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Outline

1. Polyhedral finite elements

* motivation

* harmonic shape functions
e patch test

* verification

e future work

2. Multiscale modeling and material variability

* review of homogenization theory

a. weak convergence
b. effective vs. apparent material properties
c. type 1 and type 2 material variability

* direct numerical simulations

3. Summary



Sandia
m National
Laboratories

Why Polyhedral Elements?

1. Facilitate mesh creation in complex geometries

Bishop, J., 2003, Computational Mechanics, 30, 46-478
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Conventional Meshing

equiv. of 3 man-months of labor
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Global-scale hexahedral mesh Stress-capable tetrahedral mesh
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* time intensive
* no adaptivity (heuristics only)
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Why Polyhedral Elements?

2. Pervasive fracture modeling on random meshes

Bishop, J., 2009, Computational Mechanics, 44, 455-471.
Bishop, J. and Strack, O., 2011, IJNME, 38, 279- 306
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Explosively loaded cylinder
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Hydraulic Fracture Simulation

Coupled fluid flow in
fracture networks

max_p
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250
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Lots of Recent Literature on Polygonal or (i) &
Polyhedral Finite Elements

» Rashid, M.M. and P.M. Gullett, “On a finite element method with variable element

topology.” Computer Methods in Applied Mechanics and Engineering, 2000.
190(11-12): p. 1509-1527.

* Sukumar, N. and A. Tabarraei, “Conforming polygonal finite elements.”
International Journal for Numerical Methods in Engineering, 2004. 61(12): p.
2045-2066.

* Rashid, M.M. and M. Selimotic, “A three-dimensional finite element method with Going to adopt integration
arbitrary polyhedral elements.” International Journal for Numerical Methods in rule from here.
Engineering, 2006. 67(2): p. 226-252.

* Wicke, M., M. Botsch, and M. Gross, “A Finite Element Method on Convex
Polyhedra.” Computer Graphics Forum, 2007. 26(3): p. 355-364.

* Martin, S., et al., “Polyhedral Finite Elements Using Harmonic Basis Functions.” Going to adopt use of harmonic
Computer Graphics Forum, 2008. 27(5): p. 1521-1529. shape functions from here.

 Bishop, J., “Simulating the pervasive fracture of materials and structures using
randomly close packed Voronoi tessellations.” Computational Mechanics, 2009.
44(4): p. 455-471.

* Mousavi, S.E., H. Xiao, and N. Sukumar, “Generalized Gaussian quadrature rules
on arbitrary polygons.” International Journal for Numerical Methods in
Engineering, 2010. 82(1): p. 99-113.

» Joshi, P, et al., “Harmonic coordinates for character articulation.” ACM Trans. and here
Graph., 2007. 26(3): p. 71.



Polyhedral Grids in Other Fields ) o,

Mimetic Finite Difference

* Brezzi, F.,, K. Lipnikov, and V. Simoncini, “A family of mimetic finite difference
methods on polygonal and polyhedral meshes.” Math. Models Methods Appl. Sci.,
2005. 15: p. 1533-1553.

» Brezzi, F,, et al., “A new discretization methodology for diffusion problems on
generalized polyhedral meshes.” Computer Methods in Applied Mechanics and
Engineering, 2007. 196(37-40): p. 3682-3692.

 Lipnikov, K., M. Shashkov, and I. Yotov, “Local flux mimetic finite difference
methods.” Numerische Mathematik, 2009. 112(1): p. 115-152.

Finite Volume

(CD-Adapco, thermal, fluid-structure interaction)




Polyhedral Finite-Element Formulation

Bishop, J., 2014, "A displacement-based finite element formulation for general
polyhedra using harmonic shape functions," I/NME, (DOI: 10.1002/nme.4562)

Developed for nonlinear solid mechanics (minimize number of
integration points while avoiding artificial stabilization).

General polyhedra: non-convex with non-planar faces
Uses harmonic shape functions defined in the original configuration
Uses total-Lagrangian formulation

Mean-dilation formulation for nearly-incompressible materials

Compatible with standard trilinear hexahedron
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Star Convexity

For ease of construction, present formulation assumes star-convexity
with respect to vertex-averaged centroid.

star convex not star convex not star convex




How to Fully Specify Face Geometry?

* Use vertex-averaged face centroid.
* Could also use a bilinear mapping for quadrilateral faces.
e Could also use any barycentric mapping.

NS Xfc
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Define Shape Functions Directly on
Initial Configuration

Standard trilinear
hexahedral 6
mapping using a

parent c.s.

(a)

Present formulation
defines shape functions
directly on initial
configuration.
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Harmonic Shape Functions

A harmonic function is a solution of Laplace’s equation
(with appropriate boundary conditions).

va — 0 Can solve efficiently using BEM,

~t?

or can just use FEM.

example in 3D

example in 2D

Note: Only need to store shape function values and derivatives at the
qguadrature points.




Harmonic Shape Function Examples ()i




Harmonic Shape Function Properties

d X)) =1, Xe partition of unity

Ny
Zwa(X) X=X, Xe reproduce linear fields
a=1

Y (X") = Gap Kronecker-delta property at nodes

Sandia
National
Laboratories




Hierarchical Construction of Harmonic Shape Functions ..
(Joshi, 2007)

boundary
conditions

node a :
W linear

% linear




Harmonic Shape Functions for Non-planar Faces e

Can also use other barycentric face mappings.




Sandia

How to Solve for Harmonic Shape Functions )&
using FEA

Use a temporary tetrahedral submesh.

LK X




Accuracy of Harmonic Shape Functions? ()=,

Base tetrahedral

subdivision Note: Only one

unknown to solve for.

‘ k
Number of unknowns to
solve for =
R1 NV + Nf + 1
‘ N

21

1 : 8 subdivision

1 : 8 subdivision
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Numerical Precision in Reproducing Properties

Partition of Unity

Reproduction of Linear Fields

subdivision X —1 max X X — X
ey [t (St
je{1,2 3} a=1
r0 3.33 x 1016 5.55 x 1016
rl 6.66 x 1016 5.55 x 1016
r2 1.55 x 10~1° 5.55 x 1016
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Element Integration

Due to computational expense of plasticity models, want to minimize the number of
guadrature points.

Follow approach of Rashid and Selimotec, 2006.

Each node is associated with a “tributary” volume.

Number of quadrature points is equal to the number of vertices.

Quadrature weight = volume of tributary volume.

First-order accurate, but quadrature weights are positive (avoids Runge’s phenomenon)

X_a XfC

[ 4
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\

distorted hex patch random close-packed Voronoi patch

20 ' ' ' N 500
T;, ! T;, st g o
[5) (] (1
2z T < 300f
5 10] 3 101 1 s
E Fq;, ,_g 200

. L l

10 20 30 40 5 10 15 20 25 2 4 6 8 10 12

(a) number of vertices (b) number of faces (©) number of face vertices

24
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Failed patch test!

X

_——

stress error > 10%

patch of elements




Patch Test and Integration Consistency
(Krongauz & Belytschko, 1997; Chen, 2001)

Divergence theorem

/z/;?;dﬂzf Vin;dl, a=1,...,Ny, i=1273
Q. .

Discrete divergence theorem

r
Ni.p. Ni_P_
ak r I 1 :
E Wi = E wy Yvn;, a=1,...,Ny, i=1,2,3

Maximum error in integration constraint

subdivision before derivative correction after derivative correction

0 0.0609 2.77 x 10717
rl 0.0138 2.77 x 10717
r2 0.0106 2.77 x 10717

(error over all shape functions and coordinate directions)
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h

Derivative Correction to Pass the Patch Test

 “Tweak” the shape function derivatives to satisfy the integration
consistency condition.

* Maintain the reproducing properties of the derivatives.

* Minimize the difference between the new derivatives and the old.

* Local solve at the element level; performed once.

* Performed for each direction and shape function independently.

Sandia
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T
Ni.p. 5 Ni.p. Nl.p.
min Wi, <§’“ — ?f) subject to the constraints E fwkﬁk — E ‘wlr walné =0
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Derivative Correction to Pass the Patch Test

Maximum error in integration constraint

subdivision before derivative correction  after derivative correction

r0 0.0609 2.77 x 10717
rl 0.0138 277 x 10~17
2 0.0106 2.77 x 10717

(error over all shape functions and coordinate directions)




Patch Test: Before and After =

- v
failed patch test successful patch test
case without derivative correction  with derivative correction
hex patch, trilinear formulation 1.11 x 10715 -
hex patch, poly formulation 0.0863 5.55 x 10716
hex patch, trilinear and poly 0.0152 8.88 x 10716
random Voronoi patch 0.1844 1.41 x 10712

29
-



Patch Test with Non-Convex Elements
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loading: 3D beam bending with end shear load (have exact solution)

meshes and element formulations:

1. perfect hex mesh, trilinear vs. poly formulation

2. distorted hex mesh, trilinear vs. poly formulation

3. Voronoi mesh, poly formulation

l

\\
PO

2a

2

T




Verification Test: Beam Bending with Shear @&
Load

&4

trilinear hex formulation poly formulation poly formulation




lu" —ull2/[ull2

Beam Bending with Shear Load

(perfect hex mesh)

mean dilation standard dilation

———— polyhedral formulation

— — 0O - - trilinear hex formulation
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lu" —ulg/llulls
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Energy Norm

(perfect hex mesh)

mean dilation standard dilation

— ———r —
——e—— polyhedral formulation
— —0- - trilinear hex formulation |
Ml | L
10° 10" 100 10 10’ 107
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Random Hex Mesh (20 realizations)

(mean dilation)

L2 norm Energy Norm
0
10 T T TS 100_ —
——e—— polyhedral formulation ] [
— = 0 - - trilinear hex formulation 1
-1
10 F .
il 1 B
=2 =
= E
— 10 F 3 :Lﬂ]O_1 - .
= =
| |
< <
= 5 o
— 10 = 3 e
10_4 1 1 , 10_2 ]
10 10 10 10° 10" 10°
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Random Voronoi Mesh (20 realizations)

(mean dilation)

L2 norm Energy Norm

10° : : 10" : : :
a1 A
ERa 1 =
E F

-1

= —10 F _
= = 1
Q' S | 1.01 /
i 10 - E vﬁs &

107 . 1 _,0 1072 , B

10 10 10" 10"




Near Incompressibility

(mean dilation, worst case Voronoi mesh at each refinement)

L2 norm

Dmax

Energy Norm
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Effect of Shape Function Accuracy 1) .

(worst case Voronoi mesh at each refinement)

RO
L2 norm Energy Norm
10" ———y 5 T —
10
&
! = R1
10_2: | 107 -
F < rQ
= 72
- rl
10
0™ 0"
10 10° 10 10’ R2

Dmax Dmax
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Summary

Presented a polyhedral finite-element formulation based on harmonic
shape functions.

Applicable to non-convex elements with non-planar faces.

Adopted quadrature scheme of Rashid (number of quadrature points =
number of vertices, total-Lagrangian formulation)

In order to pass the patch test, needed to use “pseudo-derivatives”.

Future Work

Nonlinear examples (plasticity, large deformation)

Try this element formulation using other barycentric coordinates (e.g. maxEnt)

Remove restriction of star-convexity (used for convenience)
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Outline

1. Polyhedral finite elements

* motivation

* harmonic shape functions
e patch test

* verification

e future work

2. Multiscale modeling and material variability

* review of homogenization theory

a. weak convergence
b. effective vs. apparent material properties
c. type 1 and type 2 material variability

* direct numerical simulations

3. Summary

40
-
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Goals / Questions

What is material variability?

How do we “consistently” include material variability in our macroscale
simulations?

When is material variability significant?

How does material variability impact engineering quantities of interest?




Homogenization

. €
045 = (o ij>
fine-scale fluctuations replaced with mean behavior

This equivalence is defined in an energy sense: ¢ ;¢;; = <O§j> <€§j>

Constitutive models map average strain to average stress:

Eij — <€z'j> —> 045 = <U§j>

Sandia
National
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Apparent vs. Effective Material Properties

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies.

Journal of the Mechanics and Physics of Solids, 38(6): 813-841.

C = stiffness tensor

finite RVE, apparent infinite RVE, effective
R (W) < < 0P(w)
o W) > — Y¢g W
SUBC KUBC
, deterministic
stochastic stochastic

partial ordering defined in an energetic sense:

B<A it c:(A-B):c>0 forall £+#0

h

n
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Apparent vs. Effective Material Properties ()&,

n

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies.
Journal of the Mechanics and Physics of Solids, 38(6): 813-841.

app app app _
CEPP < CFPR < O < ... < OFPR = C

b




Apparent vs. Effective Material Properties (T,

g
7

displacement b.c., KUBC

First order continuum uses this.

periodic b.c.

_ (deterministic, no variability)
traction b.c., SUBC

apparent property

Vv

RVE size




What about the Governing PDE? [,

macro-scale

micro-scale

O-Sj)j —|_fz =0 -

€ __ € €
;7 = Qi k1C kI

linear elasticity

—

What is the governing
PDE at the macroscale?
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Strong and Weak Convergence

A sequence of functions (u,), u, € L? is strongly convergent to u € L? if
lim ||luy, —ul2 =0

n—oo

A sequence of functions (u,), u, € L? is weakly convergent to u € L? if

nli_)rr;o<un,v> = (u,v) for all v € L2

These are the modes of convergence in which homogenization is defined.
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Weak Convergence

Example: The sequence of functions u,, = sin(nmz) in L?[0, 1] converges weakly to u = 0.

Ua ug U1e6 uz2
weak limit

I / (mean)

0 0 0.5 1 0 0.5 1 0 0.5 1
X p'Y X X
weak limit
1 - - - — — — — — — — o — o — —
.~ (mean)
Z 0 - S R B
S
_1 ) .
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
X X

Theorem: Any sequence of periodic functions converges weakly to the mean as
the period approaches zero.
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Definitions of Statistical Convergence

almost sure convergence

Pr(limxh =xj=1

h—0
convergence in »-mean /\

r):O

convergence in probability

limE (‘xh —X

h—0

increasing
strength

%E)I(}PI’QX}I - x‘ > e)z 0
convergence in distribution
lim 7, (x) = F ()

49
-
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Asymptotic Expansion
(Cioranescu and Donato, 1999, An Introduction to Homogenization.)

ue(X) — uO(X, y) + €euy (X, y) -+ 62112()(, y) + ...

periodic cell

u; (XaY) are periodicin 'y solution

y = X/e is the “fast’ variable
homogenized
solution

X is the ‘slow’ variable

Y
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Linear Homogenization Results

substitute
€ _
€

u(x) = up(x,y) + e (x,y) + e uz(x,y) + - - e e
Tij = QijkiCkl

f"‘

RESULT: u‘(x) =ug(x) — enx( ) Vugy + 62(9( ) VVug + -

- [

first-order second-order
does not depend upon ¢! corrector corrector

homogenized solution

Observations:

* Inthelimitas ¢ — 0, get a first-order continuum (homogenized).
* For € # 0 need gradient terms (higher-order continuum)
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Linear Homogenization Results

(Cioranescu and Donato, 1999, An Introduction to Homogenization.)

u¢ — u strongly in L?
u® — u weakly in H'
0¢ — o weakly in L?
We — W strongly in R

For random media: / (||lu® — u||2>dQ 30 as €—=0
Q

or

u‘(w) — u in mean square

52




Homogenization ) e,

——— micro-scale stress field
—— first-order homogenization
_____ second-order homogenization

significant effect in areas of
high strain gradient?

/ \ negligible effect in areas

f of low strain gradient

/ surface
( \ effect

surface
effect

“Higher-order effects can be expected to come into play in linear-elastic
solids when the representative length scale of the deformation field
becomes comparable to a micro-structural length scale.” - (Mindlin, 1964)
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ldentify Two Types of Material Variability

(Type 1) 1. Spatial variability of homogenized material constants

e size of microstructure €=0

» first-order homogenization, first-order PDE

e spatial correlation at the macro-scale

» elastic isotropy assumption holds regardless of scale

(Type 2) 2. Higher-order terms in the PDE itself (Type 2)

* micro-structure is finite € 20

* higher-order PDE

e spatial correlation at the micro-scale only
e anisotropic fluctuations




Direct Numerical Simulations

* Perform direct numerical simulations (DNS) of macroscopic
boundary-value problems with microstructure and compare with
the solution from the homogenized PDE.

* |dentify any evidence of Type-2 material variability.

* Propose/investigate a higher-order continuum theory for Type-2
material variability.

Sandia
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Voronoi Microstructure from MPS Seeding —

wwwww

Maximal Poisson Sampling

e constraint on min. dist.
e seed until ‘max’ packing
e Ebeida/Mitchell Algorithm (1400)
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Voronoi Overlay of Hexahedral Mesh
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Hierarchy of Hexahedral Meshes
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Voronoi Overlay of Hierarchy of Hexahedral Meshes

* One grain realization with ~ 6 grains through the diameter (~ 940 grains)
* Hierarchy of hexahedral meshes
* Pixelation decreases with mesh refinement

~ 1 hex per grain ~ 8 hexas per grain

~ 64 hexas per grain

~ 512 hexas per grain ~ 4096 hexas per grain




Voronoi Overlay of Hierarchy of Hexahedral Meshes

One grain realization with ~ 12 grains through the diameter (~ 6200 grains)

~ 64 hexas per grain ~ 512 hexas per grain
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304L Single Crystal Elasticity Constants
(Ledbetter, 1984)

011 — 204.6 GPa
single crystal elastic constants (cubic symmetry) Cia = 137.7 GPa
Cus = 126.2 GPa

2Ch2

anisotropy ratio A= —"=35
Py ratio, Cri— Cu

e assume random crystallographic orientations
* no correlation between grains (no texture)

61
-



RPI Crystal Plasticity Model

(Dave Littlewood, John Emery, Chris Weinberger)

N
plastic velocity gradient: P = Z Ao P (sum over slip systems)
a=1
Schmid tensor: P =m*@n®
T a|l/m—1
slip system slip rates: Y =Y— |—
g | g°
_ : Go
slip system hardening: 9= 9o + (9s0 — 9o) [1 — exp <—g s 7)]
N

Sandia
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How to Get Homogenized Material Model 2 .

 |deally, would use computational homogenization (FE?) for nonlinear homogenization
* Since this is not available, use a simple power-law hardening plasticity model.

* Use RVE techniques to get isotropic elasticity constants

800 T T
= = = DNS, realization 1
- — = = DNBS, realization 2
number of apparent Young’s apparent Poisson’s 700 - = - DNS, realization 3
. . homogeneous, power—law hardening
grains Modulus ratio sool ]
(GPa) - -
) £ 500} ]
~83 grains 177.2 0.317 =
. % 400
~163 grains 180.6 0.312 5
) é 300f
~323 grains 182.4 0.310
200
oo 184.1 0.309
100

S

0.02 0.04 0.06 0.08 0.1
true strain

(=]
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* tension
* bending
e torsion
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W
W

R1

RO

e 549K hexas

69K hexas

576 hexas

08’

R4
 35M hexas

R3
e 4.4M hexas




Thickness/grain-ratio = 8 ) i,

* RCP Voronoi grain structure
* 420K grains
* hex mesh overlay = R4 (35M elements)




Homogenized solution

VonMlises stress field

Direct numerical simulation

von_mises

3.00
225
1.50 |
0.75
0.00




Homogenized Solution vs. Direct-Numerical Simulation

Stress magnltude along Iower fillet

W

—— DNS, eah ation 1 |
homogenized

N
T

w
T

realization 1

I h uh‘i hl“l i M l|| ml l| ﬂ

le] b b " |

normalized stress magnitude
[\

—_

0 5 10 15 20 25 30 35 40

(=}

—— DN, realization 2 ]
homogenized

realization 2

r"l"'” |N h 1|||| ”” “L Hl ]“] m ‘| i

W' l’“ ! "HIJ"I‘ \

normalized stress magnitude

0 5 10 15 20 25 30 35 40

distance along fillet, mm
-
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Homogenized Solution vs. Ensemble Average T,

Beran and McCoy (1970) showed that the governing equation for
the mean field is nonlocal.

Stress magnitude along lower fillet
4""I""I""I""I""I""I""I""

— homogenized solution
— DNS solution, ensemble—average (100) 7

— N> et
()] \O] ()] (O8] (V)]
T — T T T 1
1 1

stress magnitude

o

¥, p—
—

1

0 5 10 15 20 25 30 35 40
distance along fillet, mm

S

See no evidence for nonlocality here.
69



Homogenized Solution vs. Direct-Numerical Simulation

Stress magnitude around hole

— homogenized
—— DN, realization 1 7

N

W
W W
T T

stress magnitude
[\S)
n

realization 1

—_
—_ W o
T T T

0.5F

0 2 4 6 8 10 12 14 16

— homogenized
— DN, realization 2 7

N
W

realization 2

stress magnitude

—_
—_ W o
T T T

o
n

[e]

0 2 4 6 8 10 12 14 16
distance around hole, mm
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Homogenized Solution vs. Ensemble Average T,

Stress magnitude around hole

N

— homogenized solution
— DN solution, ensemble—average (100) 7

stress magnitude
— N W
—_ (V)] \®) (W)} W (V)]
' ' i i i 1 i 1
1

0.5

0 2 4 I 6 8 10 12 14 16
dista;hce along hole circumference, mm

I
I

See some evidence for nonlocality here.
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3D Moving Average using Gaussian Filter

h

Gaussian Kernel

Sandia
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Laboratories

convolution

&ij(X)ZWa(X)*Uij(X)Z/Q Yo (X —¥)oij (¥)dy "

o

2
[[x—yll

Ya(X—y)=Ae a2

a

A = normalization constant to reproduce constant functions Gain vs. spatial frequency
V2In2  1.1774 = |

cutoff frequency w, =

« 04




3D Moving Average using Gaussian Filter (i) &

Laboratories

' ARRRRRRRARERARARERERARERER —— DNS, realization 1 |
o | homogenized
B4 ]
.*gb :
: g 5L
unfiltered 5| A I l ’
3 M‘ | 1]| 1\ \| i '1| ’ "“H‘HN”MILIUV'“ l\\
O(;IIII;”IIIIOIIIIIISIIIIZIOIIIIZISIIII3IOIIII3I5IIII40
distance along fillet, mm
3 — T ———————————————————
| —— DNS, rea%izationl ]
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Stainless-steel Tube under Combined Tension-Torsion
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Strain under Combined Tension-Torsion

* homogenized isotropic
power-law hardening
plasticity model

* direct numerical simulation
crystal plasticity model
352,000 grains

8 grains through the thickness
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Axial Load Only () i
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Axial Load + Torsion
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Strain magnitude along length of tube () =

Laboratories
(midsection between holes, combined tension-torsion)
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Strain magnitude around hole ) s

National
(inside circumference, combined tension-torsion)
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) s
Global Stretch and Rotation of Tube

axial stretch rotation
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Summary

Identified two types of material variability; Type-1 is “classical” while Type-2
arises from higher-order effects (gradient, surface, nonlocal).

Used Direct Numerical Simulations of macroscale boundary value problems
containing microstructure to investigate Type-2 material variability.

Found little evidence of higher-order effects for this material and these BVPs.
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Future Work

* Investigate DNS mesh resolution (~280M element model requires 3-level
FETI solver on ~16000 cores)

* Investigate the use of “Filter” multiscale scheme (Yvonnet & Bonnet, 2014)
for incorporating microscale variability in macroscale models.
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Stochastic Volume Elements i) e,

Laboratories

~ 83 grains

... S100

~ 163 grains

... S100




Stochastic Volume Elements i) i

Laboratories

* traction boundary conditions corresponding to uniaxial stress state
* recover average strain field

 calculate apparent moduli

* 100 realizations at each grain level

* take average

Von Mises stress field

~ 83 grains

~ 163 grains ~ 323 grains
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Convergence to Effective Isotropic Properties e

* mean of 100 simulations at each “grain level”
* rational function extrapolation to oo
« first order convergence rate

number of grains

apparent Young’s Modulus

apparent Poisson’s ratio

(GPa)
~83 grains 177.2 0.317
~163 grains 180.6 0.312
~323 grains 182.4 0.310
oo 184.1 0.309

These values will be used as the homogenized, isotropic properties.
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