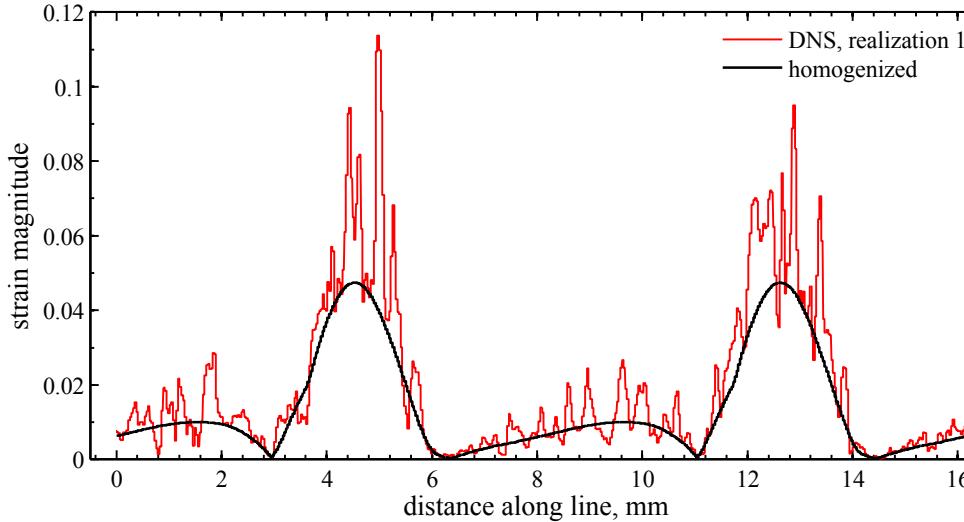
$\alpha = 1.0$ mm



Homogenized
solution is a
surprisingly good
approximation to the
filtered response.

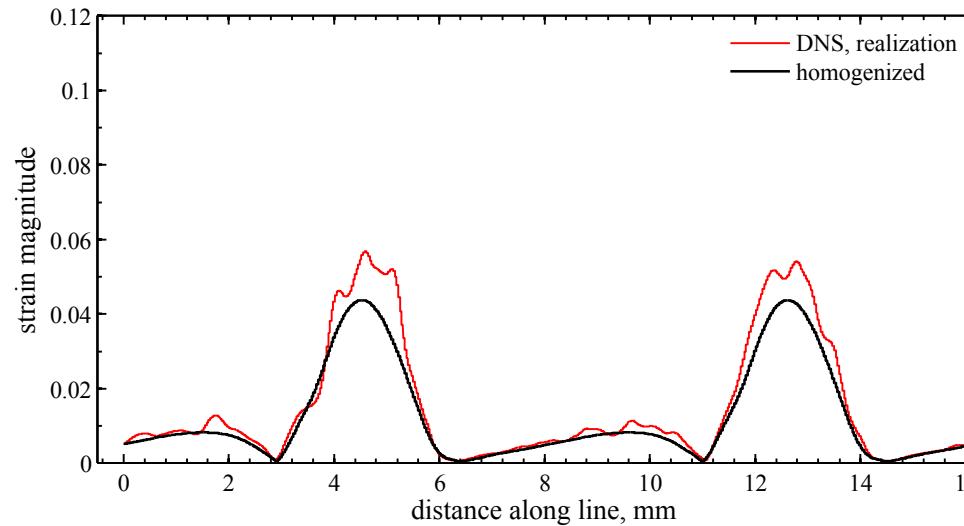
Strain magnitude around hole (inside circumference, combined tension-torsion)

unfiltered



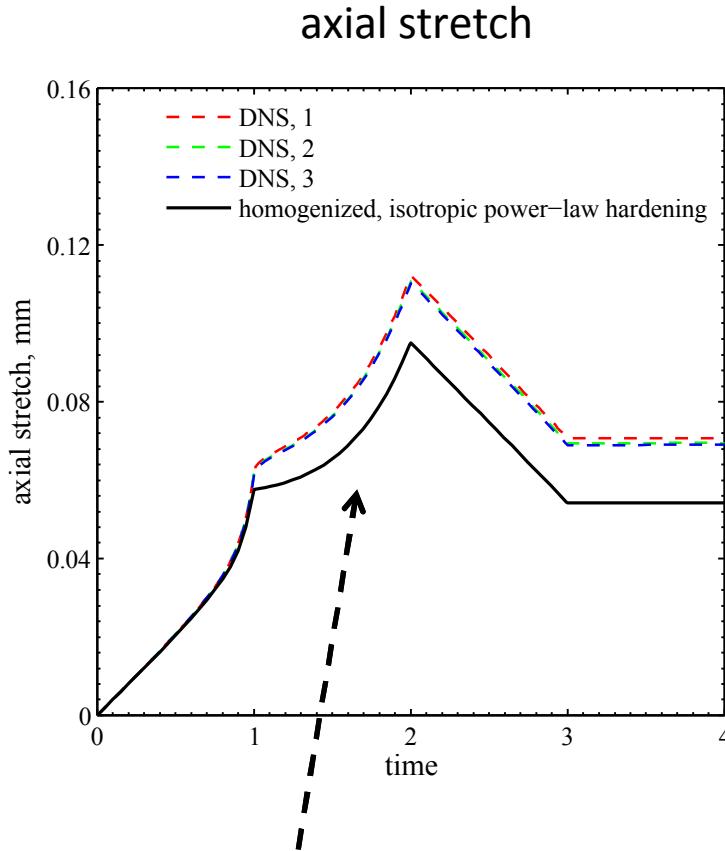
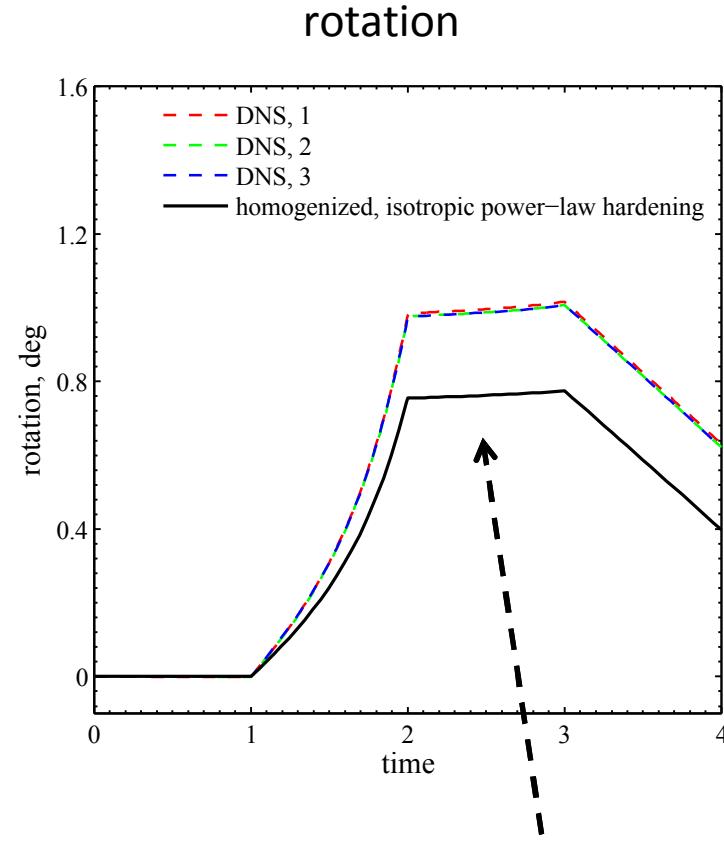
filtered

$\alpha = 1.0$ mm



Homogenized
solution is a
surprisingly good
approximation to the
filtered response.

Global Stretch and Rotation of Tube



Homogenized solution good in tension-only region but less accurate in combined tension-torsion.

Summary

- Identified two types of material variability; Type-1 is “classical” while Type-2 arises from higher-order effects (gradient, surface, nonlocal).
- Used Direct Numerical Simulations of macroscale boundary value problems containing microstructure to investigate Type-2 material variability.
- Found little evidence of higher-order effects for this material and these BVPs.

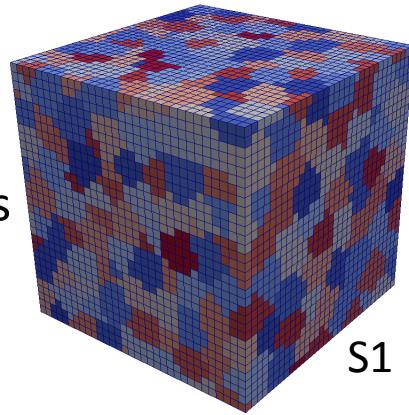
Future Work

- Investigate DNS mesh resolution (~280M element model requires 3-level FETI solver on ~16000 cores)
- Investigate the use of “Filter” multiscale scheme (Yvonnet & Bonnet, 2014) for incorporating microscale variability in macroscale models.

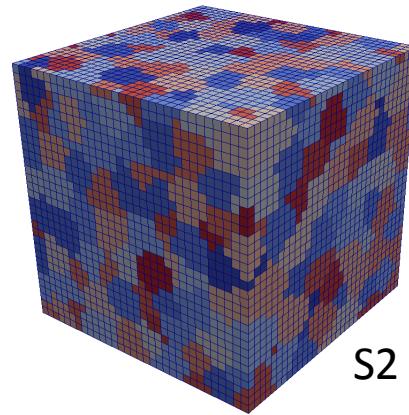
Extra

Stochastic Volume Elements

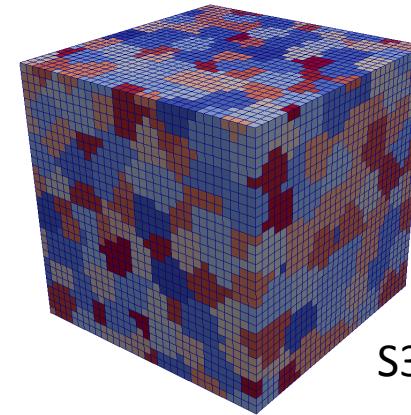
$\sim 8^3$ grains



S1



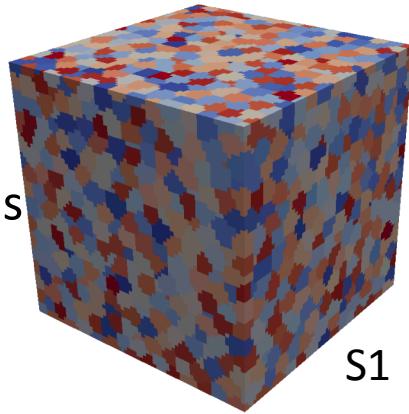
S2



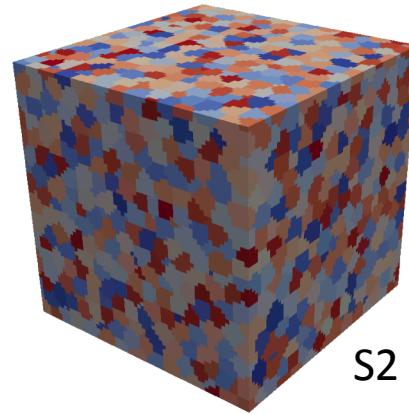
S3

... S100

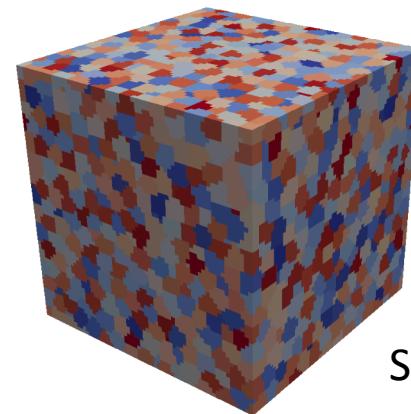
$\sim 16^3$ grains



S1



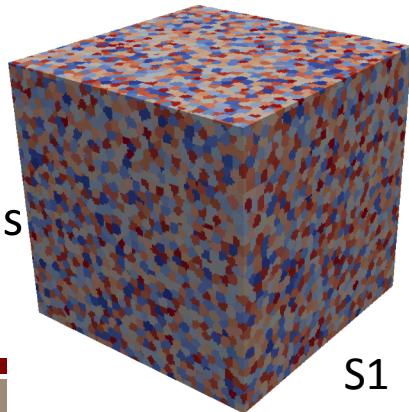
S2



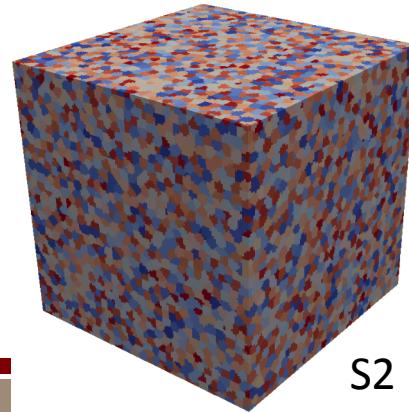
S3

... S100

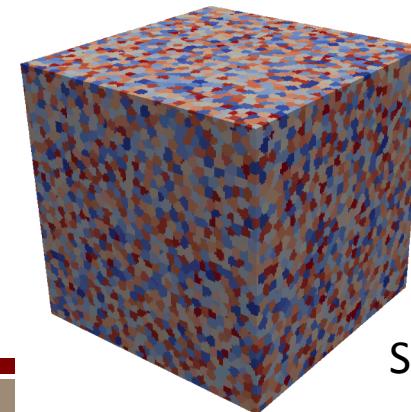
$\sim 32^3$ grains



S1



S2



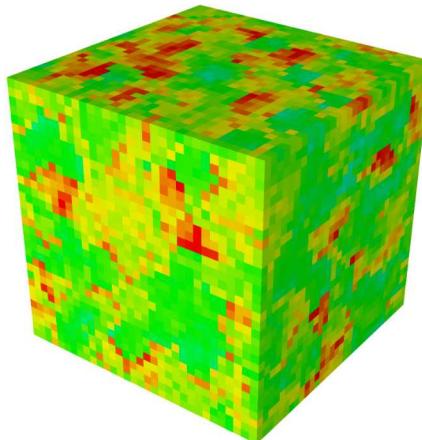
S3

... S100

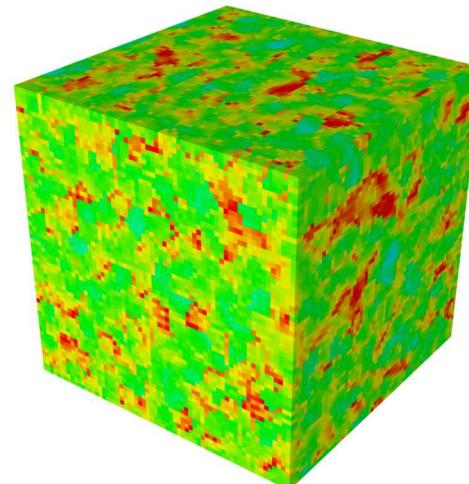
Stochastic Volume Elements

- traction boundary conditions corresponding to uniaxial stress state
- recover average strain field
- calculate apparent moduli
- 100 realizations at each grain level
- take average

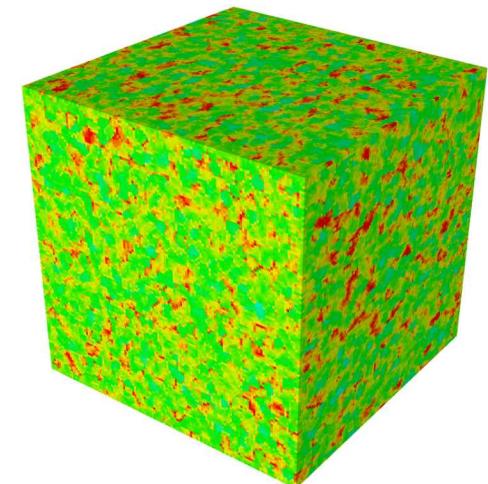
Von Mises stress field



$\sim 8^3$ grains



$\sim 16^3$ grains



$\sim 32^3$ grains

Convergence to Effective Isotropic Properties

- mean of 100 simulations at each “grain level”
- rational function extrapolation to ∞
- first order convergence rate

number of grains	apparent Young's Modulus (GPa)	apparent Poisson's ratio
$\sim 8^3$ grains	177.2	0.317
$\sim 16^3$ grains	180.6	0.312
$\sim 32^3$ grains	182.4	0.310
∞	184.1	0.309

These values will be used as the homogenized, isotropic properties.