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Outline
1. Polyhedral finite elements

• motivation
• harmonic shape functions
• patch test
• verification
• future work

2. Multiscale modeling and material variability

• review of homogenization theory

a. weak convergence
b. effective vs. apparent material properties
c. type 1 and type 2 material variability

• direct numerical simulations

3. Summary
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Why Polyhedral Elements?

1. Facilitate mesh creation in complex geometries

Bishop, J., 2003, Computational Mechanics, 30, 46-478



Conventional Meshing

equiv. of 3 man-months of labor



Global-scale hexahedral mesh Stress-capable tetrahedral mesh

• time intensive
• no adaptivity (heuristics only)
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Why Polyhedral Elements?

2. Pervasive fracture modeling on random meshes

t = 0
t = 2 ms t = 20 ms

Bishop, J., 2009, Computational Mechanics, 44, 455-471.

Bishop, J. and Strack, O., 2011, IJNME, 38, 279- 306
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Explosively loaded cylinder
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p(t)

t

Hydraulic Fracture Simulation

Coupled fluid flow in 
fracture networks



Lots of Recent Literature on Polygonal or 
Polyhedral Finite Elements

• Rashid, M.M. and P.M. Gullett, “On a finite element method with variable element 
topology.” Computer Methods in Applied Mechanics and Engineering, 2000. 
190(11-12): p. 1509-1527.

• Sukumar, N. and A. Tabarraei, “Conforming polygonal finite elements.”
International Journal for Numerical Methods in Engineering, 2004. 61(12): p. 
2045-2066.

• Rashid, M.M. and M. Selimotic, “A three-dimensional finite element method with 
arbitrary polyhedral elements.” International Journal for Numerical Methods in 
Engineering, 2006. 67(2): p. 226-252.

• Wicke, M., M. Botsch, and M. Gross, “A Finite Element Method on Convex 
Polyhedra.” Computer Graphics Forum, 2007. 26(3): p. 355-364.

• Martin, S., et al., “Polyhedral Finite Elements Using Harmonic Basis Functions.”
Computer Graphics Forum, 2008. 27(5): p. 1521-1529.

• Bishop, J., “Simulating the pervasive fracture of materials and structures using 
randomly close packed Voronoi tessellations.” Computational Mechanics, 2009. 
44(4): p. 455-471.

• Mousavi, S.E., H. Xiao, and N. Sukumar, “Generalized Gaussian quadrature rules 
on arbitrary polygons.” International Journal for Numerical Methods in 
Engineering, 2010. 82(1): p. 99-113.

• Joshi, P., et al., “Harmonic coordinates for character articulation.” ACM Trans. 
Graph., 2007. 26(3): p. 71.

Going to adopt integration 
rule from here.

Going to adopt use of harmonic 
shape functions  from here.

and here



Polyhedral Grids in Other Fields

• Brezzi, F., K. Lipnikov, and V. Simoncini, “A  family of mimetic finite difference 
methods on polygonal and polyhedral  meshes.” Math. Models Methods Appl. Sci., 
2005. 15: p. 1533-1553.

• Brezzi, F., et al., “A new discretization methodology for diffusion problems on 
generalized polyhedral meshes.” Computer Methods in Applied Mechanics and 
Engineering, 2007. 196(37-40): p. 3682-3692.

• Lipnikov, K., M. Shashkov, and I. Yotov, “Local flux mimetic finite difference 
methods.” Numerische Mathematik, 2009. 112(1): p. 115-152.

Mimetic Finite Difference

Finite Volume

(CD-Adapco, thermal, fluid-structure interaction)
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Polyhedral Finite-Element Formulation

• Developed for nonlinear solid mechanics (minimize number of 
integration points while avoiding artificial stabilization).

• General polyhedra: non-convex with non-planar faces

• Uses harmonic shape functions defined in the original configuration

• Uses total-Lagrangian formulation

• Mean-dilation formulation for nearly-incompressible materials

• Compatible with standard trilinear hexahedron

Bishop, J., 2014, "A displacement-based finite element formulation for general 
polyhedra using harmonic shape functions," IJNME, (DOI: 10.1002/nme.4562)
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Star Convexity

For ease of construction, present formulation assumes star-convexity 
with respect to vertex-averaged centroid.

star convex not star convex not star convex
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How to Fully Specify Face Geometry?

• Use vertex-averaged face centroid.  
• Could also use a bilinear mapping for quadrilateral faces.
• Could also use any barycentric mapping.
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Define Shape Functions Directly on 
Initial Configuration

Standard trilinear
hexahedral 
mapping using a 
parent c.s.

Present formulation 
defines shape functions 
directly on initial 
configuration.
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Harmonic Shape Functions

A harmonic function is a solution of Laplace’s equation 
(with appropriate boundary conditions).

example in 2D

example in 3D

Can solve efficiently using BEM, 
or can just use FEM.

Note:  Only need to store shape function values and derivatives at the 
quadrature points.
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Harmonic Shape Function Examples
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Harmonic Shape Function Properties

partition of unity

reproduce linear fields

Kronecker-delta property at nodes
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Hierarchical Construction of Harmonic Shape Functions 
(Joshi, 2007)

node a

linear

boundary 
conditions

node a

linear
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Harmonic Shape Functions for Non-planar Faces

Can also use other barycentric face mappings.
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How to Solve for Harmonic Shape Functions 
using FEA

Use a temporary tetrahedral submesh.
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Accuracy of Harmonic Shape Functions?

R0

R1

Base tetrahedral 
subdivision

R2

1 : 8 subdivision

1 : 8 subdivision

Note: Only one 
unknown to solve for.

Number of unknowns to 
solve for = 
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Numerical Precision in Reproducing Properties

Partition of Unity Reproduction of Linear Fields
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Element Integration

• Due to computational expense of plasticity models, want to minimize the number of 
quadrature points.

• Follow approach of Rashid and Selimotec, 2006.

• Each node is associated with a “tributary” volume.  

• Number of quadrature points is equal to the number of vertices. 

• Quadrature weight = volume of tributary volume.

• First-order accurate, but quadrature weights are positive (avoids Runge’s phenomenon)
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Patch Test

distorted hex patch random close-packed Voronoi patch
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Patch Test

patch of elements

Failed patch test!

stress error > 10%
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Patch Test and Integration Consistency

Divergence theorem

Discrete divergence theorem

(error over all shape functions and coordinate directions)

Maximum error in integration constraint

(Krongauz & Belytschko, 1997;  Chen, 2001)
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Derivative Correction to Pass the Patch Test

• “Tweak” the shape function derivatives to satisfy the integration 
consistency condition.

• Maintain the reproducing properties of the derivatives.
• Minimize the difference between the new derivatives and the old.
• Local solve at the element level; performed once.
• Performed for each direction and shape function independently.

subject to the constraints
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Derivative Correction to Pass the Patch Test

Maximum error in integration constraint

(error over all shape functions and coordinate directions)
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failed patch test successful patch test

Patch Test: Before and After
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Patch Test with Non-Convex Elements
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Verification Tests

loading:  3D beam bending with end shear load (have exact solution)

meshes and element formulations:

1. perfect hex mesh, trilinear vs. poly formulation

2. distorted hex mesh, trilinear vs. poly formulation

3. Voronoi mesh, poly formulation
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Verification Test: Beam Bending with Shear 
Load

trilinear hex formulation poly formulation poly formulation
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Beam Bending with Shear Load

mean dilation standard dilation

(perfect hex mesh)
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Energy Norm

mean dilation standard dilation

(perfect hex mesh)
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Random Hex Mesh (20 realizations)

L2 norm Energy Norm

(mean dilation)
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Random Voronoi Mesh (20 realizations)

L2 norm Energy Norm

(mean dilation)
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Near Incompressibility

L2 norm Energy Norm

(mean dilation, worst case Voronoi mesh at each refinement)
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Effect of Shape Function Accuracy

R0

R1

R2

L2 norm Energy Norm

(worst case Voronoi mesh at each refinement)
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Summary

1. Presented a polyhedral finite-element formulation based on harmonic 
shape functions.

2. Applicable to non-convex elements with non-planar faces.

3. Adopted quadrature scheme of Rashid (number of quadrature points = 
number of vertices, total-Lagrangian formulation)

4. In order to pass the patch test, needed to use “pseudo-derivatives”.

Future Work

1. Nonlinear examples (plasticity, large deformation)

2. Try this element formulation using other barycentric coordinates (e.g. maxEnt)

3. Remove restriction of star-convexity (used for convenience)
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Outline
1. Polyhedral finite elements

• motivation
• harmonic shape functions
• patch test
• verification
• future work

2. Multiscale modeling and material variability

• review of homogenization theory

a. weak convergence
b. effective vs. apparent material properties
c. type 1 and type 2 material variability

• direct numerical simulations

3. Summary
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Goals / Questions

• What is material variability?

• How do we “consistently” include material variability in our macroscale
simulations?

• When is material variability significant?

• How does material variability impact engineering quantities of interest?
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Homogenization

fine-scale fluctuations replaced with mean behavior

Constitutive models map average strain to average stress:

This equivalence is defined in an energy sense:
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Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies." 
Journal of the Mechanics and Physics of Solids, 38(6): 813-841.

Apparent vs. Effective Material Properties

SUBC KUBC
deterministic

stochastic stochastic

C = stiffness tensor

partial ordering defined in an energetic sense:

iff for all 

finite RVE, apparent infinite RVE, effective
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L 2L 4L 8L

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies." 
Journal of the Mechanics and Physics of Solids, 38(6): 813-841.

Apparent vs. Effective Material Properties
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0.32 0.16 0.08 0.04

effective value

ap
p
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t 
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ty

displacement b.c., KUBC

traction b.c., SUBC

periodic b.c.

First order continuum uses this.

(deterministic, no variability)

RVE size 

Apparent vs. Effective Material Properties



What about the Governing PDE?

micro-scale

l

L

What is the governing 
PDE at the macroscale?

macro-scale

linear elasticity



Strong and Weak Convergence

These are the modes of convergence in which homogenization is defined.



weak limit
(mean)

Weak Convergence

weak limit
(mean)

Theorem:  Any sequence of periodic functions converges weakly to the mean as 
the period approaches zero. 
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Definitions of Statistical Convergence
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Asymptotic Expansion

(Cioranescu and Donato, 1999, An Introduction to Homogenization.)

homogenized 
solution

periodic cell 
solutionare periodic in

is the `slow’ variable

is the `fast’ variable



Linear Homogenization Results

RESULT:

homogenized solution first-order 
corrector

second-order 
corrector

Observations:

substitute

does not depend upon   !

• In the limit as              , get a first-order continuum (homogenized).
• For              need gradient terms (higher-order continuum)



52

Linear Homogenization Results

(Cioranescu and Donato, 1999, An Introduction to Homogenization.)

For random media:

or



Homogenization

negligible effect in areas 
of low strain gradient

significant effect in areas of 
high strain gradient?

surface 
effect

surface 
effect

micro-scale stress field
first-order homogenization
second-order homogenization

“Higher-order effects can be expected to come into play in linear-elastic 
solids when the representative length scale of the deformation field 
becomes comparable to a micro-structural length scale.”  - (Mindlin, 1964)



1. Spatial variability of homogenized material constants

• size of microstructure   = 
• first-order homogenization, first-order PDE
• spatial correlation at the macro-scale
• elastic isotropy assumption holds regardless of scale

2. Higher-order terms in the PDE itself (Type 2)

• micro-structure is finite  ≠ 
• higher-order PDE
• spatial correlation at the micro-scale only
• anisotropic fluctuations

Identify Two Types of Material Variability

(Type 1)

(Type 2)
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Direct Numerical Simulations

• Perform direct numerical simulations (DNS) of macroscopic 
boundary-value problems with microstructure and compare with 
the solution from the homogenized PDE.

• Identify any evidence of Type-2 material variability.

• Propose/investigate a higher-order continuum theory for Type-2 
material variability.
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Voronoi Microstructure from MPS Seeding

Maximal Poisson Sampling

• constraint on min. dist.
• seed until ‘max’ packing
• Ebeida/Mitchell Algorithm (1400)

The image cannot be displayed. Your computer may not have enough memory to open the  
image, or the image may have been corrupted. Restart your computer, and then open the  
file again. If the red x still appears, you may have to delete the image and then insert it  
again.
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Voronoi Overlay of Hexahedral Mesh
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Hierarchy of Hexahedral Meshes

R0 R1 R2

R3 R4
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Voronoi Overlay of Hierarchy of Hexahedral Meshes

R0

• One grain realization with ~ 6 grains through the diameter (~ 940 grains)
• Hierarchy of hexahedral meshes
• Pixelation decreases with mesh refinement

R1 R2

R3 R4

~ 4096 hexas per grain~ 512 hexas per grain

~ 64 hexas per grain~ 8 hexas per grain~ 1 hex per grain
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R1 R2

R3 R4

Voronoi Overlay of Hierarchy of Hexahedral Meshes
One grain realization with ~ 12 grains through the diameter (~ 6200 grains)

~ 1 hex per grain ~ 8 hexas per grain

~ 64 hexas per grain ~ 512 hexas per grain
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304L Single Crystal Elasticity Constants

anisotropy ratio, 

(Ledbetter, 1984)

single crystal elastic constants (cubic symmetry)

• assume random crystallographic orientations
• no correlation between grains (no texture)
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RPI Crystal Plasticity Model
(Dave Littlewood, John Emery, Chris Weinberger)

plastic velocity gradient:

Schmid tensor:

(sum over slip systems)

slip system hardening:

slip system slip rates:
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How to Get Homogenized Material Model?

• Ideally, would use computational homogenization (FE2) for nonlinear homogenization

• Since this is not available, use a simple power-law hardening plasticity model.

• Use RVE techniques to get isotropic elasticity constants

number of 
grains

apparent Young’s 
Modulus

(GPa)

apparent Poisson’s 
ratio

~83 grains 177.2 0.317

~163 grains 180.6 0.312

~323 grains 182.4 0.310

∞ 184.1 0.309
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I-Beam Example

• tension
• bending
• torsion



• R0
• 8,576 hexas

Hierarchy of Hexahedral Meshes

• R1
• 69K hexas

• R2
• 549K hexas

• R3
• 4.4M hexas

• R4
• 35M hexas



Thickness/grain-ratio = 8

• RCP Voronoi grain structure
• 420K grains
• hex mesh overlay = R4 (35M elements)



VonMises stress field

Homogenized solution

Direct numerical simulation
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realization 1

realization 2

Homogenized Solution vs. Direct-Numerical Simulation

Stress magnitude along lower fillet
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Homogenized Solution vs. Ensemble Average

Beran and McCoy (1970) showed that the governing equation for 
the mean field is nonlocal.

See no evidence for nonlocality here.

Stress magnitude along lower fillet



realization 1

realization 2

Homogenized Solution vs. Direct-Numerical Simulation
Stress magnitude around hole
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Homogenized Solution vs. Ensemble Average

See some evidence for nonlocality here.

Stress magnitude around hole
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3D Moving Average using Gaussian Filter

convolution

Gain vs. spatial frequencyA = normalization constant to reproduce constant functions

cutoff frequency

Gaussian Kernel
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3D Moving Average using Gaussian Filter

Homogenized 
solution is a 
surprisingly good 
approximation.
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Stainless-steel Tube under Combined Tension-Torsion
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• homogenized isotropic 
power-law hardening 
plasticity model

• direct numerical simulation
• crystal plasticity model
• 352,000 grains
• 8 grains through the thickness

Strain under Combined Tension-Torsion
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Axial Load Only
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Axial Load + Torsion



Strain magnitude along length of tube 
(midsection between holes, combined tension-torsion) 
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Homogenized 
solution is a 
surprisingly good 
approximation to the 
filtered response.
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unfiltered

filtered

Homogenized 
solution is a 
surprisingly good 
approximation to the 
filtered response.
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Global Stretch and Rotation of Tube

axial stretch rotation

Homogenized solution good in tension-only region but less accurate in 
combined tension-torsion.
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Summary

• Identified two types of material variability; Type-1 is “classical” while Type-2 
arises from higher-order effects (gradient, surface, nonlocal).

• Used Direct Numerical Simulations of macroscale boundary value problems 
containing microstructure to investigate Type-2 material variability.

• Found little evidence of higher-order effects for this material and these BVPs.
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Future Work

• Investigate DNS mesh resolution (~280M element model requires 3-level 
FETI solver on ~16000 cores)

• Investigate the use of “Filter” multiscale scheme (Yvonnet & Bonnet, 2014) 
for incorporating microscale variability in macroscale models.



83

Extra
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S1 S2 S3    . . .  S100

Stochastic Volume Elements

~ 83 grains

~ 163 grains

~ 323 grains

S1 S2 S3    . . .  S100

S3    . . .  S100S2S1
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Stochastic Volume Elements

~ 83 grains ~ 163 grains ~ 323 grains

• traction boundary conditions corresponding to uniaxial stress state
• recover average strain field
• calculate apparent moduli 
• 100 realizations at each grain level
• take average

Von Mises stress field
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Convergence to Effective Isotropic Properties

number of grains apparent Young’s Modulus
(GPa)

apparent Poisson’s ratio

~83 grains 177.2 0.317

~163 grains 180.6 0.312

~323 grains 182.4 0.310

∞ 184.1 0.309

• mean of 100 simulations at each “grain level”
• rational function extrapolation to ∞
• first order convergence rate

These values will be used as the homogenized, isotropic properties.


